期刊文献+
共找到43,918篇文章
< 1 2 250 >
每页显示 20 50 100
PLayer: a plug-and-play embedded neural system to boost neural organoid 3D reconstruction
1
作者 Yuanzheng Ma Davit Khutsishvili +7 位作者 Zihan Zang Wei Yue Zhen Guo Tao Feng Zitian Wang Liwei Lin Shaohua Ma Xun Guan 《Advanced Photonics Nexus》 2025年第3期79-91,共13页
Neural organoids and confocal microscopy have the potential to play an important role in microconnectome research to understand neural patterns.We present PLayer,a plug-and-play embedded neural system,which demonstrat... Neural organoids and confocal microscopy have the potential to play an important role in microconnectome research to understand neural patterns.We present PLayer,a plug-and-play embedded neural system,which demonstrates the utilization of sparse confocal microscopy layers to interpolate continuous axial resolution.With an embedded system focused on neural network pruning,image scaling,and post-processing,PLayer achieves high-performance metrics with an average structural similarity index of 0.9217 and a peak signal-to-noise ratio of 27.75 dB,all within 20 s.This represents a significant time saving of 85.71%with simplified image processing.By harnessing statistical map estimation in interpolation and incorporating the Vision Transformer–based Restorer,PLayer ensures 2D layer consistency while mitigating heavy computational dependence.As such,PLayer can reconstruct 3D neural organoid confocal data continuously under limited computational power for the wide acceptance of fundamental connectomics and pattern-related research with embedded devices. 展开更多
关键词 neural connectivity 3D reconstruction deep learning ORGANOIDS confocal microscopy embedded neural network
在线阅读 下载PDF
Research on edge defects suppression of Mg/Al composite plate rolling:Development of embedded rolling technology
2
作者 Chenchen Zhao Zhiquan Huang +3 位作者 Haoran Zhang Peng Li Tao Wang Qingxue Huang 《Journal of Magnesium and Alloys》 2025年第8期3751-3767,共17页
Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre... Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre damage model with a generalized stress state damage prediction mechanism was used to evaluate the key mechanical factors contributing to defect formation.Based on this evaluation,an embedded composite rolling technique was proposed.Subsequently,comparative validation was conducted at 350℃ with a 50% reduction ratio.Results showed that the plates rolled using the embedded composite rolling technique had smooth surfaces and edges,with no macroscopic cracks observed.Numerical simulation indicated that,compared to conventional processes,the proposed technique reduced the maximum edge stress triaxiality of the plates from-0.02 to-1.56,significantly enhancing the triaxial compressive stress effect at the edges,which suppressed void nucleation and growth,leading to a 96%reduction in damage values.Mechanical property evaluations demonstrated that,compared to the conventional rolling process,the proposed technique improved edge bonding strength and tensile strength by approximately 67.7%and 118%,respectively.Further microstructural characterization revealed that the proposed technique,influenced by the restriction of deformation along the transverse direction(TD),weakened the plastic flow in the TD and enhanced plastic flow along the rolling direction(RD),resulting in higher grain boundary density and stronger basal texture.This,in turn,improved the toughness and transverse homogeneity of the plates.In summary,the embedded composite rolling technique provides crucial technical guidance for the preparation of Mg-based composite plates. 展开更多
关键词 Numerical simulation Damage model Stress triaxiality Mg/Al composite plate embedded composite rolling
在线阅读 下载PDF
Plastic flow and interfacial bonding behaviors of embedded linear friction welding process:Numerical simulation combined with thermophysical experiment
3
作者 Tiejun MA Zhenguo GUO +6 位作者 Xiawei YANG Junlong JIN Xi CHEN Jun TAO Wenya LI Achilles VAIRIS Liukuan YU 《Chinese Journal of Aeronautics》 2025年第1期87-98,共12页
In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components ... In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components in aircraft.The interfacial plastic flow behavior and bonding mechanism of this process were investigated by a developed coupling EulerianLagrangian numerical model using software ABAQUS and a novel thermo-physical simulation method with designed embedded hot compression specimen.In addition,the formation mechanism and control method of welding defects caused by uneven plastic flow were discussed.The results reveal that the plastic flow along oscillating direction of this process is even and sufficient.In the direction perpendicular to oscillation,thermo-plastic metals mainly flow downward along welding interface under coupling of shear stress and interfacial pressure,resulting in the interfacial plastic zone shown as an inverted“V”shape.The upward plastic flow in this direction is relatively weak,and only a small amount of flash is extruded from top of joint.Moreover,the wedge block and welding components at top of joint are always in un-steady friction stage,leading to nonuniform temperature field distribution and un-welded defects.According to the results of numerical simulation,high oscillating frequency combined with low pressure and small amplitude is considered as appropriate parameter selection scheme to improve the upward interfacial plastic flow at top of joint and suppress the un-welded defects.The results of thermo-physical simulation illustrate that continuous dynamic recrystallization(CDRX)induces the bonding of interface,accompanying by intense dislocation movement and creation of many low-angle grain boundaries.In the interfacial bonding area,grain orientation is random with relatively low texture density(5.0 mud)owing to CDRX. 展开更多
关键词 embedded linear friction welding Plastic flow Interfacial bonding behavior Numerical simulation Thermo-physical simulation Temperature field Dynamic recrystallization
原文传递
Embedded SCR denitration behavior in chain grate during iron ore pelletizing process: combined influence mechanism of gas components and alkali metal
4
作者 Min Gan Hao Lv +7 位作者 Xiao-hui Fan Yuan Zhu Zhi-yun Ji Zeng-qing Sun Jin-hua Li Xiao-long Wang Lin-cheng Liu Yu-feng Wu 《Journal of Iron and Steel Research International》 2025年第8期2346-2358,共13页
The implementation of embedded selective catalytic reduction(SCR)denitration in chain grate during iron ore pelletizing process obviates additional flue gas heating.However,the influence of gas components and alkali m... The implementation of embedded selective catalytic reduction(SCR)denitration in chain grate during iron ore pelletizing process obviates additional flue gas heating.However,the influence of gas components and alkali metal on SCR denitration requires attention.The SCR denitration behavior in the preheating section of chain grate was investigated,and the combined influence mechanisms of H_(2)O(g),SO_(2),and potassium were revealed.The results show that the presence of H_(2)O(g)and SO_(2) in the flue gas decreases the NO conversion rate of the catalyst from 96.3%to 79.5%,while potassium adsorbed on the catalyst surface further reduces the NO conversion rate to 74.1%.H_(2)O(g),SO_(2),and potassium in the flue gas form sulfate and potassium salt on the catalyst surface,blocking the pore structure,thereby decreasing the gas adsorption capacity of the catalyst.Moreover,SO_(2) and potassium engage in competitive adsorption and reaction with NH_(3) and NO at the active sites on the catalyst surface,reducing the content and activity of the catalyst effective component.Increasing the flue gas temperature can promote the decomposition of ammonium sulfate and ammonium bisulfate on the catalyst surface,but it has little effect on potassium.Additionally,potassium will exacerbate sulfur poisoning of the catalyst.Hence,the embedded SCR denitration process requires electrostatic precipitation to eliminate the adverse impacts of potassium and thermal regime optimization to raise flue gas temperature to 350℃,thereby increasing NO conversion rate exceeding 85%. 展开更多
关键词 Iron ore pellet Chain grate embedded selective catalytic reduction denitration Gas component Alkali metal potassium Catalyst deactivation
原文传递
Level-shifted embedded cluster method may offer a viable alternative for the simulation of metal oxides
5
作者 Zi-Jian Zhou Xin-Ping Wu 《Chinese Journal of Structural Chemistry》 2025年第5期1-2,共2页
The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most s... The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2]. 展开更多
关键词 chemical reactionsand industrial production heterogeneous catalysiswhich metal oxides energy storagechemical biomedical applicationsone level shifted embedded cluster method catalystsmetal oxides
原文传递
Embedded solar adaptive optics telescope:achieving compact integration for high-efficiency solar observations
6
作者 Naiting Gu Hao Chen +11 位作者 Ao Tang Xinlong Fan Carlos Quintero Noda Yawei Xiao Libo Zhong Xiaosong Wu Zhenyu Zhang Yanrong Yang Zao Yi Xiaohu Wu Linhai Huang Changhui Rao 《Opto-Electronic Advances》 2025年第5期60-74,共15页
Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excess... Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excessive optical surfaces,reduced light throughput,and instrumental polarization.To address these limitations,we propose an embedded solar adaptive optics telescope(ESAOT)that intrinsically incorporates the solar AO(SAO)subsystem within the telescope's optical train,featuring a co-designed correction chain with a single Hartmann-Shack full-wavefront sensor(HS f-WFS)and a deformable secondary mirror(DSM).The HS f-WFS uses temporal-spatial hybrid sampling technique to simultane-ously resolve tip-tilt and high-order aberrations,while the DSM performs real-time compensation through adaptive modal optimization.This unified architecture achieves symmetrical polarization suppression and high system throughput by min-imizing optical surfaces.A 600 mm ESAOT prototype incorporating a 12×12 micro-lens array HS f-WFS and 61-actuator piezoelectric DSM has been developed and successfully conducted on-sky photospheric observations.Validations in-cluding turbulence simulations,optical bench testing,and practical observations at the Lijiang observatory collectively confirm the system's capability to maintain aboutλ/10 wavefront error during active region tracking.This architectural breakthrough of the ESAOT addresses long-standing SAO integration challenges in solar astronomy and provides scala-bility analyses confirming direct applicability to the existing and future large solar observation facilities. 展开更多
关键词 embedded solar adaptive optics telescope(ESAOT) Hartmann-Shack full-wavefront sensor(HS f-WFS) deformable secondary mirror(DSM) high-resolution solar observations solar telescopes
在线阅读 下载PDF
Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion 被引量:1
7
作者 Roshan M.Bhattarai Kisan Chhetri +5 位作者 Nghia Le Debendra Acharya Shirjana Saud Mai Cao Hoang Phuong Lan Nguyen Sang Jae Kim Young Sun Mok 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期72-93,共22页
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag... The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications. 展开更多
关键词 carbon cloth energy conversion energy storage FLEXIBLE metal embedding ultra-stable
在线阅读 下载PDF
Teaching Reform and Practice of Embedded System Design Based on Outcome-Based Education 被引量:2
8
作者 Tao Zhang Xiangwu Deng 《Journal of Contemporary Educational Research》 2024年第3期13-18,共6页
Embedded system design is the core course of the telecommunication major in engineering universities,which combines software and hardware through embedded development boards.Aiming at the problems existing in traditio... Embedded system design is the core course of the telecommunication major in engineering universities,which combines software and hardware through embedded development boards.Aiming at the problems existing in traditional teaching,this paper proposes curriculum teaching reform based on the outcome-based education(OBE)concept,including determining course objectives,reforming teaching modes and methods,and improving the curriculum assessment and evaluation system.After two semesters of practice,this method not only enhances students’learning initiative but also improves teaching quality. 展开更多
关键词 embedded system design Outcome-based education(OBE) Teaching reform
在线阅读 下载PDF
Aeroengine thrust estimation and embedded verification based on improved temporal convolutional network
9
作者 Wanzhi MENG Zhuorui PAN +2 位作者 Sixin WEN Pan QIN Ximing SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期106-117,共12页
Thrust estimation is a significant part of aeroengine thrust control systems.The traditional estimation methods are either low in accuracy or large in computation.To further improve the estimation effect,a thrust esti... Thrust estimation is a significant part of aeroengine thrust control systems.The traditional estimation methods are either low in accuracy or large in computation.To further improve the estimation effect,a thrust estimator based on Multi-layer Residual Temporal Convolutional Network(M-RTCN)is proposed.To solve the problem of dead Rectified Linear Unit(ReLU),the proposed method uses the Gaussian Error Linear Unit(GELU)activation function instead of ReLU in residual block.Then the overall architecture of the multi-layer convolutional network is adjusted by using residual connections,so that the network thrust estimation effect and memory consumption are further improved.Moreover,the comparison with seven other methods shows that the proposed method has the advantages of higher estimation accuracy and faster convergence speed.Furthermore,six neural network models are deployed in the embedded controller of the micro-turbojet engine.The Hardware-in-the-Loop(HIL)testing results demonstrate the superiority of M-RTCN in terms of estimation accuracy,memory occupation and running time.Finally,an ignition verification is conducted to confirm the expected thrust estimation and real-time performance. 展开更多
关键词 Thrust estimation Temporal convolutional network embedded deployment Hardware-in-the-loop testing Ignition verification
原文传递
Tree Detection Algorithm Based on Embedded YOLO Lightweight Network
10
作者 吕峰 王新彦 +2 位作者 李磊 江泉 易政洋 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期518-527,共10页
To avoid colliding with trees during its operation,a lawn mower robot must detect the trees.Existing tree detection methods suffer from low detection accuracy(missed detection)and the lack of a lightweight model.In th... To avoid colliding with trees during its operation,a lawn mower robot must detect the trees.Existing tree detection methods suffer from low detection accuracy(missed detection)and the lack of a lightweight model.In this study,a dataset of trees was constructed on the basis of a real lawn environment.According to the theory of channel incremental depthwise convolution and residual suppression,the Embedded-A module is proposed,which expands the depth of the feature map twice to form a residual structure to improve the lightweight degree of the model.According to residual fusion theory,the Embedded-B module is proposed,which improves the accuracy of feature-map downsampling by depthwise convolution and pooling fusion.The Embedded YOLO object detection network is formed by stacking the embedded modules and the fusion of feature maps of different resolutions.Experimental results on the testing set show that the Embedded YOLO tree detection algorithm has 84.17%and 69.91%average precision values respectively for trunk and spherical tree,and 77.04% mean average precision value.The number of convolution parameters is 1.78×10^(6),and the calculation amount is 3.85 billion float operations per second.The size of weight file is 7.11MB,and the detection speed can reach 179 frame/s.This study provides a theoretical basis for the lightweight application of the object detection algorithm based on deep learning for lawn mower robots. 展开更多
关键词 embedded YOLO algorithm lightweight model machine vision tree detection mowing robot
原文传递
Advances of embedded resistive random access memory in industrial manufacturing and its potential applications
11
作者 Zijian Wang Yixian Song +7 位作者 Guobin Zhang Qi Luo Kai Xu Dawei Gao Bin Yu Desmond Loke Shuai Zhong Yishu Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期175-214,共40页
Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to en... Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence. 展开更多
关键词 embedded resistive random access memory industrial manufacturing intelligent computing advanced process node
在线阅读 下载PDF
“Instruction-Category” Approach of Test Suite Construction for Oven Embedded System
12
作者 Mengqing Tanli Jiyi Xiao Ying Zhang 《Journal of Software Engineering and Applications》 2024年第9期713-730,共18页
Being different from testing for popular GUI software, the “instruction-category” approach is proposed for testing embedded system. This approach is constructed by three steps including refining items, drawing instr... Being different from testing for popular GUI software, the “instruction-category” approach is proposed for testing embedded system. This approach is constructed by three steps including refining items, drawing instruction-brief and instruction-category, and constructing test suite. Consequently, this approach is adopted to test oven embedded system, and detail process is deeply discussed. As a result, the factual result indicates that the “instruction-category” approach can be effectively applied in embedded system testing as a black-box method for conformity testing. 展开更多
关键词 “Instruction-Category” Approach Test Suite Construction embedded System
在线阅读 下载PDF
EG-STC: An Efficient Secure Two-Party Computation Scheme Based on Embedded GPU for Artificial Intelligence Systems
13
作者 Zhenjiang Dong Xin Ge +2 位作者 Yuehua Huang Jiankuo Dong Jiang Xu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4021-4044,共24页
This paper presents a comprehensive exploration into the integration of Internet of Things(IoT),big data analysis,cloud computing,and Artificial Intelligence(AI),which has led to an unprecedented era of connectivity.W... This paper presents a comprehensive exploration into the integration of Internet of Things(IoT),big data analysis,cloud computing,and Artificial Intelligence(AI),which has led to an unprecedented era of connectivity.We delve into the emerging trend of machine learning on embedded devices,enabling tasks in resource-limited environ-ments.However,the widespread adoption of machine learning raises significant privacy concerns,necessitating the development of privacy-preserving techniques.One such technique,secure multi-party computation(MPC),allows collaborative computations without exposing private inputs.Despite its potential,complex protocols and communication interactions hinder performance,especially on resource-constrained devices.Efforts to enhance efficiency have been made,but scalability remains a challenge.Given the success of GPUs in deep learning,lever-aging embedded GPUs,such as those offered by NVIDIA,emerges as a promising solution.Therefore,we propose an Embedded GPU-based Secure Two-party Computation(EG-STC)framework for Artificial Intelligence(AI)systems.To the best of our knowledge,this work represents the first endeavor to fully implement machine learning model training based on secure two-party computing on the Embedded GPU platform.Our experimental results demonstrate the effectiveness of EG-STC.On an embedded GPU with a power draw of 5 W,our implementation achieved a secure two-party matrix multiplication throughput of 5881.5 kilo-operations per millisecond(kops/ms),with an energy efficiency ratio of 1176.3 kops/ms/W.Furthermore,leveraging our EG-STC framework,we achieved an overall time acceleration ratio of 5–6 times compared to solutions running on server-grade CPUs.Our solution also exhibited a reduced runtime,requiring only 60%to 70%of the runtime of previously best-known methods on the same platform.In summary,our research contributes to the advancement of secure and efficient machine learning implementations on resource-constrained embedded devices,paving the way for broader adoption of AI technologies in various applications. 展开更多
关键词 Secure two-party computation embedded GPU acceleration privacy-preserving machine learning edge computing
在线阅读 下载PDF
The Weighted Embedded Homology of Super-Hypergraphs
14
作者 WANG Chong 《Wuhan University Journal of Natural Sciences》 CSCD 2024年第6期523-528,共6页
In this paper,we define the weighted embedded homology of super-hypergraphs,give a quasi-partial order and a pseudo-metric on the set made up of all non-vanishing weights on a finite set,and clarify the relationship b... In this paper,we define the weighted embedded homology of super-hypergraphs,give a quasi-partial order and a pseudo-metric on the set made up of all non-vanishing weights on a finite set,and clarify the relationship between the torsion parts of weighted embedded homology with integer coefficients of super-hypergraphs under certain weights. 展开更多
关键词 △-set super-hypergraph weighted embedded homology PSEUDO-METRIC
原文传递
CL2ES-KDBC:A Novel Covariance Embedded Selection Based on Kernel Distributed Bayes Classifier for Detection of Cyber-Attacks in IoT Systems
15
作者 Talal Albalawi P.Ganeshkumar 《Computers, Materials & Continua》 SCIE EI 2024年第3期3511-3528,共18页
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo... The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks. 展开更多
关键词 IoT security attack detection covariance linear learning embedding selection kernel distributed bayes classifier mongolian gazellas optimization
在线阅读 下载PDF
Exploration of the Integration of Software Engineering Thinking into Embedded System Design Course
16
作者 Jinyan Hu Haihua Yu +1 位作者 Yumei Gong Shaojing Song 《Journal of Contemporary Educational Research》 2024年第11期305-310,共6页
Engineering practice is the key bridge between college education and actual work in the industry.In order to deliver qualified talents with engineering quality to the industry,this paper explores integrating software ... Engineering practice is the key bridge between college education and actual work in the industry.In order to deliver qualified talents with engineering quality to the industry,this paper explores integrating software engineering thinking into the Embedded System Design course.A practical and effective teaching mode is designed consisting of immersive learning,case-based learning,progressive practice,interactive learning,and autonomous learning.Through this teaching mode,multi-levels of closed-loop have been established including final project cycle closed-loop,testing cycle closed-loop,and product cycle closed-loop.During this process,students gradually transition to putting forward product requirements,carrying out design and development,thinking and solving problems,collaborating,and assuring quality from the perspective of software engineering.The practice results show that students’engineering quality has been significantly improved. 展开更多
关键词 embedded System Design Software engineering Engineering practice Teaching mode
在线阅读 下载PDF
On Markov and Zariski Embeddings in a Free Group
17
作者 Victor Hugo Yanez Dmitri Shakhmatov 《南开大学学报(自然科学版)》 北大核心 2025年第1期18-21,共4页
Let G be a group.The family of all sets which are closed in every Hausdorf group topology of G form the family of closed sets of a T_(1) topology M_(G) on G called the Markov topology.Similarly,the family of all algeb... Let G be a group.The family of all sets which are closed in every Hausdorf group topology of G form the family of closed sets of a T_(1) topology M_(G) on G called the Markov topology.Similarly,the family of all algebraic subsets of G forms a family of closed sets for another T_(1)topology Z_(G) on G called the Zarski topology.A subgroup H of G is said to be Markov(resp.Zarski)embedded if the equality M_(G|H)=M_(H)(resp.Z_(G|H)=Z_(H))holds.I's proved that an abirary subgroup of a free group is both Zariski and Markov embedded in it. 展开更多
关键词 free group Zariski topology Markov embedding centralizer in a free group
原文传递
Tibetan Medical Named Entity Recognition Based on Syllable-Word-Sentence Embedding Transformer
18
作者 Jin Zhang Ziyue Zhang +7 位作者 Lobsang Yeshi Dorje Tashi Xiangshi Wang Yuqing Cai Yongbin Yu Xiangxiang Wang Nyima Tashi Gadeng Luosang 《CAAI Transactions on Intelligence Technology》 2025年第4期1148-1158,共11页
Tibetan medical named entity recognition(Tibetan MNER)involves extracting specific types of medical entities from unstructured Tibetan medical texts.Tibetan MNER provide important data support for the work related to ... Tibetan medical named entity recognition(Tibetan MNER)involves extracting specific types of medical entities from unstructured Tibetan medical texts.Tibetan MNER provide important data support for the work related to Tibetan medicine.However,existing Tibetan MNER methods often struggle to comprehensively capture multi-level semantic information,failing to sufficiently extract multi-granularity features and effectively filter out irrelevant information,which ultimately impacts the accuracy of entity recognition.This paper proposes an improved embedding representation method called syllable-word-sentence embedding.By leveraging features at different granularities and using un-scaled dot-product attention to focus on key features for feature fusion,the syllable-word-sentence embedding is integrated into the transformer,enhancing the specificity and diversity of feature representations.The model leverages multi-level and multi-granularity semantic information,thereby improving the performance of Tibetan MNER.We evaluate our proposed model on datasets from various domains.The results indicate that the model effectively identified three types of entities in the Tibetan news dataset we constructed,achieving an F1 score of 93.59%,which represents an improvement of 1.24%compared to the vanilla FLAT.Additionally,results from the Tibetan medical dataset we developed show that it is effective in identifying five kinds of medical entities,with an F1 score of 71.39%,which is a 1.34%improvement over the vanilla FLAT. 展开更多
关键词 named entity recognition syllable-word-sentence embedding Tibetan lexicon Tibetan medicine
在线阅读 下载PDF
An Analytical Review of Large Language Models Leveraging KDGI Fine-Tuning,Quantum Embedding’s,and Multimodal Architectures
19
作者 Uddagiri Sirisha Chanumolu Kiran Kumar +2 位作者 Revathi Durgam Poluru Eswaraiah G Muni Nagamani 《Computers, Materials & Continua》 2025年第6期4031-4059,共29页
A complete examination of Large Language Models’strengths,problems,and applications is needed due to their rising use across disciplines.Current studies frequently focus on single-use situations and lack a comprehens... A complete examination of Large Language Models’strengths,problems,and applications is needed due to their rising use across disciplines.Current studies frequently focus on single-use situations and lack a comprehensive understanding of LLM architectural performance,strengths,and weaknesses.This gap precludes finding the appropriate models for task-specific applications and limits awareness of emerging LLM optimization and deployment strategies.In this research,50 studies on 25+LLMs,including GPT-3,GPT-4,Claude 3.5,DeepKet,and hybrid multimodal frameworks like ContextDET and GeoRSCLIP,are thoroughly reviewed.We propose LLM application taxonomy by grouping techniques by task focus—healthcare,chemistry,sentiment analysis,agent-based simulations,and multimodal integration.Advanced methods like parameter-efficient tuning(LoRA),quantumenhanced embeddings(DeepKet),retrieval-augmented generation(RAG),and safety-focused models(GalaxyGPT)are evaluated for dataset requirements,computational efficiency,and performance measures.Frameworks for ethical issues,data limited hallucinations,and KDGI-enhanced fine-tuning like Woodpecker’s post-remedy corrections are highlighted.The investigation’s scope,mad,and methods are described,but the primary results are not.The work reveals that domain-specialized fine-tuned LLMs employing RAG and quantum-enhanced embeddings performbetter for context-heavy applications.In medical text normalization,ChatGPT-4 outperforms previous models,while two multimodal frameworks,GeoRSCLIP,increase remote sensing.Parameter-efficient tuning technologies like LoRA have minimal computing cost and similar performance,demonstrating the necessity for adaptive models in multiple domains.To discover the optimum domain-specific models,explain domain-specific fine-tuning,and present quantum andmultimodal LLMs to address scalability and cross-domain issues.The framework helps academics and practitioners identify,adapt,and innovate LLMs for different purposes.This work advances the field of efficient,interpretable,and ethical LLM application research. 展开更多
关键词 Large languagemodels quantum embeddings fine-tuning techniques multimodal architectures ethical AI scenarios
在线阅读 下载PDF
A Chinese Named Entity Recognition Method for News Domain Based on Transfer Learning and Word Embeddings
20
作者 Rui Fang Liangzhong Cui 《Computers, Materials & Continua》 2025年第5期3247-3275,共29页
Named Entity Recognition(NER)is vital in natural language processing for the analysis of news texts,as it accurately identifies entities such as locations,persons,and organizations,which is crucial for applications li... Named Entity Recognition(NER)is vital in natural language processing for the analysis of news texts,as it accurately identifies entities such as locations,persons,and organizations,which is crucial for applications like news summarization and event tracking.However,NER in the news domain faces challenges due to insufficient annotated data,complex entity structures,and strong context dependencies.To address these issues,we propose a new Chinesenamed entity recognition method that integrates transfer learning with word embeddings.Our approach leverages the ERNIE pre-trained model for transfer learning and obtaining general language representations and incorporates the Soft-lexicon word embedding technique to handle varied entity structures.This dual-strategy enhances the model’s understanding of context and boosts its ability to process complex texts.Experimental results show that our method achieves an F1 score of 94.72% on a news dataset,surpassing baseline methods by 3%–4%,thereby confirming its effectiveness for Chinese-named entity recognition in the news domain. 展开更多
关键词 News domain named entity recognition(NER) transfer learning word embeddings ERNIE soft-lexicon
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部