期刊文献+
共找到130,675篇文章
< 1 2 250 >
每页显示 20 50 100
Robust and Biodegradable Heterogeneous Electronics with Customizable Cylindrical Architecture for Interference-Free Respiratory Rate Monitoring
1
作者 Jing Zhang Wenqi Wang +9 位作者 Sanwei Hao Hongnan Zhu Chao Wang Zhouyang Hu Yaru Yu Fangqing Wang Peng Fu Changyou Shao Jun Yang Hailin Cong 《Nano-Micro Letters》 2026年第1期914-934,共21页
A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without in... A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without interference since the expiratory pressure always coupled with external humidity and temperature variations,as well as mechanical motion artifacts.Herein,a robust and biodegradable piezoresistive sensor is reported that consists of heterogeneous MXene/cellulose-gelation sensing layer and Ag-based interdigital electrode,featuring customizable cylindrical interface arrangement and compact hierarchical laminated architecture for collectively regulating the piezoresistive response and mechanical robustness,thereby realizing the long-term breath-induced pressure detection.Notably,molecular dynamics simulations reveal the frequent angle inversion and reorientation of MXene/cellulose in vacuum filtration,driven by shear forces and interfacial interactions,which facilitate the establishment of hydrogen bonds and optimize the architecture design in sensing layer.The resultant sensor delivers unprecedented collection features of superior stability for off-axis deformation(0-120°,~2.8×10^(-3) A)and sensing accuracy without crosstalk(humidity 50%-100%and temperature 30-80).Besides,the sensor-embedded mask together with machine learning models is achieved to train and classify the respiration status for volunteers with different ages(average prediction accuracy~90%).It is envisioned that the customizable architecture design and sensor paradigm will shed light on the advanced stability of sustainable electronics and pave the way for the commercial application in respiratory monitory. 展开更多
关键词 Wearable electronics Piezoresistive sensor HETEROGENEOUS CELLULOSE Respiratory monitoring
在线阅读 下载PDF
On-Skin Epidermal Electronics for Next-Generation Health Management
2
作者 Jinbin Xu Xiaoliang Chen +7 位作者 Sheng Li Yizhuo Luo Shizheng Deng Bo Yang Jian Lv Hongmiao Tian Xiangming Li Jinyou Shao 《Nano-Micro Letters》 2026年第1期609-646,共38页
Continuous monitoring of biosignals is essential for advancing early disease detection,personalized treatment,and health management.Flexible electronics,capable of accurately monitoring biosignals in daily life,have g... Continuous monitoring of biosignals is essential for advancing early disease detection,personalized treatment,and health management.Flexible electronics,capable of accurately monitoring biosignals in daily life,have garnered considerable attention due to their softness,conformability,and biocompatibility.However,several challenges remain,including imperfect skin-device interfaces,limited breathability,and insufficient mechanoelectrical stability.On-skin epidermal electronics,distinguished by their excellent conformability,breathability,and mechanoelectrical robustness,offer a promising solution for high-fidelity,long-term health monitoring.These devices can seamlessly integrate with the human body,leading to transformative advancements in future personalized healthcare.This review provides a systematic examination of recent advancements in on-skin epidermal electronics,with particular emphasis on critical aspects including material science,structural design,desired properties,and practical applications.We explore various materials,considering their properties and the corresponding structural designs developed to construct high-performance epidermal electronics.We then discuss different approaches for achieving the desired device properties necessary for long-term health monitoring,including adhesiveness,breathability,and mechanoelectrical stability.Additionally,we summarize the diverse applications of these devices in monitoring biophysical and physiological signals.Finally,we address the challenges facing these devices and outline future prospects,offering insights into the ongoing development of on-skin epidermal electronics for long-term health monitoring. 展开更多
关键词 On-skin epidermal electronics ADHESIVENESS Breathability Mechanoelectrical stability Long-term biosignal monitoring
在线阅读 下载PDF
Quantum-Size FeS_(2) with Delocalized Electronic Regions Enable High-Performance Sodium-Ion Batteries Across Wide Temperatures
3
作者 Tianlin Li Danyang Zhao +8 位作者 Meiyu Shi Chao Tian Jie Yi Qing Yin Yongzhi Li Bin Xiao Jiqiu Qi Peng Cao Yanwei Sui 《Nano-Micro Letters》 2026年第1期355-374,共20页
Wide-temperature applications of sodium-ion batteries(SIBs)are severely limited by the sluggish ion insertion/diffusion kinetics of conversion-type anodes.Quantum-sized transition metal dichalcogenides possess unique ... Wide-temperature applications of sodium-ion batteries(SIBs)are severely limited by the sluggish ion insertion/diffusion kinetics of conversion-type anodes.Quantum-sized transition metal dichalcogenides possess unique advantages of charge delocalization and enrich uncoordinated electrons and short-range transfer kinetics,which are crucial to achieve rapid low-temperature charge transfer and high-temperature interface stability.Herein,a quantum-scale FeS_(2) loaded on three-dimensional Ti_(3)C_(2) MXene skeletons(FeS_(2) QD/MXene)fabricated as SIBs anode,demonstrating impressive performance under wide-temperature conditions(−35 to 65).The theoretical calculations combined with experimental characterization interprets that the unsaturated coordination edges of FeS_(2) QD can induce delocalized electronic regions,which reduces electrostatic potential and significantly facilitates efficient Na+diffusion across a broad temperature range.Moreover,the Ti_(3)C_(2) skeleton reinforces structural integrity via Fe-O-Ti bonding,while enabling excellent dispersion of FeS_(2) QD.As expected,FeS_(2) QD/MXene anode harvests capacities of 255.2 and 424.9 mAh g^(−1) at 0.1 A g^(−1) under−35 and 65,and the energy density of FeS_(2) QD/MXene//NVP full cell can reach to 162.4 Wh kg^(−1) at−35,highlighting its practical potential for wide-temperatures conditions.This work extends the uncoordinated regions induced by quantum-size effects for exceptional Na^(+)ion storage and diffusion performance at wide-temperatures environment. 展开更多
关键词 Quantum-size effect electron delocalization Efficient short-range transfer kinetics Wide-temperature Sodium-ion batteries
在线阅读 下载PDF
Protocol for a global electronic Delphi on integrating artificial intelligence into solid organ transplantation
4
作者 Rowan Abuyadek Sara A Ghitani +6 位作者 Ramy Shaaban Muhammad AbdelAziz Quoritem Mohammed S Foula Rodaina Osama Abdel Majid Manar Mokhtar Yasir Ahmed Mohammed Elhadi Amr Alnagar 《World Journal of Transplantation》 2026年第1期9-16,共8页
Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosupp... Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosuppressive therapy,AI has the potential to improve both operational efficiency and patient outcomes.Despite these advancements,the perspectives of transplant professionals-those at the forefront of critical decision-making-remain insufficiently explored.To address this gap,this study utilizes a multi-round electronic Delphi approach to gather and analyses insights from global experts involved in organ transplantation.Participants are invited to complete structured surveys capturing demographic data,professional roles,institutional practices,and prior exposure to AI technologies.The survey also explores perceptions of AI’s potential benefits.Quantitative responses are analyzed using descriptive statistics,while open-ended qualitative responses undergo thematic analysis.Preliminary findings indicate a generally positive outlook on AI’s role in enhancing transplantation processes,particularly in areas such as donor matching and post-operative care.These mixed views reflect both optimism and caution among professionals tasked with integrating new technologies into high-stakes clinical workflows.By capturing a wide range of expert opinions,the findings will inform future policy development,regulatory considerations,and institutional readiness frameworks for the integration of AI into organ transplantation. 展开更多
关键词 Artificial intelligence Solid organ transplantation electronic Delphi Expert consensus Donor matching Digital health
在线阅读 下载PDF
A Novel Classical Model of the Free Electron
5
作者 Arlen Young 《Journal of Modern Physics》 CAS 2022年第7期1117-1127,共11页
Previous models of the free electron using classical physics equations have predicted attributes that are inconsistent with the experimentally observed attributes. For example, the magnetic moment has been calculated ... Previous models of the free electron using classical physics equations have predicted attributes that are inconsistent with the experimentally observed attributes. For example, the magnetic moment has been calculated for the observed spinning electric charge. For the calculated moment to equal the observed moment, the electron would either have to spin at two hundred times the speed of light or have a charge radius two hundred times greater than the classical radius. A similar inconsistency results when the mass derived from the spin angular momentum is compared with the observed mass. A classical model is herein proposed which eliminates the magnetic moment inconsistency and also predicts the radius of the electron. The novel feature of the model is the replacement of a single charge with two opposite charges, one on the outer surface of the electron and the other at the center. 展开更多
关键词 Classical electron Model Free electron electron Structure electron Charge electron Radius electron Spin electron Shape electron Compressibility
在线阅读 下载PDF
Compact RF linear accelerator for electron beam irradiation applications at PBP-CMU Electron Linac Laboratory
6
作者 Monchai Jitvisate Pittaya Apiwattanakul +3 位作者 Noppadol Kangrang Jatuporn Saisut Chitrlada Thongbai Sakhorn Rimjaem 《Nuclear Science and Techniques》 2025年第4期45-58,共14页
A 4 MeV RF linear accelerator for electron beam irradiation applications has been developed at the PBP-CMU Electron Linac Laboratory,Thailand.The system has been reengineered using a decommissioned medical linear acce... A 4 MeV RF linear accelerator for electron beam irradiation applications has been developed at the PBP-CMU Electron Linac Laboratory,Thailand.The system has been reengineered using a decommissioned medical linear accelerator.The main components include a thermionic DC electron gun,an RF linear accelerator,a beam diagnostic chamber,and a beam exit window for electron beam irradiation.Therefore,reengineering must be performed based on the characteristics of the electron beam and its dynamics throughout the system.In this study,the electron beam current density emitted from the cathode was calculated based on the thermionic emission theory,and the result was used to produce the electron beam distribution in the gun using CST Studio Suite^(■)software.The properties of the electron beam and its acceleration in the linear accelerator and downstream diagnostic section were studied using the ASTRA electron beam dynamics simulation code,with the aim of producing an electron beam with an average energy of 4 MeV at the linear accelerator exit.The transverse beam profile and electron deposition dose in the ambient environment were calculated using Geant4 Monte Carlo simulation software to estimate the beam performance for the irradiation experiments.The parameters studied can be used as guidelines for machine operation and future experimental plans. 展开更多
关键词 Thermionic electron gun RF linear accelerator electron dynamics simulation Monte Carlo simulation electron beam irradiation electron beam processing Deposition dose
在线阅读 下载PDF
Next Generation Electronics & Photonics
7
《Nanotechnology and Precision Engineering》 2025年第1期I0001-I0001,共1页
This special issue will include reviews,regular papers,and short communications,and reports in the fields for next generation electronics and photonics.The topics include but not restricted in advanced microelectronic... This special issue will include reviews,regular papers,and short communications,and reports in the fields for next generation electronics and photonics.The topics include but not restricted in advanced microelectronic devices and materials,low-dimensional materials and novel nanodevice applications,flexible/wearable/implantable electronics,wide bandgap semiconductor materials and devices,photoelectronics,photonics,advanced display technologies,nanophotonics,integrated quantum photonics,photovoltaics,energy harvesting and self-powered wireless sensing,sensors,micro-actuators,MEMS,microfluidics,and bioMEMS,etc. 展开更多
关键词 PHOTONICS advanced microelectronic devices advanced microelectronic devices materialslow dimensional next generation electronics low dimensional materials novel nanodevice applications flexible electronics
在线阅读 下载PDF
Design and start-to-end beam dynamics simulation of the first super-radiant THz free-electron laser source in Thailand
8
作者 Natthawut Chaisueb Sakhorn Rimjaem 《Nuclear Science and Techniques》 2025年第7期222-235,共14页
A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation... A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation source requires relatively ultrashort electron bunches to produce intense coherent THz pulses.Three electron bunch compression processes are utilized in the PCELL accelerator system comprising pre-bunch compression in an alpha magnet,velocity bunching in a radio-frequency(RF)linear accelerator(linac),and magnetic bunch compression in a 180°acromat system.Electron bunch compression in the magnetic compressor system poses considerable challenges,which are addressed through the use of three quadrupole doublets.The strengths of the quadrupole fields significantly influence the rotation of the beam line longitudinal phase space distribution along the bunch compressor.Start-to-end beam dynamics simulations using the ASTRA code were performed to optimize the electron beam properties for generating super-radiant THz-FEL radiation.The operational parameters considered in the simulations comprise the alpha magnet gradient,linac RF phase,and quadrupole field strengths.The optimization results show that 10-16MeV femtosecond electron bunches with a low energy spread(~0.2%),small normalized emittance(~15πmm·mrad),and high peak current(165-247A)can be produced by the PCELL accelerator system at the optimal parameters.A THz-FEL with sub-microjoule pulse energies can thus be obtained at the optimized electron beam parameters.The physical and conceptual design of the THz-FEL beamline were completed based on the beam dynamics simulation results.The construction and installation of this beamline are currently underway and expected to be completed by mid-2024.The commissioning of the beamline will then commence. 展开更多
关键词 THz radiation THz free-electron laser Super-radiant free-electron laser Pre-bunched free-electron laser Beam dynamic simulation Femtosecond electron bunches
在线阅读 下载PDF
Origin, Creation, and Splitting of the Electron
9
作者 Arlen Young 《Journal of Modern Physics》 2023年第12期1563-1577,共15页
The author’s earlier papers proposed a model of the electron’s internal structure comprised of both positive and negative masses and charges. Their relation to the fine structure constant a was calculated in the aut... The author’s earlier papers proposed a model of the electron’s internal structure comprised of both positive and negative masses and charges. Their relation to the fine structure constant a was calculated in the author’s previous paper. In this paper, more details of the model of the electron’s internal structure, in particular the thicknesses of its outer shell mass and charge, are calculated. Magnetostriction of the electron’s surface is generated by the electron’s spinning surface charge. It is calculated that this magnetostriction holds the electron together, counterbalancing the outward electrical and centrifugal forces. The results of these calculations enable the prediction that a sufficiently strong external magnetic field can split the electron into three equal pieces. The field strength would have to be on the order of at least 8% of the strength at the center of the electron. A model for the origin and creation of an electron from a gamma ray wave is proposed. Evidence is presented that, for certain transitions, mass might be quantized and that the quantum of mass would be 1/2a times the electron mass. 展开更多
关键词 Mass Quantization electron Fractionalization Splitting the electron electron Origin electron Creation electron Magnetostriction electron Charge Inconsistency electron Mass Inconsistency
在线阅读 下载PDF
Electron G-Factor Anomaly and the Charge Thickness
10
作者 Arlen Young 《Journal of Modern Physics》 2024年第4期435-447,共13页
The electron g-factor relates the magnetic moment to the spin angular momentum. It was originally theoretically calculated to have a value of exactly 2. Experiments yielded a value of 2 plus a very small fraction, ref... The electron g-factor relates the magnetic moment to the spin angular momentum. It was originally theoretically calculated to have a value of exactly 2. Experiments yielded a value of 2 plus a very small fraction, referred to as the g-factor anomaly. This anomaly has been calculated theoretically as a power series of the fine structure constant. This document shows that the anomaly is the result of the electron charge thickness. If the thickness were to be zero, g = 2 exactly, and there would be no anomaly. As the thickness increases, the anomaly increases. An equation relating the g-factor and the surface charge thickness is presented. The thickness is calculated to be 0.23% of the electron radius. The cause of the anomaly is very clear, but why is the charge thickness greater than zero? Using the model of the interior structure of the electron previously proposed by the author, it is shown that the non-zero thickness, and thus the g-factor anomaly, are due to the proposed positive charge at the electron center and compressibility of the electron material. The author’s previous publication proposes a theory for splitting the electron into three equal charges when subjected to a strong external magnetic field. That theory is revised in this document, and the result is an error reduced to 0.4% in the polar angle where the splits occur and a reduced magnetic field required to cause the splits. 展开更多
关键词 electron G-Factor Anomaly electron Charge Thickness electron Positive Charge electron Mass Thickness electron Fractionalization Splitting the electron electron Compressibility Factor
在线阅读 下载PDF
Tunable Electronic and Thermoelectric Performance in Twisted Bilayer Blue-Phosphorene Nanoribbon-Based Heterojunctions
11
作者 Liang Zhang Shihua Tan +1 位作者 Xiaofang Peng Mengqiu Long 《Chinese Physics Letters》 2025年第6期155-162,共8页
In two-dimensional bilayer systems,twist-angle-dependent electronic and thermoelectric properties have garnered significant scientific interest in recent years.In this work,based on a combination of density functional... In two-dimensional bilayer systems,twist-angle-dependent electronic and thermoelectric properties have garnered significant scientific interest in recent years.In this work,based on a combination of density functional theory and nonequilibrium Green’s function method,we explore the electronic and thermoelectric properties in blue-phosphorene nanoribbon-based heterojunction(BPNRHJ)with and without blue-phosphorene nanoribbon(BPNR)stack.Our calculations find that the electronic conductance and power factor can be strongly enhanced by the BPNR stack,and their enhancements can be further observed with the twist between the layers.The main reason for this is the electronic hybridization between the layers can provide new transport channels,and the twist can modulate the strength of interlayer electronic hybridization,resulting in extremely violent fluctuations in electron transmission and hence an enhanced power factor.While the phonon thermal conductance exhibits very low dependence on the layer stack and twist.Combining these factors,our results reveal that the thermoelectric performance can be greatly modulated and enhanced in twist bilayer BPNRHJ:the figure of merit will be over 2.5 in 4-4-ZBPNR@ZGNR-AA-8.8∘at 500 K. 展开更多
关键词 tunable electronic properties thermoelectric performance twisted bilayer density functional theory electronic thermoelectric properties blue phosphorene nanoribbon heterojunction electronic conductance
原文传递
Role of Multi-Electron and Multi-Orbital Effects in High-Order Harmonic Generation of Benzonitrile Molecules
12
作者 Man Xing Jun Wang +1 位作者 Xi Zhao Shushan Zhou 《Chinese Physics Letters》 2025年第4期43-49,共7页
Multi-electron and multi-orbital effects play a crucial role in the interaction of strong laser fields with complex molecules.Here,multi-electron effects encompass not only electron-electron Coulomb interactions and e... Multi-electron and multi-orbital effects play a crucial role in the interaction of strong laser fields with complex molecules.Here,multi-electron effects encompass not only electron-electron Coulomb interactions and exchangecorrelation effects but also the interference between the dynamics of different electron wave packets. 展开更多
关键词 electron wave packets multi electron effects multi orbital effects high order harmonic generation benzonitrile molecules exchangecorrelation effects complex moleculesheremulti electron interference dynamics
原文传递
Towards the creation of an inverse electron distribution function in two-chamber inductively coupled plasma discharges
13
作者 Ying WANG Nie CHEN +4 位作者 Jingfeng YAO Evgeniy BOGDANOV Anatoly KUDRYAVTSEV Chengxun YUAN Zhongxiang ZHOU 《Plasma Science and Technology》 2025年第5期122-128,共7页
This work continues the studies on searching for plasma media with the inverse electron energy distribution function(EEDF)and providing recommendations for setting up subsequent experiments.The inverse EEDF is a distr... This work continues the studies on searching for plasma media with the inverse electron energy distribution function(EEDF)and providing recommendations for setting up subsequent experiments.The inverse EEDF is a distribution function that increases with an increase in energy at zero electron energy.The inverse EEDF plays a central role in the problem of negative conductivity.Based on the previously obtained criterion for the formation of an inverse EEDF in a spatially inhomogeneous plasma,a heuristic method is proposed that allows one to avoid resource-intensive calculations for spatially two-dimensional(2D)kinetic modeling on a large array of different glow discharges.It is shown that the conditions for EEDF inversion can be realized in two-chamber discharge structures due to violating the known Boltzmann distribution for electron density.The theoretical conclusions are validated by numerical modeling of lowpressure two-chamber inductively-coupled plasma(ICP)discharges in the COMSOL Multiphysics environment.As a result,areas of conditions with inverse EEDF were found for subsequent detailed kinetic analysis and experimental studies. 展开更多
关键词 electron kinetics nonlocal electron distribution function gas discharge Boltzmann kinetic equation inverse electron distribution function inductively coupled plasma
在线阅读 下载PDF
Thermionic Emission Dynamics of Ultrafast Electron Sources
14
作者 Chao-Yu Guo Hao-Tian Zheng +7 位作者 Gui-Lin Zhu Yu-Qing Huang Qin Wang Da Wu Zheng-Pu Zhao Chu-Wei Zhang Jing-Tao Lu Ying Jiang 《Chinese Physics Letters》 2025年第5期215-219,共5页
Ultrafast electron sources, which enable high spatiotemporal resolution in time-resolved electron microscopy and scanning probe microscopy, are receiving increased attention. The most widely used method for achieving ... Ultrafast electron sources, which enable high spatiotemporal resolution in time-resolved electron microscopy and scanning probe microscopy, are receiving increased attention. The most widely used method for achieving ultrafast electron sources involves irradiating metal tips by ultrashort laser pulses, causing electron beam emission via the photoelectric effect [including photon-driven(quantum) or field-driven(classical) emission]. However, the thermionic electrons emission process due to the heating effect of ultrashort lasers, particularly its dynamic aspects, has rarely been addressed in previous studies. In this paper, we improved the signal-to-noise ratio of a two-pulse correlation measurement on the tip electron emission by nearly two orders of magnitude using a delay time modulation method. This allowed us to obtain information on the temperature evolution of hot electrons and phonons in a non-equilibrium state, and to extract characteristic time scales for electron-phonon and phonon-phonon scattering. Our findings indicate that the thermionic electrons emission, unlike the instantaneous photoelectric effect, causes electron emission to lag behind the laser pulse by tens of picoseconds, thus significantly affecting the detection of ultrafast dynamics of samples. Furthermore, such a lagging effect was found to be sensitive to the local structure of the metal tip, offering new insights into the improved design of ultrafast electron sources. 展开更多
关键词 thermionic emission ultrafast electron sources scanning probe microscopy heating effect time resolved electron microscopy irradiating metal tips ultrashort laser pulses photoelectric effect thermionic electrons
原文传递
Hand-printed paper-based devices:Toward green flexible electronics and sensing applications
15
作者 Parth Shah Sanjay A.Bhakhar +1 位作者 Pratik M.Pataniya C.K.Sumesh 《International Journal of Minerals,Metallurgy and Materials》 2025年第10期2341-2365,共25页
The rapid advancement of modern electronics has led to a surge in solid electronic waste,which poses significant environmental and health challenges.This review focuses on recent developments in paper-based electronic... The rapid advancement of modern electronics has led to a surge in solid electronic waste,which poses significant environmental and health challenges.This review focuses on recent developments in paper-based electronic devices fabricated through low-cost,hand-printing techniques,with particular emphasis on their applications in energy harvesting,storage,and sensing.Unlike conventional plastic-based substrates,cellulose paper offers several advantages,including biodegradability,recyclability,and low fabrication cost.By integrating functional nanomaterials such as two-dimensional chalcogenides,metal oxides,conductive polymers,and carbon-based structures onto paper,researchers have achieved high-performance devices such as broadband photodetectors(responsivity up to 52 mA/W),supercapacitors(energy density~15.1 mWh/cm^(2)),and pressure sensors(sensitivity~18.42 kPa^(-1)).The hand-printing approach,which eliminates the need for sophisticated equipment and toxic solvents,offers a promising route for scalable,sustainable,and disposable electronics.This review outlines fabrication methods and key performance metrics,and discusses the current challenges and future directions for realizing robust,flexible devices aligned with green technology and the United Nation’s Sustainable Development Goals. 展开更多
关键词 flexible electronics hand-print method opto-electronics electronic devices
在线阅读 下载PDF
Electron momentum spectroscopy study on trifluorobromomethane: Electronic structure and electron correlation
16
作者 Guangqing Chen Shanshan Niu +6 位作者 Yaguo Tang Yuting Zhang Zhaohui Liu Chunkai Xu Enliang Wang Xu Shan Xiangjun Chen 《Chinese Physics B》 2025年第4期387-394,共8页
We present a comprehensive electron momentum spectroscopy study on the electronic structure of trifluorobromomethane.The binding energy spectrum and electron momentum profiles of the entire outer-valence orbitals and ... We present a comprehensive electron momentum spectroscopy study on the electronic structure of trifluorobromomethane.The binding energy spectrum and electron momentum profiles of the entire outer-valence orbitals and the first inner-valence orbital along with several shake-up states were measured by using a high-sensitivity(e,2e)apparatus at an electron impact energy of 1213 eV.Theoretical calculations employing the density functional theory with B3LYP hybrid functional and the symmetry-adapted cluster configuration-interaction method were performed to interpret the experimental results.Important effects of electron correlations in the initial neutral and final ionic states on the electron momentum profiles have been observed. 展开更多
关键词 electron momentum spectroscopy electronic structure electron correlation
原文传递
Equalized Electronegativity Based on the Valence Electrons and Its Application 被引量:2
17
作者 武亚新 曹晨忠 袁华 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第1期31-39,I0003,共10页
We take the contribution of all valence electrons into consideration and propose a new valence electrons equilibration method to calculate the equalized electronegativity including molecular electronegativity, group e... We take the contribution of all valence electrons into consideration and propose a new valence electrons equilibration method to calculate the equalized electronegativity including molecular electronegativity, group electronegativity, and atomic charge. The ionization potential of alkanes and mono-substituted alkanes, the chemical shift of 1H NMR, and the gas phase proton affinity of aliphatic amines, alcohols, and ethers were estimated. All the expressions have good correlations. Moreover, the Sanderson method and Bratsch method were modified on the basis of the valence electrons equilibration theory. The modified Sanderson method and modified Bratsch method are more effective than their original methods to estimate these properties. 展开更多
关键词 electronegativity equalization Valence electrons equilibration method Molecular electronegativity Group electronegativity Atomic charge
在线阅读 下载PDF
Resolving Electron Mass Inconsistency Using Negative Mass
18
作者 Arlen Young 《Journal of Modern Physics》 CAS 2022年第9期1287-1294,共8页
In a previous publication, the author discussed the electron mass and charge inconsistencies resulting from classical models. A model was proposed using classical equations and two opposite charges to resolve the char... In a previous publication, the author discussed the electron mass and charge inconsistencies resulting from classical models. A model was proposed using classical equations and two opposite charges to resolve the charge inconsistency. The model proposed in that article is modified herein using classical equations to define a model that also resolves the mass inconsistency. The positive mass of the outer shell of the electron core is replaced with a negative mass. The small negatively-charged core at the center still has positive mass. 展开更多
关键词 Classical electron Model electron Radius electron Magnetic Dipole Moment electron Spin Angular Momentum Negative Mass electron Mass Inconsistency electron Charge Inconsistency Particle Physics
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部