Compared to currently commercialized lithium-ion batteries,which use flammable organic liquid electrolytes and low-energy-density graphite anodes,solid-state lithium-metal batteries(SSLMBs)offer enhanced energy densit...Compared to currently commercialized lithium-ion batteries,which use flammable organic liquid electrolytes and low-energy-density graphite anodes,solid-state lithium-metal batteries(SSLMBs)offer enhanced energy density and improved safety,making them promising alternatives for next-generation rechargeable batteries[1].As a crucial component of these batteries,solid-state electrolytes—divided into inorganic solid ceramic electrolytes(SCEs)and organic solid polymer electrolytes(SPEs)—are vital for lithium-ion transport and inhibiting lithium dendrite growth.Among them,SCEs exhibit high ionic conductivity,excellent mechanical properties,and outstanding electrochemical and thermal stability.Nevertheless,their brittleness,interfacial challenges with electrodes,and the requirement for high stacking pressure during battery operation significantly hinder their scalable application.In comparison,SPEs are more favourable for manufacturing due to their flexibility and good interfacial compatibility with electrodes[2].Despite these advantages,SPEs still face significant challenges in achieving practical application.Firstly,typical SPEs,such as poly(ethylene oxide)(PEO),poly(vinylidene fluoride)(PVDF),and poly(ethylene glycol)diacrylate(PEGDA),are characterized by high crystallinity,which causes polymer chains to be tightly packed and rigid.This restricts the segmental motion within the SPEs,resulting in low ionic conductivity.Secondly,compared to lithium ions,anions with large ionic radii and low charge density typically form weaker interactions with the polymer chains,which facilitates their mobility and results in a low lithium-ion transference number(tt).Thirdly,the weak interactions between polymer chains in typical SPEs lead to a low elastic modulus,which in turn compromises their poor mechanical strength.展开更多
1.Introduction.The ever-increasing demands for high-energy-density power supply systems have driven the rapid development of conventional lithium-ion batteries,of which properties are approaching to the ceiling.In the...1.Introduction.The ever-increasing demands for high-energy-density power supply systems have driven the rapid development of conventional lithium-ion batteries,of which properties are approaching to the ceiling.In the meantime,the safety of lithium-ion batteries also grabs more attention as their wide application in consumer electronics and electric vehicles.The safety of battery system can be enhanced inherently by replacing the flammable liquid electrolytes with inorganic solid electrolytes,which makes solid-state battery one of the most promising candidates of next-generation energy storage systems[1-3].Additionally,the improvements in energy density are foreseen as solid electrolytes enable lithium metal anode[4-11]and high-voltage cathodes[12-15].展开更多
Aqueous alkali metal-ion batteries(AAMIBs)have been recognized as emerging electrochemical energy storage technologies for grid-scale applications owning to their intrinsic safety,cost-effectiveness,and environmental ...Aqueous alkali metal-ion batteries(AAMIBs)have been recognized as emerging electrochemical energy storage technologies for grid-scale applications owning to their intrinsic safety,cost-effectiveness,and environmental sustainability.However,the practical application of AAMIBs is still severely constrained by the tendency of aqueous electrolytes to freeze at low temperatures and decompose at high temperatures,limiting their operational temperature range.Considering the urgent need for energy systems with higher adaptability and resilience at various application scenarios,designing novel electrolytes via structure modulation has increasingly emerged as a feasible and economical strategy for the performance optimization of wide-temperature AAMIBs.In this review,the latest advancement of wide-temperature electrolytes for AAMIBs is systematically and comprehensively summarized.Specifically,the key challenges,failure mechanisms,correlations between hydrogen bond behaviors and physicochemical properties,and thermodynamic and kinetic interpretations in aqueous electrolytes are discussed firstly.Additionally,we offer forward-looking insights and innovative design principles for developing aqueous electrolytes capable of operating across a broad temperature range.This review is expected to provide some guidance and reference for the rational design and regulation of widetemperature electrolytes for AAMIBs and promote their future development.展开更多
Solid-state batteries(SSBs) are highly attractive on account of their high energy density and good safety.In high-voltage and high-current conditions,however,the interface reactions,structural changes,and decompositio...Solid-state batteries(SSBs) are highly attractive on account of their high energy density and good safety.In high-voltage and high-current conditions,however,the interface reactions,structural changes,and decomposition of the electrolyte impede the transmission of lithium ions in all-solid-state lithium batteries(ASSLBs),significantly reducing the charging and discharging capacity and cycling stability of the battery and therefore restricting its practical applications.The main content of review is to conduct an in-depth analysis of the existing problems of solid-state batteries from the aspects of interface reactions,material failure,ion migration,and dendrite growth,and points out the main factors influencing the electrochemical performance of ASSLBs.Additionally,the compatibility and ion conduction mechanisms between polymer electrolytes,inorganic solid electrolytes,and composite electrolytes and the electrode materials are discussed.Furthermore,the perspectives of electrode materials,electrolyte properties,and interface modification are summarized and prospected,providing new optimization directions for the future commercialization of high-voltage solid-state electrolytes.展开更多
All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercializat...All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercialization of ASSLBs still faces challenges regarding the electrolyte/electrodes interfaces and growth of Li dendrites.Elemental doping is an effective and direct method to enhance the performance of SEs.Here,we report an Al-F co-doping strategy to improve the overall properties including ion conductivity,high voltage stability,and cathode and anode compatibility.Particularly,the Al-F co-doping enables the formation of a thin Li-Al alloy layer and fluoride interphases,thereby constructing a relatively stable interface and promoting uniform Li deposition.The similar merits of Al-F co-doping are also revealed in the Li-argyrodite series.ASSLBs assembled with these optimized electrolytes gain good electrochemical performance,demonstrating the universality of Al-F co-doping towards advanced SEs.展开更多
Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environme...Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environmental friendliness, which is extremely important for wearable energy storage applications. Given that HEs play a critical role in building flexible RZIBs, it is urgent to summarize the recent advances in this field and elucidate the design principles of HEs for practical applications. This review systematically presents the development history, recent advances in the material fundamentals, functional designs, challenges, and prospects of the HEs-based RZIBs. Firstly, the fundamentals, species, and flexible mechanisms of HEs are discussed, along with their compatibility with Zn anodes and various cathodes. Then, the functional designs of hydrogel electrolytes in harsh conditions are comprehensively discussed, including high/low/wide-temperature windows, mechanical deformations(e.g., bending, twisting, and straining), and damages(e.g., cutting, burning, and soaking). Finally, the remaining challenges and future perspectives for advancing HEs-based RZIBs are outlined.展开更多
To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified ...To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.展开更多
The rising need for efficient and sustainable energy storage systems has led to increased interest in the use of advanced electrolytes consisting of deep eutectic solvents(DESs) and ionic liquids(ILs).These electrolyt...The rising need for efficient and sustainable energy storage systems has led to increased interest in the use of advanced electrolytes consisting of deep eutectic solvents(DESs) and ionic liquids(ILs).These electrolytes are appealing candidates for supercapacitors,next-generation lithium-ion batteries,and different energy storage systems because of their special features including non-flammability,low volatility,lowtoxicity,good electrochemical stability,and good thermal and chemical stability.This review explores the advantages of the proposed electrolytes by examining their potential to address the critical challenges in lithium battery technology,including safety concerns,energy density limitations,and operational stability.To achieve this,a comprehensive overview of the lithium salts commonly employed in rechargeable lithium battery electrolytes is presented.Moreover,key physicochemical and functional attributes of ILs and DESs,such as electrochemical stability,ionic conductivity,nonflammability,and viscosity are also discussed with a focus on how these features impact battery performance.The integration of lithium salts with ILs and DESs in modern lithium battery technologies,including lithium-ion(Li-ion) batteries,lithium-oxygen(Li-O_(2)) batteries,and lithium-sulfur(Li-S) batteries,are further examined in the study.Various electrochemical performance metrics including cycling stability,charge/discharge profiles,retention capacity and battery's couiombic efficiency(CE) are also analyzed for the above-mentioned systems.By summarizing recent advances and challenges,this review also highlights the potential of electrolytes consisting of DESs and ILs to enhance energy density,durability,and safety in future energy storage applications.Additionally future research directions,including the molecular optimization of ILs and DESs,optimizing lithium salt compositions,and developing scalable synthesis methods to accelerate their practical implementation in next-generation energy storage applications are also explored.展开更多
The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity(372 mAh g^(-1)).There is an urgent need to explore novel anode materia...The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity(372 mAh g^(-1)).There is an urgent need to explore novel anode materials for lithium-ion batteries.Silicon(Si),the second-largest element outside of Earth,has an exceptionally high specific capacity(3579 mAh g^(-1)),regarded as an excellent choice for the anode material in high-capacity lithium-ion batteries.However,it is low intrinsic conductivity and volume amplification during service status,prevented it from developing further.These difficulties can be successfully overcome by incorporating carbon into pure Si systems to form a composite anode and constructing a buffer structure.This review looks at the diffusion mechanism,various silicon-based anode material configurations(including sandwich,core-shell,yolk-shell,and other 3D mesh/porous structures),as well as the appropriate binders and electrolytes.Finally,a summary and viewpoints are offered on the characteristics and structural layout of various structures,metal/non-metal doping,and the compatibility and application of various binders and electrolytes for silicon-based anodes.This review aims to provide valuable insights into the research and development of silicon-based carbon anodes for high-performance lithium-ion batteries,as well as their integration with binders and electrolyte.展开更多
Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recove...Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recovery and conversion.Moreover,rechargeable nonaqueous metal-CO_(2)batteries have attracted much attention due to their high theoretical energy density.However,the stability issues of the electrode-electrolyte interfaces of nonaqueous metal-CO_(2)(lithium(Li)/sodium(Na)/potassium(K)-CO_(2))batteries have been troubling its development,and a large number of related research in the field of electrolytes have conducted in recent years.This review retraces the short but rapid research history of nonaqueous metal-CO_(2)batteries with a detailed electrochemical mechanism analysis.Then it focuses on the basic characteristics and design principles of electrolytes,summarizes the latest achievements of various types of electrolytes in a timely manner and deeply analyzes the construction strategies of stable electrode-electrolyte interfaces for metal-CO_(2)batteries.Finally,the key issues related to electrolytes and interface engineering are fully discussed and several potential directions for future research are proposed.This review enriches a comprehensive understanding of electrolytes and interface engineering toward the practical applications of next-generation metal-CO_(2)batteries.展开更多
High-voltage solid-state lithium-ion batteries(SSLIBs)have attracted considerable research attention in recent years due to their high-energy-density and superior safety characteristics.However,the integration of high...High-voltage solid-state lithium-ion batteries(SSLIBs)have attracted considerable research attention in recent years due to their high-energy-density and superior safety characteristics.However,the integration of high-voltage cathodes with solid electrolytes(SEs)presents multiple challenges,including the formation of high-impedance layers from spontaneous chemical reactions,electrochemical instability,insufficient interfacial contact,and lattice expansion.These issues significantly impair battery performance and potentially lead to battery failure,thus impeding the commercialization of high-voltage SSLIBs.The incorporation of fluorides,known for their robust bond strength and high free energy of formation,has emerged as an effective strategy to address these challenges.Fluorinated electrolytes and electrode/electrolyte interfaces have been demonstrated to significantly influence the reaction reversibility/kinetics,safety,and stability of rechargeable batteries,particularly under high voltage.This review summarizes recent advancements in fluorination treatment for high-voltage SEs,focusing on solid polymer electrolytes(SPEs),inorganic solid electrolytes(ISEs),and composite solid electrolytes(CSEs),along with the performance enhancements these strategies afford.This review aims to provide a comprehensive understanding of the structure-property relationships,the characteristics of fluorinated interfaces,and the application of fluorinated SEs in high-voltage SSLIBs.Further,the impacts of residual moisture and the challenges of fluorinated SEs are discussed.Finally,the review explores potential future directions for the development of fluorinated SSLIBs.展开更多
Quasi-solid-state electrolytes,which integrate the safety characteristics of inorganic materials,the flexibility of polymers,and the high ionic conductivity of liquid electrolytes,represent a transitional solution for...Quasi-solid-state electrolytes,which integrate the safety characteristics of inorganic materials,the flexibility of polymers,and the high ionic conductivity of liquid electrolytes,represent a transitional solution for high-energy-density lithium batteries.However,the mechanisms by which inorganic fillers enhance multiphase interfacial conduction remain inadequately understood.In this work,we synthesized composite quasi-solid-state electrolytes with high inorganic content to investigate interfacial phenomena and achieve enhanced electrode interface stability.Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)particles,through surface anion anchoring,improve Li^(+)transference numbers and facilitate partial dissociation of solvated Li^(+)structures,resulting in superior ion transport kinetics that achieve an ionic conductivity of 0.51 mS cm^(−1)at room temperature.The high mass fraction of inorganic components additionally promotes the formation of more stable interfacial layers,enabling lithium-symmetric cells to operate without short-circuiting for 6000 h at 0.1 mA cm^(−2).Furthermore,this system demonstrates exceptional stability in 5 V-class lithium metal full cells,maintaining 80.5%capacity retention over 200 cycles at 0.5C.These findings guide the role of inorganic interfaces in composite electrolytes and demonstrate their potential for advancing high-voltage lithium battery technology.展开更多
Despite the growing interest in fast-cha rging solid-state lithium(Li)-metal batteries(SSLMBs),their practical implementation has yet to be achieved,primarily due to an incomplete understanding of the disparate and of...Despite the growing interest in fast-cha rging solid-state lithium(Li)-metal batteries(SSLMBs),their practical implementation has yet to be achieved,primarily due to an incomplete understanding of the disparate and often conflicting requirements of the bulk electrolyte and the electrode-electrolyte interphase.Here,we present a weakly coordinating cationic polymer electrolyte(WCPE)specifically designed to regulate the Li^(+)coordination structure,thereby enabling fast-charging SSLMBs.The WCPE comprises an imidazolium-based polycationic matrix combined with a succinonitrile(SN)-based highconcentration electrolyte.Unlike conventional neutral polymer matrices,the polycationic matrix in the WCPE competes with Li^(+)for interactions with SN,weakening the original coordination between SN and Li^(+).This modulation of SN-Li^(+)interaction improves both Li^(+)conductivity of the WCPE(σ_(Li^(+))=1.29mS cm^(-1))and redox kinetics at the electrode-electrolyte interphase.Consequently,SSLMB cells(comprising LiFePO_(4)cathodes and Li-metal anodes)with the WCPE achieve fast-charging capability(reaching over 80%state of charge within 10 min),outperforming those of previously reported polymer electrolytebased SSLMBs.展开更多
Polymeric materials have emerged as a promising alternative to electrolytic solutions in energy storage applications.However,high crystallinity and poor ionic conductivity are the main barriers restricting their daily...Polymeric materials have emerged as a promising alternative to electrolytic solutions in energy storage applications.However,high crystallinity and poor ionic conductivity are the main barriers restricting their daily application.In this study,we propose a polymer electrolyte system consisting of methylcellulose-polyvinyl alcohol(MC-PVA)blend as host material and lithium trifluoromethanesulfonate(LiCF_(3)SO_(3))as dopant,which was prepared using the solution-casting method.The electrochemical impedance spectroscopy(EIS)analysis revealed a maximum conductivity of 5.42×10^(−6) S cm^(−1) with 40 wt.%LiCF_(3)SO_(3).The key findings demonstrated that the variation in the dielectric loss(εi)and dielectric constant(εr)was significantly correlated with the variation in ionic conductivity.Fourier-transform infrared spectroscopy(FTIR)analysis was done to analyse the salt-polymer interaction by observing the shifting of selected bands.By deconvoluting FTIR spectra in the wavenumber range of 970–1100 cm^(−1),transport properties of electrolytes were investigated and found to be improved when the salt concentration was increased to 40 wt.%.Results from the X-ray diffraction(XRD)study suggested that the higher salt concentration promoted the formation of an amorphous phase,which is favourable for ionic conduction.Field emission scanning electron microscopy(FESEM)study demonstrated that the addition of salt altered the surface morphology of MC-PVA.展开更多
Charge transfer at the liquid(electrolyte)-solid(metal)interfaces is of fundamental importance to metal electrochemical deposition that further determines the reversibility and kinetics of energy-dense rechargeable me...Charge transfer at the liquid(electrolyte)-solid(metal)interfaces is of fundamental importance to metal electrochemical deposition that further determines the reversibility and kinetics of energy-dense rechargeable metal batteries(RMBs).We demonstrate the fast charge transfer at the electrolyte-metal interfaces for lithium metal by designing and synthesizing electrolytes with chiral solvents:R(or S)-1,2-dimethoxy pro pane(R-DMP or S-DMP)and R(or S)-4-methyl-1,3-dioxolane(R-MDOL or S-MDOL).The chiral-induced spin selectivity is considered to produce spin-polarized metal surfaces,enabling the improvement in charge transfer rate and efficiency.The deposited Li metal in chiral electrolytes shows smooth and uniform morphologies,as well as high initial(>95%)and average(~99.2%)Coulombic efficiency for Li metal stripping/plating process,thus prolonging the life-span of batteries using thin lithium anode(50μm)to 400 cycles till 80%capacity retention.This work provides a distinct approach to regulate metal deposition beyond the limitation of ion de-solvation.展开更多
Halide solid-state electrolytes(SSEs)have become a new research focus for all-solid-state batteries because of their significant safety advantages,high ionic conductivity,high-voltage stability,and good ductility.None...Halide solid-state electrolytes(SSEs)have become a new research focus for all-solid-state batteries because of their significant safety advantages,high ionic conductivity,high-voltage stability,and good ductility.Nonetheless,stability issues are a key barrier to their practical application.In past reports,the analysis of halide electrolyte stability and its enhancement methods lacked relevance,which limited the design and optimization of halide solid electrolytes.This review focus on stability issues from a chemical,electrochemical,and interfacial point of view,with particular emphasis on the interaction of halide SSEs with anode and cathode interfaces.By focusing on innovative strategies to address the stability issue,this paper aims to further deepen the understanding and development of halide all-solid-state batteries by proposing to focus research efforts on improving their stability in order to address their inherent challenges and match higher voltage cathodes,paving the way for their wider application in the next generation of energy storage technologies.展开更多
The development of flexible supercapacitors(FSCs) capable of operating at high temperatures is crucial for expanding the application areas and operating conditions of supercapacitors. Gel polymer electrolytes and elec...The development of flexible supercapacitors(FSCs) capable of operating at high temperatures is crucial for expanding the application areas and operating conditions of supercapacitors. Gel polymer electrolytes and electrode materials stand as two key components that significantly impact the efficacy of hightemperature-tolerant FSCs(HT-FSCs). They should not only exhibit high electrochemical performance and excellent flexibility, but also withstand intense thermal stress. Considerable efforts have been devoted to enhancing their thermal stability while maintaining high electrochemical and mechanical performance. In this review, the fundamentals of HT-FSCs are outlined. A comprehensive overview of state-of-the-art progress and achievements in HT-FSCs, with a focus on thermally stable gel polymer electrolytes and electrode materials is provided. Finally, challenges and future perspectives regarding HT-FSCs are discussed, alongside strategies for elevating operational temperatures and performance.This review offers both theoretical foundations and practical guidelines for designing and manufacturing HT-FSCs, further promoting their widespread adoption across diverse fields.展开更多
As a potential substitute for traditional nonaqueous organic electrolytes,polymer-based solid-state electrolytes(SSEs)have the advantages of high safety,flexibility,low density,and easy processing.In contrast,they sti...As a potential substitute for traditional nonaqueous organic electrolytes,polymer-based solid-state electrolytes(SSEs)have the advantages of high safety,flexibility,low density,and easy processing.In contrast,they still face challenges,such as low room-temperature ionic conductivity,narrow electrochemical windows,and poor mechanical strength.To realize the practical application of all-solid-state alkali metal ion batteries,there has been a lot of research on modifying the chemical composition or structure of polymerbased SSEs.In this review,the transport mechanism of alkali metal ions in polymer SSEs is briefly introduced.We systematically summarize the recent strategies to improve polymer-based SSEs,which have been validated in lithium-ion batteries and sodium-ion batteries,including lamellar electrolyte structure,dual salts hybridization,oriented filler alignment,and so on.Then,taking the unique properties of potassium metal and potassium ions into consideration,the feasibility of potassium-ion batteries for practical use enabled by these novel modification methods is discussed.展开更多
Quasi-solid-state composite electrolytes(QSCEs)show promise for high-performance solid-state batteries,while they still struggle with interfacial stability and cycling performance.Herein,a F-grafted QSCE(F-QSCE)was de...Quasi-solid-state composite electrolytes(QSCEs)show promise for high-performance solid-state batteries,while they still struggle with interfacial stability and cycling performance.Herein,a F-grafted QSCE(F-QSCE)was developed via copolymerizing the F monomers and ionic liquid monomers.The F-QSCE demonstrates better overall performance,such as high ionic conductivity of 1.21 mS cm^(-1)at 25℃,wide electrochemical windows of 5.20 V,and stable cycling stability for Li//Li symmetric cells over 4000 h.This is attributed to the significant electronegativity difference between C and F in the fluorinated chain(-CF_(2)-CF-CF_(3)),which causes the electron cloud to shift toward the F atom,surrounding it with a negative charge and producing the inductive effect.Furthermore,the interactions between Li^(+)and F,TFSI~-,and C are enhanced,reducing ion pair aggregation(Li^(+)-TFSI~--Li^(+))and promoting Li^(+)transport.Besides,-CF_(2)-CF-CF_(3)decomposes to form Li F preferentially over TFSI~-,resulting in better interfacial stability for F-QSCE.This work provides a pathway to enable the development of high-performance Li metal batteries.展开更多
This work explores the dielectric and electrochemical properties of solid biopolymer blend electrolytes(SBEs)based on a combination of alginate and polyvinyl alcohol(PVA),doped with varying concentrations of ammonium ...This work explores the dielectric and electrochemical properties of solid biopolymer blend electrolytes(SBEs)based on a combination of alginate and polyvinyl alcohol(PVA),doped with varying concentrations of ammonium iodide(NH4I).The SBEs were synthesized using the solution casting method,and their ac conductivity exhibited an optimal value of 1.01×10^(-5) S·cm^(-1) at 25 wt.%NH4I.Detailed dielectric and modulus spectroscopy analyses revealed distinctive trends in relation to NH4I concentration,suggesting complex dielectric relaxation behavior.The universal power law(UPL)analysis identified the Small Polaron Hopping(SPH)mechanism as the dominant conduction process in the optimal sample.These results demonstrate that NH4I-doped alginate-PVA SBEs possess favorable electrochemical properties,positioning them as potential candidates for energy storage and ionic transport devices.展开更多
基金supported by the University of Wollongong,Wollongong,Australiafinancial support from the National Natural Science Foundation of China(22272086)Natural Science Foundation of Sichuan Province(2023NSFSC0009).
文摘Compared to currently commercialized lithium-ion batteries,which use flammable organic liquid electrolytes and low-energy-density graphite anodes,solid-state lithium-metal batteries(SSLMBs)offer enhanced energy density and improved safety,making them promising alternatives for next-generation rechargeable batteries[1].As a crucial component of these batteries,solid-state electrolytes—divided into inorganic solid ceramic electrolytes(SCEs)and organic solid polymer electrolytes(SPEs)—are vital for lithium-ion transport and inhibiting lithium dendrite growth.Among them,SCEs exhibit high ionic conductivity,excellent mechanical properties,and outstanding electrochemical and thermal stability.Nevertheless,their brittleness,interfacial challenges with electrodes,and the requirement for high stacking pressure during battery operation significantly hinder their scalable application.In comparison,SPEs are more favourable for manufacturing due to their flexibility and good interfacial compatibility with electrodes[2].Despite these advantages,SPEs still face significant challenges in achieving practical application.Firstly,typical SPEs,such as poly(ethylene oxide)(PEO),poly(vinylidene fluoride)(PVDF),and poly(ethylene glycol)diacrylate(PEGDA),are characterized by high crystallinity,which causes polymer chains to be tightly packed and rigid.This restricts the segmental motion within the SPEs,resulting in low ionic conductivity.Secondly,compared to lithium ions,anions with large ionic radii and low charge density typically form weaker interactions with the polymer chains,which facilitates their mobility and results in a low lithium-ion transference number(tt).Thirdly,the weak interactions between polymer chains in typical SPEs lead to a low elastic modulus,which in turn compromises their poor mechanical strength.
文摘1.Introduction.The ever-increasing demands for high-energy-density power supply systems have driven the rapid development of conventional lithium-ion batteries,of which properties are approaching to the ceiling.In the meantime,the safety of lithium-ion batteries also grabs more attention as their wide application in consumer electronics and electric vehicles.The safety of battery system can be enhanced inherently by replacing the flammable liquid electrolytes with inorganic solid electrolytes,which makes solid-state battery one of the most promising candidates of next-generation energy storage systems[1-3].Additionally,the improvements in energy density are foreseen as solid electrolytes enable lithium metal anode[4-11]and high-voltage cathodes[12-15].
基金supported by the National Natural Science Foundation of China(52002297)National Key R&D Program of China(2022VFB2404800)+1 种基金Wuhan Yellow Crane Talents Program,China Postdoctoral Science Foundation(No.2024M752495)the Postdoctoral Fellowship Program of CPSF(No.GZB20230552).
文摘Aqueous alkali metal-ion batteries(AAMIBs)have been recognized as emerging electrochemical energy storage technologies for grid-scale applications owning to their intrinsic safety,cost-effectiveness,and environmental sustainability.However,the practical application of AAMIBs is still severely constrained by the tendency of aqueous electrolytes to freeze at low temperatures and decompose at high temperatures,limiting their operational temperature range.Considering the urgent need for energy systems with higher adaptability and resilience at various application scenarios,designing novel electrolytes via structure modulation has increasingly emerged as a feasible and economical strategy for the performance optimization of wide-temperature AAMIBs.In this review,the latest advancement of wide-temperature electrolytes for AAMIBs is systematically and comprehensively summarized.Specifically,the key challenges,failure mechanisms,correlations between hydrogen bond behaviors and physicochemical properties,and thermodynamic and kinetic interpretations in aqueous electrolytes are discussed firstly.Additionally,we offer forward-looking insights and innovative design principles for developing aqueous electrolytes capable of operating across a broad temperature range.This review is expected to provide some guidance and reference for the rational design and regulation of widetemperature electrolytes for AAMIBs and promote their future development.
基金financial support received from the National Key R&D Program of China (2023YFB2504000)the financial support from the National Outstanding Youth Foundation of China (52125104)+2 种基金the National Natural Science Foundation of China (52071285)the Fundamental Research Funds for the Central Universities (226-2024-00075)the National Youth Top-Notch Talent Support Program。
文摘Solid-state batteries(SSBs) are highly attractive on account of their high energy density and good safety.In high-voltage and high-current conditions,however,the interface reactions,structural changes,and decomposition of the electrolyte impede the transmission of lithium ions in all-solid-state lithium batteries(ASSLBs),significantly reducing the charging and discharging capacity and cycling stability of the battery and therefore restricting its practical applications.The main content of review is to conduct an in-depth analysis of the existing problems of solid-state batteries from the aspects of interface reactions,material failure,ion migration,and dendrite growth,and points out the main factors influencing the electrochemical performance of ASSLBs.Additionally,the compatibility and ion conduction mechanisms between polymer electrolytes,inorganic solid electrolytes,and composite electrolytes and the electrode materials are discussed.Furthermore,the perspectives of electrode materials,electrolyte properties,and interface modification are summarized and prospected,providing new optimization directions for the future commercialization of high-voltage solid-state electrolytes.
基金supported by the National Natural Science Foundation of China(Nos.52172243,52371215)。
文摘All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercialization of ASSLBs still faces challenges regarding the electrolyte/electrodes interfaces and growth of Li dendrites.Elemental doping is an effective and direct method to enhance the performance of SEs.Here,we report an Al-F co-doping strategy to improve the overall properties including ion conductivity,high voltage stability,and cathode and anode compatibility.Particularly,the Al-F co-doping enables the formation of a thin Li-Al alloy layer and fluoride interphases,thereby constructing a relatively stable interface and promoting uniform Li deposition.The similar merits of Al-F co-doping are also revealed in the Li-argyrodite series.ASSLBs assembled with these optimized electrolytes gain good electrochemical performance,demonstrating the universality of Al-F co-doping towards advanced SEs.
基金supported by the National Natural Science Foundation of China (22379038)Science Research Project of Hebei Education Department (JZX2024015)+4 种基金Shijiazhuang Science and Technology Plan Project (241791357A)Central Guidance for Local Science and Technology Development Funds Project (246Z4408G)Excellent Youth Research Innovation Team of Hebei University (QNTD202410)High-level Talents Research Start-Up Project of Hebei University (521100224223)Hebei Province Innovation Capability Enhancement Plan Project (22567620H)。
文摘Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environmental friendliness, which is extremely important for wearable energy storage applications. Given that HEs play a critical role in building flexible RZIBs, it is urgent to summarize the recent advances in this field and elucidate the design principles of HEs for practical applications. This review systematically presents the development history, recent advances in the material fundamentals, functional designs, challenges, and prospects of the HEs-based RZIBs. Firstly, the fundamentals, species, and flexible mechanisms of HEs are discussed, along with their compatibility with Zn anodes and various cathodes. Then, the functional designs of hydrogel electrolytes in harsh conditions are comprehensively discussed, including high/low/wide-temperature windows, mechanical deformations(e.g., bending, twisting, and straining), and damages(e.g., cutting, burning, and soaking). Finally, the remaining challenges and future perspectives for advancing HEs-based RZIBs are outlined.
基金supported by the National Natural Science Foundation of China(Grant No.22075064,52302234,52272241)Zhejiang Provincial Natural Science Foundation of China under Grant No.LR24E020001+2 种基金Natural Science of Heilongjiang Province(No.LH2023B009)China Postdoctoral Science Foundation(2022M710950)Heilongjiang Postdoctoral Fund(LBH-Z21131),National Key Laboratory Projects(No.SYSKT20230056).
文摘To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.
文摘The rising need for efficient and sustainable energy storage systems has led to increased interest in the use of advanced electrolytes consisting of deep eutectic solvents(DESs) and ionic liquids(ILs).These electrolytes are appealing candidates for supercapacitors,next-generation lithium-ion batteries,and different energy storage systems because of their special features including non-flammability,low volatility,lowtoxicity,good electrochemical stability,and good thermal and chemical stability.This review explores the advantages of the proposed electrolytes by examining their potential to address the critical challenges in lithium battery technology,including safety concerns,energy density limitations,and operational stability.To achieve this,a comprehensive overview of the lithium salts commonly employed in rechargeable lithium battery electrolytes is presented.Moreover,key physicochemical and functional attributes of ILs and DESs,such as electrochemical stability,ionic conductivity,nonflammability,and viscosity are also discussed with a focus on how these features impact battery performance.The integration of lithium salts with ILs and DESs in modern lithium battery technologies,including lithium-ion(Li-ion) batteries,lithium-oxygen(Li-O_(2)) batteries,and lithium-sulfur(Li-S) batteries,are further examined in the study.Various electrochemical performance metrics including cycling stability,charge/discharge profiles,retention capacity and battery's couiombic efficiency(CE) are also analyzed for the above-mentioned systems.By summarizing recent advances and challenges,this review also highlights the potential of electrolytes consisting of DESs and ILs to enhance energy density,durability,and safety in future energy storage applications.Additionally future research directions,including the molecular optimization of ILs and DESs,optimizing lithium salt compositions,and developing scalable synthesis methods to accelerate their practical implementation in next-generation energy storage applications are also explored.
基金supported by National Natural Science Foundation of China(No.22205182)National Science Fund for Distinguished Young Scholars(No.52025034)+2 种基金China Postdoctoral Science Foundation(Nos.2022M722594/2024T171170)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515011516)financially supported by Innovation Team of Shaanxi Sanqin Scholars。
文摘The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity(372 mAh g^(-1)).There is an urgent need to explore novel anode materials for lithium-ion batteries.Silicon(Si),the second-largest element outside of Earth,has an exceptionally high specific capacity(3579 mAh g^(-1)),regarded as an excellent choice for the anode material in high-capacity lithium-ion batteries.However,it is low intrinsic conductivity and volume amplification during service status,prevented it from developing further.These difficulties can be successfully overcome by incorporating carbon into pure Si systems to form a composite anode and constructing a buffer structure.This review looks at the diffusion mechanism,various silicon-based anode material configurations(including sandwich,core-shell,yolk-shell,and other 3D mesh/porous structures),as well as the appropriate binders and electrolytes.Finally,a summary and viewpoints are offered on the characteristics and structural layout of various structures,metal/non-metal doping,and the compatibility and application of various binders and electrolytes for silicon-based anodes.This review aims to provide valuable insights into the research and development of silicon-based carbon anodes for high-performance lithium-ion batteries,as well as their integration with binders and electrolyte.
基金supports from the Beijing Laboratory of New Energy Storage Technology, North China Electric Power Universitythe Program of the National Energy Storage Industry-Education Platformthe Interdisciplinary Innovation Program of North China Electric Power University (No. XM2212315)
文摘Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recovery and conversion.Moreover,rechargeable nonaqueous metal-CO_(2)batteries have attracted much attention due to their high theoretical energy density.However,the stability issues of the electrode-electrolyte interfaces of nonaqueous metal-CO_(2)(lithium(Li)/sodium(Na)/potassium(K)-CO_(2))batteries have been troubling its development,and a large number of related research in the field of electrolytes have conducted in recent years.This review retraces the short but rapid research history of nonaqueous metal-CO_(2)batteries with a detailed electrochemical mechanism analysis.Then it focuses on the basic characteristics and design principles of electrolytes,summarizes the latest achievements of various types of electrolytes in a timely manner and deeply analyzes the construction strategies of stable electrode-electrolyte interfaces for metal-CO_(2)batteries.Finally,the key issues related to electrolytes and interface engineering are fully discussed and several potential directions for future research are proposed.This review enriches a comprehensive understanding of electrolytes and interface engineering toward the practical applications of next-generation metal-CO_(2)batteries.
基金supported by the A*STAR MTC Programmatic Project(No.M23L9b0052)the Indonesia-NTU Singapore Institute of Research for Sustainability and Innovation(INSPIRASI)(No.6635/E3/KL.02.02/2023)+2 种基金the Singapore NRF Singapore-China Flagship Program(No.023740-00001)the National Natural Science Foundation of China(Nos.11975043 and 11475300)the China Scholarship Council(No.202306460087)。
文摘High-voltage solid-state lithium-ion batteries(SSLIBs)have attracted considerable research attention in recent years due to their high-energy-density and superior safety characteristics.However,the integration of high-voltage cathodes with solid electrolytes(SEs)presents multiple challenges,including the formation of high-impedance layers from spontaneous chemical reactions,electrochemical instability,insufficient interfacial contact,and lattice expansion.These issues significantly impair battery performance and potentially lead to battery failure,thus impeding the commercialization of high-voltage SSLIBs.The incorporation of fluorides,known for their robust bond strength and high free energy of formation,has emerged as an effective strategy to address these challenges.Fluorinated electrolytes and electrode/electrolyte interfaces have been demonstrated to significantly influence the reaction reversibility/kinetics,safety,and stability of rechargeable batteries,particularly under high voltage.This review summarizes recent advancements in fluorination treatment for high-voltage SEs,focusing on solid polymer electrolytes(SPEs),inorganic solid electrolytes(ISEs),and composite solid electrolytes(CSEs),along with the performance enhancements these strategies afford.This review aims to provide a comprehensive understanding of the structure-property relationships,the characteristics of fluorinated interfaces,and the application of fluorinated SEs in high-voltage SSLIBs.Further,the impacts of residual moisture and the challenges of fluorinated SEs are discussed.Finally,the review explores potential future directions for the development of fluorinated SSLIBs.
基金supported by the Science and Technology Commission of Shanghai Municipality(No.2024ZDSYS2),China.
文摘Quasi-solid-state electrolytes,which integrate the safety characteristics of inorganic materials,the flexibility of polymers,and the high ionic conductivity of liquid electrolytes,represent a transitional solution for high-energy-density lithium batteries.However,the mechanisms by which inorganic fillers enhance multiphase interfacial conduction remain inadequately understood.In this work,we synthesized composite quasi-solid-state electrolytes with high inorganic content to investigate interfacial phenomena and achieve enhanced electrode interface stability.Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)particles,through surface anion anchoring,improve Li^(+)transference numbers and facilitate partial dissociation of solvated Li^(+)structures,resulting in superior ion transport kinetics that achieve an ionic conductivity of 0.51 mS cm^(−1)at room temperature.The high mass fraction of inorganic components additionally promotes the formation of more stable interfacial layers,enabling lithium-symmetric cells to operate without short-circuiting for 6000 h at 0.1 mA cm^(−2).Furthermore,this system demonstrates exceptional stability in 5 V-class lithium metal full cells,maintaining 80.5%capacity retention over 200 cycles at 0.5C.These findings guide the role of inorganic interfaces in composite electrolytes and demonstrate their potential for advancing high-voltage lithium battery technology.
基金supported by the Basic Science Research Program(RS-2024-00344021,RS-2023-00261543,and RS-202300257666)through the National Research Foundation of Korea(NRF),the National Research Council of Science(000)Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(RS-2024-00420590,HRD Program for Industrial Innovation)The computational resources were provided by KITSI(KSC-2024-CRE-0143)。
文摘Despite the growing interest in fast-cha rging solid-state lithium(Li)-metal batteries(SSLMBs),their practical implementation has yet to be achieved,primarily due to an incomplete understanding of the disparate and often conflicting requirements of the bulk electrolyte and the electrode-electrolyte interphase.Here,we present a weakly coordinating cationic polymer electrolyte(WCPE)specifically designed to regulate the Li^(+)coordination structure,thereby enabling fast-charging SSLMBs.The WCPE comprises an imidazolium-based polycationic matrix combined with a succinonitrile(SN)-based highconcentration electrolyte.Unlike conventional neutral polymer matrices,the polycationic matrix in the WCPE competes with Li^(+)for interactions with SN,weakening the original coordination between SN and Li^(+).This modulation of SN-Li^(+)interaction improves both Li^(+)conductivity of the WCPE(σ_(Li^(+))=1.29mS cm^(-1))and redox kinetics at the electrode-electrolyte interphase.Consequently,SSLMB cells(comprising LiFePO_(4)cathodes and Li-metal anodes)with the WCPE achieve fast-charging capability(reaching over 80%state of charge within 10 min),outperforming those of previously reported polymer electrolytebased SSLMBs.
基金Universiti Teknologi PETRONAS for the financial support provided through the YUTP-FRG grant(015LC0-631).
文摘Polymeric materials have emerged as a promising alternative to electrolytic solutions in energy storage applications.However,high crystallinity and poor ionic conductivity are the main barriers restricting their daily application.In this study,we propose a polymer electrolyte system consisting of methylcellulose-polyvinyl alcohol(MC-PVA)blend as host material and lithium trifluoromethanesulfonate(LiCF_(3)SO_(3))as dopant,which was prepared using the solution-casting method.The electrochemical impedance spectroscopy(EIS)analysis revealed a maximum conductivity of 5.42×10^(−6) S cm^(−1) with 40 wt.%LiCF_(3)SO_(3).The key findings demonstrated that the variation in the dielectric loss(εi)and dielectric constant(εr)was significantly correlated with the variation in ionic conductivity.Fourier-transform infrared spectroscopy(FTIR)analysis was done to analyse the salt-polymer interaction by observing the shifting of selected bands.By deconvoluting FTIR spectra in the wavenumber range of 970–1100 cm^(−1),transport properties of electrolytes were investigated and found to be improved when the salt concentration was increased to 40 wt.%.Results from the X-ray diffraction(XRD)study suggested that the higher salt concentration promoted the formation of an amorphous phase,which is favourable for ionic conduction.Field emission scanning electron microscopy(FESEM)study demonstrated that the addition of salt altered the surface morphology of MC-PVA.
基金supported by the National Key R&D Program of China(2021YFB2500300)the National Natural Science Foundation of China(22372083,52201259)+1 种基金the Natural Science Foundation of Tianjin(22JCZDJC00380)Young Elite Scientist Sponsorship Program by CAST。
文摘Charge transfer at the liquid(electrolyte)-solid(metal)interfaces is of fundamental importance to metal electrochemical deposition that further determines the reversibility and kinetics of energy-dense rechargeable metal batteries(RMBs).We demonstrate the fast charge transfer at the electrolyte-metal interfaces for lithium metal by designing and synthesizing electrolytes with chiral solvents:R(or S)-1,2-dimethoxy pro pane(R-DMP or S-DMP)and R(or S)-4-methyl-1,3-dioxolane(R-MDOL or S-MDOL).The chiral-induced spin selectivity is considered to produce spin-polarized metal surfaces,enabling the improvement in charge transfer rate and efficiency.The deposited Li metal in chiral electrolytes shows smooth and uniform morphologies,as well as high initial(>95%)and average(~99.2%)Coulombic efficiency for Li metal stripping/plating process,thus prolonging the life-span of batteries using thin lithium anode(50μm)to 400 cycles till 80%capacity retention.This work provides a distinct approach to regulate metal deposition beyond the limitation of ion de-solvation.
基金supported by the National Natural Science Foundation of China(nos.22309027 and 52374301)the Shijiazhuang Basic Research Project(nos.241790667A and 241790907A)+3 种基金the Fundamental Research Funds for the Central Universities(no.N2523050)the Natural Science Foundation of Hebei Province(no.E2024501010)the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(no.22567627H)the 2024 Hebei Provincial Postgraduate Student Innovation Ability Training Funding Project(no.CXZZSS2025162)。
文摘Halide solid-state electrolytes(SSEs)have become a new research focus for all-solid-state batteries because of their significant safety advantages,high ionic conductivity,high-voltage stability,and good ductility.Nonetheless,stability issues are a key barrier to their practical application.In past reports,the analysis of halide electrolyte stability and its enhancement methods lacked relevance,which limited the design and optimization of halide solid electrolytes.This review focus on stability issues from a chemical,electrochemical,and interfacial point of view,with particular emphasis on the interaction of halide SSEs with anode and cathode interfaces.By focusing on innovative strategies to address the stability issue,this paper aims to further deepen the understanding and development of halide all-solid-state batteries by proposing to focus research efforts on improving their stability in order to address their inherent challenges and match higher voltage cathodes,paving the way for their wider application in the next generation of energy storage technologies.
基金Fundamental Research Funds for the Central Universities of China(Grant No. SWU-KT22030)Scientific and Technological Research Program of Chongqing Municipal Education Commission of China (No.KJQN202300205)financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under the project of 457444676。
文摘The development of flexible supercapacitors(FSCs) capable of operating at high temperatures is crucial for expanding the application areas and operating conditions of supercapacitors. Gel polymer electrolytes and electrode materials stand as two key components that significantly impact the efficacy of hightemperature-tolerant FSCs(HT-FSCs). They should not only exhibit high electrochemical performance and excellent flexibility, but also withstand intense thermal stress. Considerable efforts have been devoted to enhancing their thermal stability while maintaining high electrochemical and mechanical performance. In this review, the fundamentals of HT-FSCs are outlined. A comprehensive overview of state-of-the-art progress and achievements in HT-FSCs, with a focus on thermally stable gel polymer electrolytes and electrode materials is provided. Finally, challenges and future perspectives regarding HT-FSCs are discussed, alongside strategies for elevating operational temperatures and performance.This review offers both theoretical foundations and practical guidelines for designing and manufacturing HT-FSCs, further promoting their widespread adoption across diverse fields.
基金Fundamental Research Funds for the Central Universities,Grant/Award Number:FRF-IDRY-21-013National Natural Science Foundation of China,Grant/Award Numbers:52371131,52474318+1 种基金Beijing Nova Program,Grant/Award Number:Z211100002121082State Key Laboratory of Explosion Science and Technology,Grant/Award Number:QNKT23-05。
文摘As a potential substitute for traditional nonaqueous organic electrolytes,polymer-based solid-state electrolytes(SSEs)have the advantages of high safety,flexibility,low density,and easy processing.In contrast,they still face challenges,such as low room-temperature ionic conductivity,narrow electrochemical windows,and poor mechanical strength.To realize the practical application of all-solid-state alkali metal ion batteries,there has been a lot of research on modifying the chemical composition or structure of polymerbased SSEs.In this review,the transport mechanism of alkali metal ions in polymer SSEs is briefly introduced.We systematically summarize the recent strategies to improve polymer-based SSEs,which have been validated in lithium-ion batteries and sodium-ion batteries,including lamellar electrolyte structure,dual salts hybridization,oriented filler alignment,and so on.Then,taking the unique properties of potassium metal and potassium ions into consideration,the feasibility of potassium-ion batteries for practical use enabled by these novel modification methods is discussed.
基金conducted in a project within M-ERA.NET 3 with support from the European Union’s Horizon 2020 research,innovation program under grant agreement No.958174,Vinnova(Swedish Governmental Agency for Innovation Systems)the financial support from the LTU CREATERNITY program+1 种基金the J.Gust Richert Foundationthe National Natural Science Foundation of China(No.U23A20122)。
文摘Quasi-solid-state composite electrolytes(QSCEs)show promise for high-performance solid-state batteries,while they still struggle with interfacial stability and cycling performance.Herein,a F-grafted QSCE(F-QSCE)was developed via copolymerizing the F monomers and ionic liquid monomers.The F-QSCE demonstrates better overall performance,such as high ionic conductivity of 1.21 mS cm^(-1)at 25℃,wide electrochemical windows of 5.20 V,and stable cycling stability for Li//Li symmetric cells over 4000 h.This is attributed to the significant electronegativity difference between C and F in the fluorinated chain(-CF_(2)-CF-CF_(3)),which causes the electron cloud to shift toward the F atom,surrounding it with a negative charge and producing the inductive effect.Furthermore,the interactions between Li^(+)and F,TFSI~-,and C are enhanced,reducing ion pair aggregation(Li^(+)-TFSI~--Li^(+))and promoting Li^(+)transport.Besides,-CF_(2)-CF-CF_(3)decomposes to form Li F preferentially over TFSI~-,resulting in better interfacial stability for F-QSCE.This work provides a pathway to enable the development of high-performance Li metal batteries.
基金University Malaysia Pahang Al-Sultan Abdullah(UMPSA)under the UMPSA Distinguish Grant(RDU233001)Ministry of Higher Education Malaysia(MOHE)under the FRGS fund(FRGS/1/2023/STG05/UMP/02/2).
文摘This work explores the dielectric and electrochemical properties of solid biopolymer blend electrolytes(SBEs)based on a combination of alginate and polyvinyl alcohol(PVA),doped with varying concentrations of ammonium iodide(NH4I).The SBEs were synthesized using the solution casting method,and their ac conductivity exhibited an optimal value of 1.01×10^(-5) S·cm^(-1) at 25 wt.%NH4I.Detailed dielectric and modulus spectroscopy analyses revealed distinctive trends in relation to NH4I concentration,suggesting complex dielectric relaxation behavior.The universal power law(UPL)analysis identified the Small Polaron Hopping(SPH)mechanism as the dominant conduction process in the optimal sample.These results demonstrate that NH4I-doped alginate-PVA SBEs possess favorable electrochemical properties,positioning them as potential candidates for energy storage and ionic transport devices.