Compared to currently commercialized lithium-ion batteries,which use flammable organic liquid electrolytes and low-energy-density graphite anodes,solid-state lithium-metal batteries(SSLMBs)offer enhanced energy densit...Compared to currently commercialized lithium-ion batteries,which use flammable organic liquid electrolytes and low-energy-density graphite anodes,solid-state lithium-metal batteries(SSLMBs)offer enhanced energy density and improved safety,making them promising alternatives for next-generation rechargeable batteries[1].As a crucial component of these batteries,solid-state electrolytes—divided into inorganic solid ceramic electrolytes(SCEs)and organic solid polymer electrolytes(SPEs)—are vital for lithium-ion transport and inhibiting lithium dendrite growth.Among them,SCEs exhibit high ionic conductivity,excellent mechanical properties,and outstanding electrochemical and thermal stability.Nevertheless,their brittleness,interfacial challenges with electrodes,and the requirement for high stacking pressure during battery operation significantly hinder their scalable application.In comparison,SPEs are more favourable for manufacturing due to their flexibility and good interfacial compatibility with electrodes[2].Despite these advantages,SPEs still face significant challenges in achieving practical application.Firstly,typical SPEs,such as poly(ethylene oxide)(PEO),poly(vinylidene fluoride)(PVDF),and poly(ethylene glycol)diacrylate(PEGDA),are characterized by high crystallinity,which causes polymer chains to be tightly packed and rigid.This restricts the segmental motion within the SPEs,resulting in low ionic conductivity.Secondly,compared to lithium ions,anions with large ionic radii and low charge density typically form weaker interactions with the polymer chains,which facilitates their mobility and results in a low lithium-ion transference number(tt).Thirdly,the weak interactions between polymer chains in typical SPEs lead to a low elastic modulus,which in turn compromises their poor mechanical strength.展开更多
The pursuit of high energy density and sustainable energy storage devices has been the target of many researchers.However,safety issues such as the susceptibility of conventional liquid electrolytes to leakage and fla...The pursuit of high energy density and sustainable energy storage devices has been the target of many researchers.However,safety issues such as the susceptibility of conventional liquid electrolytes to leakage and flammability,as well as performance degradation due to uncontrollable dendrite growth in liquid electrolytes,have been limiting the further development of energy storage devices.In this regard,gel polymer electrolytes(GPEs)based on lignocellulosic(cellulose,hemicellulose,lignin)have attracted great interest due to their high thermal stability,excellent electrolyte wettability,and natural abundance.Therefore,in this critical review,a comprehensive overview of the current challenges faced by GPEs is presented,followed by a detailed description of the opportunities and advantages of lignocellulosic materials for the fabrication of GPEs for energy storage devices.Notably,the key properties and corresponding construction strategies of GPEs for energy storage are analyzed and discussed from the perspective of lignocellulose for the first time.Moreover,the future challenges and prospects of lignocellulose-mediated GPEs in energy storage applications are also critically reviewed and discussed.We sincerely hope this review will stimulate further research on lignocellulose-mediated GPEs in energy storage and provide meaningful directions for the strategy of designing advanced GPEs.展开更多
1.Introduction.The ever-increasing demands for high-energy-density power supply systems have driven the rapid development of conventional lithium-ion batteries,of which properties are approaching to the ceiling.In the...1.Introduction.The ever-increasing demands for high-energy-density power supply systems have driven the rapid development of conventional lithium-ion batteries,of which properties are approaching to the ceiling.In the meantime,the safety of lithium-ion batteries also grabs more attention as their wide application in consumer electronics and electric vehicles.The safety of battery system can be enhanced inherently by replacing the flammable liquid electrolytes with inorganic solid electrolytes,which makes solid-state battery one of the most promising candidates of next-generation energy storage systems[1-3].Additionally,the improvements in energy density are foreseen as solid electrolytes enable lithium metal anode[4-11]and high-voltage cathodes[12-15].展开更多
Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temp...Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temperature(LT)operation.Therefore,a more comprehensive and systematic understanding of LIB behavior at LT is urgently required.This review article comprehensively reviews recent advancements in electrolyte engineering strategies aimed at improving the low-temperature operational capabilities of LIBs.The study methodically examines critical performance-limiting mechanisms through fundamental analysis of four primary challenges:insufficient ionic conductivity under cryogenic conditions,kinetically hindered charge transfer processes,Li+transport limitations across the solidelectrolyte interphase(SEI),and uncontrolled lithium dendrite growth.The work elaborates on innovative optimization approaches encompassing lithium salt molecular design with tailored dissociation characteristics,solvent matrix optimization through dielectric constant and viscosity regulation,interfacial engineering additives for constructing low-impedance SEI layers,and gel-polymer composite electrolyte systems.Notably,particular emphasis is placed on emerging machine learning-guided electrolyte formulation strategies that enable high-throughput virtual screening of constituent combinations and prediction of structure-property relationships.These artificial intelligence-assisted rational design frameworks demonstrate significant potential for accelerating the development of next-generation LT electrolytes by establishing quantitative composition-performance correlations through advanced data-driven methodologies.展开更多
Aqueous alkali metal-ion batteries(AAMIBs)have been recognized as emerging electrochemical energy storage technologies for grid-scale applications owning to their intrinsic safety,cost-effectiveness,and environmental ...Aqueous alkali metal-ion batteries(AAMIBs)have been recognized as emerging electrochemical energy storage technologies for grid-scale applications owning to their intrinsic safety,cost-effectiveness,and environmental sustainability.However,the practical application of AAMIBs is still severely constrained by the tendency of aqueous electrolytes to freeze at low temperatures and decompose at high temperatures,limiting their operational temperature range.Considering the urgent need for energy systems with higher adaptability and resilience at various application scenarios,designing novel electrolytes via structure modulation has increasingly emerged as a feasible and economical strategy for the performance optimization of wide-temperature AAMIBs.In this review,the latest advancement of wide-temperature electrolytes for AAMIBs is systematically and comprehensively summarized.Specifically,the key challenges,failure mechanisms,correlations between hydrogen bond behaviors and physicochemical properties,and thermodynamic and kinetic interpretations in aqueous electrolytes are discussed firstly.Additionally,we offer forward-looking insights and innovative design principles for developing aqueous electrolytes capable of operating across a broad temperature range.This review is expected to provide some guidance and reference for the rational design and regulation of widetemperature electrolytes for AAMIBs and promote their future development.展开更多
Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries(ASSBs).However,their relatively low oxidative decomposition threshold(~4.2 V vs.L...Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries(ASSBs).However,their relatively low oxidative decomposition threshold(~4.2 V vs.Li^(+)/Li)constrains their use in ultrahighvoltage systems(e.g.,4.8 V).In this work,ferroelectric Ba TiO_(3)(BTO)nanoparticles with optimized thickness of~50-100 nm were successfully coated onto Li_(2.5)Y_(0.5)Zr_(0.5)Cl_(6)(LYZC@5BTO)electrolytes using a time-efficient ball-milling process.The nanoparticle-induced interfacial ionic conduction enhancement mechanism contributed to the preservation of LYZC’s high ionic conductivity,which remained at 1.06 m S cm^(-1)for LYZC@5BTO.Furthermore,this surface electric field engineering strategy effectively mitigates the voltage-induced self-decomposition of chloride-based solid electrolytes,suppresses parasitic interfacial reactions with single-crystal NCM811(SCNCM811),and inhibits the irreversible phase transition of SCNCM811.Consequently,the cycling stability of LYZC under high-voltage conditions(4.8 V vs.Li+/Li)is significantly improved.Specifically,ASSB cells employing LYZC@5BTO exhibited a superior discharge capacity of 95.4 m Ah g^(-1)over 200 cycles at 1 C,way outperforming cell using pristine LYZC that only shows a capacity of 55.4 m Ah g^(-1).Furthermore,time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy analysis revealed that Metal-O-Cl by-products from cumulative interfacial side reactions accounted for 6% of the surface species initially,rising to 26% after 200 cycles in pristine LYZC.In contrast,LYZC@5BTO limited this increase to only 14%,confirming the effectiveness of BTO in stabilizing the interfacial chemistry.This electric field modulation strategy offers a promising route toward the commercialization of high-voltage solid-state electrolytes and energy-dense ASSBs.展开更多
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving...Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.展开更多
With the widespread adoption of lithium-ion batteries(LIBs),safety concerns associated with flammable organic elec-trolytes have become increasingly critical.Solid-state lithium batteries(SSLBs),with enhanced safety a...With the widespread adoption of lithium-ion batteries(LIBs),safety concerns associated with flammable organic elec-trolytes have become increasingly critical.Solid-state lithium batteries(SSLBs),with enhanced safety and higher energy density potential,are regarded as a promising next-generation energy storage technology.However,the practical appli-cation of solid-state electrolytes(SSEs)remains hindered by several challenges,including low Li+ion conductivity,poor interfacial compatibility with electrodes,unfavorable mechanical properties and difficulties in scalable manufacturing.This review systematically examines recent progress in SSEs,including inorganic types(oxides,sulfides,halides),organic types(polymers,plastic crystals,poly(ionic liquids)(PILs)),and the emerging class of soft solid-state electrolytes(S3Es),especially those based on“rigid-flexible synergy”composites and“Li+-desolvation”mechanism using porous frameworks.Critical assessment reveals that single-component SSEs face inherent limitations that are difficult to be fully overcome through compositional and structural modification alone.In contrast,S3Es integrate the strength of complementary components to achieve a balanced and synergic enhancement in electrochemical properties(e.g.,ionic conductivity and stability window),mechanical integrity,and processability,showing great promise as next-generation SSEs.Furthermore,the application-ori-ented challenges and emerging trends in S3E research are outlined,aiming to provide strategic insights into future develop-ment of high-performance SSEs.展开更多
Solid-state batteries(SSBs) are highly attractive on account of their high energy density and good safety.In high-voltage and high-current conditions,however,the interface reactions,structural changes,and decompositio...Solid-state batteries(SSBs) are highly attractive on account of their high energy density and good safety.In high-voltage and high-current conditions,however,the interface reactions,structural changes,and decomposition of the electrolyte impede the transmission of lithium ions in all-solid-state lithium batteries(ASSLBs),significantly reducing the charging and discharging capacity and cycling stability of the battery and therefore restricting its practical applications.The main content of review is to conduct an in-depth analysis of the existing problems of solid-state batteries from the aspects of interface reactions,material failure,ion migration,and dendrite growth,and points out the main factors influencing the electrochemical performance of ASSLBs.Additionally,the compatibility and ion conduction mechanisms between polymer electrolytes,inorganic solid electrolytes,and composite electrolytes and the electrode materials are discussed.Furthermore,the perspectives of electrode materials,electrolyte properties,and interface modification are summarized and prospected,providing new optimization directions for the future commercialization of high-voltage solid-state electrolytes.展开更多
To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified ...To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.展开更多
All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercializat...All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercialization of ASSLBs still faces challenges regarding the electrolyte/electrodes interfaces and growth of Li dendrites.Elemental doping is an effective and direct method to enhance the performance of SEs.Here,we report an Al-F co-doping strategy to improve the overall properties including ion conductivity,high voltage stability,and cathode and anode compatibility.Particularly,the Al-F co-doping enables the formation of a thin Li-Al alloy layer and fluoride interphases,thereby constructing a relatively stable interface and promoting uniform Li deposition.The similar merits of Al-F co-doping are also revealed in the Li-argyrodite series.ASSLBs assembled with these optimized electrolytes gain good electrochemical performance,demonstrating the universality of Al-F co-doping towards advanced SEs.展开更多
The rising need for efficient and sustainable energy storage systems has led to increased interest in the use of advanced electrolytes consisting of deep eutectic solvents(DESs) and ionic liquids(ILs).These electrolyt...The rising need for efficient and sustainable energy storage systems has led to increased interest in the use of advanced electrolytes consisting of deep eutectic solvents(DESs) and ionic liquids(ILs).These electrolytes are appealing candidates for supercapacitors,next-generation lithium-ion batteries,and different energy storage systems because of their special features including non-flammability,low volatility,lowtoxicity,good electrochemical stability,and good thermal and chemical stability.This review explores the advantages of the proposed electrolytes by examining their potential to address the critical challenges in lithium battery technology,including safety concerns,energy density limitations,and operational stability.To achieve this,a comprehensive overview of the lithium salts commonly employed in rechargeable lithium battery electrolytes is presented.Moreover,key physicochemical and functional attributes of ILs and DESs,such as electrochemical stability,ionic conductivity,nonflammability,and viscosity are also discussed with a focus on how these features impact battery performance.The integration of lithium salts with ILs and DESs in modern lithium battery technologies,including lithium-ion(Li-ion) batteries,lithium-oxygen(Li-O_(2)) batteries,and lithium-sulfur(Li-S) batteries,are further examined in the study.Various electrochemical performance metrics including cycling stability,charge/discharge profiles,retention capacity and battery's couiombic efficiency(CE) are also analyzed for the above-mentioned systems.By summarizing recent advances and challenges,this review also highlights the potential of electrolytes consisting of DESs and ILs to enhance energy density,durability,and safety in future energy storage applications.Additionally future research directions,including the molecular optimization of ILs and DESs,optimizing lithium salt compositions,and developing scalable synthesis methods to accelerate their practical implementation in next-generation energy storage applications are also explored.展开更多
The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity(372 mAh g^(-1)).There is an urgent need to explore novel anode materia...The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity(372 mAh g^(-1)).There is an urgent need to explore novel anode materials for lithium-ion batteries.Silicon(Si),the second-largest element outside of Earth,has an exceptionally high specific capacity(3579 mAh g^(-1)),regarded as an excellent choice for the anode material in high-capacity lithium-ion batteries.However,it is low intrinsic conductivity and volume amplification during service status,prevented it from developing further.These difficulties can be successfully overcome by incorporating carbon into pure Si systems to form a composite anode and constructing a buffer structure.This review looks at the diffusion mechanism,various silicon-based anode material configurations(including sandwich,core-shell,yolk-shell,and other 3D mesh/porous structures),as well as the appropriate binders and electrolytes.Finally,a summary and viewpoints are offered on the characteristics and structural layout of various structures,metal/non-metal doping,and the compatibility and application of various binders and electrolytes for silicon-based anodes.This review aims to provide valuable insights into the research and development of silicon-based carbon anodes for high-performance lithium-ion batteries,as well as their integration with binders and electrolyte.展开更多
Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environme...Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environmental friendliness, which is extremely important for wearable energy storage applications. Given that HEs play a critical role in building flexible RZIBs, it is urgent to summarize the recent advances in this field and elucidate the design principles of HEs for practical applications. This review systematically presents the development history, recent advances in the material fundamentals, functional designs, challenges, and prospects of the HEs-based RZIBs. Firstly, the fundamentals, species, and flexible mechanisms of HEs are discussed, along with their compatibility with Zn anodes and various cathodes. Then, the functional designs of hydrogel electrolytes in harsh conditions are comprehensively discussed, including high/low/wide-temperature windows, mechanical deformations(e.g., bending, twisting, and straining), and damages(e.g., cutting, burning, and soaking). Finally, the remaining challenges and future perspectives for advancing HEs-based RZIBs are outlined.展开更多
Traditional lithium-ion batteries(LIBs)employing liquid electrolytes face inherent safety risks,motivating the development of solid polymer electrolytes(SPEs)like polyethylene oxide(PEO).However,pure PEO suffers from ...Traditional lithium-ion batteries(LIBs)employing liquid electrolytes face inherent safety risks,motivating the development of solid polymer electrolytes(SPEs)like polyethylene oxide(PEO).However,pure PEO suffers from low room-temperature ionic conductivity and poor mechanical strength.Composite solid electrolytes(CSEs)incorporating inorganic filler offer promise but are hindered by poor interfacial compatibility.This study addresses this critical issue through surface engineering.Mercaptopropyl trimethoxysilane(MPTMS)is used to modify garnet-type Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)particles,introducing thiol groups(-SH)onto their surface.Subsequently,thiol-functionalized LLZTO(LLZTO@MPTMS)participate in the insitu copolymerization of polyethylene glycol methyl methacrylate(PEGMEMA)and crosslinker polyethylene glycol dimethacrylate(PEGDMA),yielding a novel PEO-based CSE(PCSE).The effects of PEGMEMA molecular weight,PEGMEMA/PEGDMA ratio,and LLZTO@MPTMS content have been systematically examined to optimize the electrolyte.The resulting PCSE exhibits an ionic conductivity of 1.20×10^(-4)S·cm^(-1)at 30℃,a lithium-ion transference number of 0.36,and a wide electrochemical stability window up to 5.1 V(vs.Li^(+)/Li).Li/PCSE/Li symmetric cells demonstrate stable cycling for nearly 240 h at 0.05 mA·cm^(-2),indicating enhanced interface compatibility with lithium metal and effective dendrite suppression.Furthermore,LiFePO_(4)/PCSE/Li full cells deliver a high initial discharge capacity of 155.0 mAh·g^(-1)at 0.1 C and retain 76.0%capacity after 100 cycles,alongside excellent rate capability.These results confirm that the combined strategy of LLZTO surface modification with MPTMS and in-situ copolymerization effectively mitigates interfacial issues,presenting a promising material system for high-performance solid-state LIBs.展开更多
The preferential proton reduction over zinc-ion deposition in aqueous batteries arises from dual yet conflicting roles of water as charge carrier and parasitic reactant,posing persistent interfacial challenges.Althoug...The preferential proton reduction over zinc-ion deposition in aqueous batteries arises from dual yet conflicting roles of water as charge carrier and parasitic reactant,posing persistent interfacial challenges.Although cosolvent engineering has shown promise in mitigating water activity through hydrogenbond network modulation,prevailing strategies remain limited by their narrow focus on electronic and functional group properties,neglecting the stereochemical influence on molecular assembly.In this work,we uncover how molecular chirality dictates the hierarchical organization of hydrogen-bonding networks between cosolvents and water,which is a critical but previously unrecognized determinant of interfacial stability.By interrogating enantiomeric pairs(L-/D-carnitine),we demonstrate that chiral constraints steer the spatial arrangement of hydration structures through stereoselective hydrogenbonding geometries.Combined spectroscopic and molecular dynamics analyses reveal that L-carnitine(L-CN)forms a three-dimensional hydrogen-bonded matrix with water,exhibiting superior directional connectivity relative to its D-isomer.This stereo-dependent architecture simultaneously reinforces Zn2+solvation shells via bridging H-bond interactions and generates a self-adaptive interfacial structure that kinetically isolates water from the zinc anode surface.This stereochemical optimization enables Zn||Zn symmetric cells with unprecedented cycling stability exceeding 2000 h at 0.5 mA cm^(-2)/0.5 mAh cm^(-2).Corresponding Zn||Cu asymmetric cells maintain a high average Coulombic efficiency of 99.7%over 500 cycles at 3.0 mA cm^(-2)/3.0 mAh cm^(-2).This study pioneers a stereochemical design framework for aqueous electrolytes,elucidating chiral recognition mechanisms in solvation structures and establishing molecular topology engineering as a transformative strategy for high-efficiency energy storage systems.展开更多
All-solid-state batteries(ASSBs)with Li or Si anodes promise enhanced safety and high energy densities but face challenges with complex fabrication,stringent storage requirements,and pressure-dependent operation.Polye...All-solid-state batteries(ASSBs)with Li or Si anodes promise enhanced safety and high energy densities but face challenges with complex fabrication,stringent storage requirements,and pressure-dependent operation.Polyethylene oxide(PEO)-based composite solid electrolytes(CSEs)enable easy processing and flexible interfaces,supporting pressure-free operation and reducing costs.However,their low ionic conductivity remains a key limitation.Here,we present a rapid(~5 min)and eco-friendly laser modification strategy for post-synthesized PEO CSEs,achieving enhanced ionic conductivity while retaining the attributes of simple fabrication and compatibility with Li and Si anodes under pressure-free operation.Laser engineering reduces PEO crystallinity,introduces additional Li^(+)coordination sites,and improves interfacial stability through tailored solid electrolyte interphases.The laser-modified electrolyte enables LiFePO_(4)//Li cells to retain 142.4 mAh g^(-1)after 800 cycles with 99.8%Coulombic efficiency at 1 C and 60℃.Moreover,without stack pressure,a Si anode paired with the laser-modified electrolyte delivers a high capacity of 1710.3 mAh g^(-1)with 56%retention at 0.5 A g^(-1)after 50 cycles at 60℃.Beyond performance enhancements,this work establishes a link between fluorescence emission and Li^(+)transport in CSEs.Specifically,fluorescence shifts to shorter wavelengths correspond to shorter molecular chain lengths and lower coordination bonds,supported by time-dependent density functional theory calculations.These factors give rise to improved Li^(+)transport.This optical probe offers a non-destructive approach for rapidly assessing electrolyte properties and enriching electrolyte design.Overall,this work demonstrates laser engineering as a practical post-synthetic strategy and highlights fluorescence as a practical indicator for advancing next-generation ASSBs.展开更多
Compared to traditional liquid electrolyte batteries,solid metal batteries offer advantages such as a wide operating temperature range,high energy density,and improved safety,making them a promising energy storage tec...Compared to traditional liquid electrolyte batteries,solid metal batteries offer advantages such as a wide operating temperature range,high energy density,and improved safety,making them a promising energy storage technology.Solid electrolytes,as the core components of solid‐state batteries,are key factors in advancing solid‐state battery technology.Among various solid electrolytes,Na super ionic conductor(NASICON)‐type solid electrolytes exhibit high ionic conductivity(10−3 S·cm−1),a wide electrochemical window,and good thermal stability,providing room for the development of high energy‐density solid metal batteries.Since the discovery of NASICON‐type solid electrolytes in 1976,interest in their use in all‐solid‐state battery development has grown significantly.In this review,we comprehensively analyze the common features of NASICON lithium‐ion conductors and NASICON sodium‐ion conductors,review the historical development of NASICON‐type solid electrolytes,systematically summarize the transport mechanisms of metal cations in NASICON‐type solid electrolytes,discuss the latest strategies for enhancing ionic conductivity,elaborate on the latest methods for improving mechanical stability and interface stability,and point out the requirements of high energy density devices for NASICON‐type solid electrolytes as well as three types of in situ characterization techniques for interfaces.Finally,we highlight the challenges and potential solutions for the future development of NASICON‐type solid electrolytes and solid‐state metal batteries.展开更多
Carbonate electrolytes have been widely applied in sodium-ion batteries(SIBs);however,the strong Na^(+) -solvent coordination induces sluggish desolvation kinetics and severe parasitic reactions at hard carbon(HC)anod...Carbonate electrolytes have been widely applied in sodium-ion batteries(SIBs);however,the strong Na^(+) -solvent coordination induces sluggish desolvation kinetics and severe parasitic reactions at hard carbon(HC)anodes.Herein,tris(2,2,2-trifluoroethyl)phosphite(TFEPi)is introduced into a propylene carbonate/diethyl carbonate electrolyte(PDT,PC/DEC/TFEPi in a volume ratio of 5:4:1)to enhance the coordination of Na^(+)-PF_(6)^(-)for fast-charging SIBs.The electron-withdrawing CF_(3)groups in TFEPi reduce the electrondonating ability of carbonate solvents to weaken Na^(+) -solvent interactions and enrich PF_(6)^(-)in the first solvation sheath.This lowers Na^(+) desolvation energy from 68.1 kJ mol^(-1)in PC/DEC with a volume ratio of 5:5 to 54.1 kJ mol^(-1)in PDT.The anion-dominated solvation structure of PDT promotes its preferential adsorption on the HC anode,forming a NaF/Na_(3)PO_(4)-rich solid electrolyte interphase with enhanced Na^(+) transport and mechanical stability.Moreover,the phosphite group of TFEPi scavenges H/OH radicals to suppress combustion chain reactions,endowing PDT with exceptional flame retardancy with selfextinguishing time<1 s g^(-1).It is demonstrated that Na//HC half cell retains 80.6%and 61.7%of HC capacity at 200 and 500 mA g^(-1),respectively,and HC//Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF)full cell shows 80%charge capacity of NVPF within 5 min at 1000 mA g^(-1)at 25℃ and maintains stable operation from -20 to 60℃.This work provides new insights into electrolyte solvation engineering for high chargeability and safety of SIBs.展开更多
Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recove...Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recovery and conversion.Moreover,rechargeable nonaqueous metal-CO_(2)batteries have attracted much attention due to their high theoretical energy density.However,the stability issues of the electrode-electrolyte interfaces of nonaqueous metal-CO_(2)(lithium(Li)/sodium(Na)/potassium(K)-CO_(2))batteries have been troubling its development,and a large number of related research in the field of electrolytes have conducted in recent years.This review retraces the short but rapid research history of nonaqueous metal-CO_(2)batteries with a detailed electrochemical mechanism analysis.Then it focuses on the basic characteristics and design principles of electrolytes,summarizes the latest achievements of various types of electrolytes in a timely manner and deeply analyzes the construction strategies of stable electrode-electrolyte interfaces for metal-CO_(2)batteries.Finally,the key issues related to electrolytes and interface engineering are fully discussed and several potential directions for future research are proposed.This review enriches a comprehensive understanding of electrolytes and interface engineering toward the practical applications of next-generation metal-CO_(2)batteries.展开更多
基金supported by the University of Wollongong,Wollongong,Australiafinancial support from the National Natural Science Foundation of China(22272086)Natural Science Foundation of Sichuan Province(2023NSFSC0009).
文摘Compared to currently commercialized lithium-ion batteries,which use flammable organic liquid electrolytes and low-energy-density graphite anodes,solid-state lithium-metal batteries(SSLMBs)offer enhanced energy density and improved safety,making them promising alternatives for next-generation rechargeable batteries[1].As a crucial component of these batteries,solid-state electrolytes—divided into inorganic solid ceramic electrolytes(SCEs)and organic solid polymer electrolytes(SPEs)—are vital for lithium-ion transport and inhibiting lithium dendrite growth.Among them,SCEs exhibit high ionic conductivity,excellent mechanical properties,and outstanding electrochemical and thermal stability.Nevertheless,their brittleness,interfacial challenges with electrodes,and the requirement for high stacking pressure during battery operation significantly hinder their scalable application.In comparison,SPEs are more favourable for manufacturing due to their flexibility and good interfacial compatibility with electrodes[2].Despite these advantages,SPEs still face significant challenges in achieving practical application.Firstly,typical SPEs,such as poly(ethylene oxide)(PEO),poly(vinylidene fluoride)(PVDF),and poly(ethylene glycol)diacrylate(PEGDA),are characterized by high crystallinity,which causes polymer chains to be tightly packed and rigid.This restricts the segmental motion within the SPEs,resulting in low ionic conductivity.Secondly,compared to lithium ions,anions with large ionic radii and low charge density typically form weaker interactions with the polymer chains,which facilitates their mobility and results in a low lithium-ion transference number(tt).Thirdly,the weak interactions between polymer chains in typical SPEs lead to a low elastic modulus,which in turn compromises their poor mechanical strength.
基金supported by the National Natural Science Foundation of China(32501592,32271814,32301530,32471806)Young Elite Scientist Sponsorship Program by Cast(No.YESS20230242)+3 种基金Natural Science Foundation of Tianjin(23JCZDJC00630,24JCZDJC00630)the China Postdoctoral Science Foundation(2023M740563)Tianjin Enterprise Technology Commissioner Project(25YDTPJC00690)China Scholarship Council(202408120091,202408120105).
文摘The pursuit of high energy density and sustainable energy storage devices has been the target of many researchers.However,safety issues such as the susceptibility of conventional liquid electrolytes to leakage and flammability,as well as performance degradation due to uncontrollable dendrite growth in liquid electrolytes,have been limiting the further development of energy storage devices.In this regard,gel polymer electrolytes(GPEs)based on lignocellulosic(cellulose,hemicellulose,lignin)have attracted great interest due to their high thermal stability,excellent electrolyte wettability,and natural abundance.Therefore,in this critical review,a comprehensive overview of the current challenges faced by GPEs is presented,followed by a detailed description of the opportunities and advantages of lignocellulosic materials for the fabrication of GPEs for energy storage devices.Notably,the key properties and corresponding construction strategies of GPEs for energy storage are analyzed and discussed from the perspective of lignocellulose for the first time.Moreover,the future challenges and prospects of lignocellulose-mediated GPEs in energy storage applications are also critically reviewed and discussed.We sincerely hope this review will stimulate further research on lignocellulose-mediated GPEs in energy storage and provide meaningful directions for the strategy of designing advanced GPEs.
文摘1.Introduction.The ever-increasing demands for high-energy-density power supply systems have driven the rapid development of conventional lithium-ion batteries,of which properties are approaching to the ceiling.In the meantime,the safety of lithium-ion batteries also grabs more attention as their wide application in consumer electronics and electric vehicles.The safety of battery system can be enhanced inherently by replacing the flammable liquid electrolytes with inorganic solid electrolytes,which makes solid-state battery one of the most promising candidates of next-generation energy storage systems[1-3].Additionally,the improvements in energy density are foreseen as solid electrolytes enable lithium metal anode[4-11]and high-voltage cathodes[12-15].
基金the financial support from the Key Project of Shaanxi Provincial Natural Science Foundation-Key Project of Laboratory(2025SYS-SYSZD-117)the Natural Science Basic Research Program of Shaanxi(2025JCYBQN-125)+8 种基金Young Talent Fund of Xi'an Association for Science and Technology(0959202513002)the Key Industrial Chain Technology Research Program of Xi'an(24ZDCYJSGG0048)the Key Research and Development Program of Xianyang(L2023-ZDYF-SF-077)Postdoctoral Fellowship Program of CPSF(GZC20241442)Shaanxi Postdoctoral Science Foundation(2024BSHSDZZ070)Research Funds for the Interdisciplinary Projects,CHU(300104240913)the Fundamental Research Funds for the Central Universities,CHU(300102385739,300102384201,300102384103)the Scientific Innovation Practice Project of Postgraduate of Chang'an University(300103725063)the financial support from the Australian Research Council。
文摘Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temperature(LT)operation.Therefore,a more comprehensive and systematic understanding of LIB behavior at LT is urgently required.This review article comprehensively reviews recent advancements in electrolyte engineering strategies aimed at improving the low-temperature operational capabilities of LIBs.The study methodically examines critical performance-limiting mechanisms through fundamental analysis of four primary challenges:insufficient ionic conductivity under cryogenic conditions,kinetically hindered charge transfer processes,Li+transport limitations across the solidelectrolyte interphase(SEI),and uncontrolled lithium dendrite growth.The work elaborates on innovative optimization approaches encompassing lithium salt molecular design with tailored dissociation characteristics,solvent matrix optimization through dielectric constant and viscosity regulation,interfacial engineering additives for constructing low-impedance SEI layers,and gel-polymer composite electrolyte systems.Notably,particular emphasis is placed on emerging machine learning-guided electrolyte formulation strategies that enable high-throughput virtual screening of constituent combinations and prediction of structure-property relationships.These artificial intelligence-assisted rational design frameworks demonstrate significant potential for accelerating the development of next-generation LT electrolytes by establishing quantitative composition-performance correlations through advanced data-driven methodologies.
基金supported by the National Natural Science Foundation of China(52002297)National Key R&D Program of China(2022VFB2404800)+1 种基金Wuhan Yellow Crane Talents Program,China Postdoctoral Science Foundation(No.2024M752495)the Postdoctoral Fellowship Program of CPSF(No.GZB20230552).
文摘Aqueous alkali metal-ion batteries(AAMIBs)have been recognized as emerging electrochemical energy storage technologies for grid-scale applications owning to their intrinsic safety,cost-effectiveness,and environmental sustainability.However,the practical application of AAMIBs is still severely constrained by the tendency of aqueous electrolytes to freeze at low temperatures and decompose at high temperatures,limiting their operational temperature range.Considering the urgent need for energy systems with higher adaptability and resilience at various application scenarios,designing novel electrolytes via structure modulation has increasingly emerged as a feasible and economical strategy for the performance optimization of wide-temperature AAMIBs.In this review,the latest advancement of wide-temperature electrolytes for AAMIBs is systematically and comprehensively summarized.Specifically,the key challenges,failure mechanisms,correlations between hydrogen bond behaviors and physicochemical properties,and thermodynamic and kinetic interpretations in aqueous electrolytes are discussed firstly.Additionally,we offer forward-looking insights and innovative design principles for developing aqueous electrolytes capable of operating across a broad temperature range.This review is expected to provide some guidance and reference for the rational design and regulation of widetemperature electrolytes for AAMIBs and promote their future development.
基金financially supported by Shenzhen Science and Technology Program(JCYJ20240813142900001)Guangdong Provincial Key Laboratory of New Energy Materials Service Safety。
文摘Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries(ASSBs).However,their relatively low oxidative decomposition threshold(~4.2 V vs.Li^(+)/Li)constrains their use in ultrahighvoltage systems(e.g.,4.8 V).In this work,ferroelectric Ba TiO_(3)(BTO)nanoparticles with optimized thickness of~50-100 nm were successfully coated onto Li_(2.5)Y_(0.5)Zr_(0.5)Cl_(6)(LYZC@5BTO)electrolytes using a time-efficient ball-milling process.The nanoparticle-induced interfacial ionic conduction enhancement mechanism contributed to the preservation of LYZC’s high ionic conductivity,which remained at 1.06 m S cm^(-1)for LYZC@5BTO.Furthermore,this surface electric field engineering strategy effectively mitigates the voltage-induced self-decomposition of chloride-based solid electrolytes,suppresses parasitic interfacial reactions with single-crystal NCM811(SCNCM811),and inhibits the irreversible phase transition of SCNCM811.Consequently,the cycling stability of LYZC under high-voltage conditions(4.8 V vs.Li+/Li)is significantly improved.Specifically,ASSB cells employing LYZC@5BTO exhibited a superior discharge capacity of 95.4 m Ah g^(-1)over 200 cycles at 1 C,way outperforming cell using pristine LYZC that only shows a capacity of 55.4 m Ah g^(-1).Furthermore,time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy analysis revealed that Metal-O-Cl by-products from cumulative interfacial side reactions accounted for 6% of the surface species initially,rising to 26% after 200 cycles in pristine LYZC.In contrast,LYZC@5BTO limited this increase to only 14%,confirming the effectiveness of BTO in stabilizing the interfacial chemistry.This electric field modulation strategy offers a promising route toward the commercialization of high-voltage solid-state electrolytes and energy-dense ASSBs.
基金the financial support from the National Natural Science Foundation of China(52203123 and 52473248)State Key Laboratory of Polymer Materials Engineering(sklpme2024-2-04)+1 种基金the Fundamental Research Funds for the Central Universitiessponsored by the Double First-Class Construction Funds of Sichuan University。
文摘Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.
基金the financial support from the National Key R&D Program of China (Grant No. 2021YFB3800300)the supports from National Key R&D Program of China (Grant No. 2022YFB3807700)+6 种基金the National Natural Science Foundation of China (Grant No. U20A20248)the supports from the National Natural Science Foundation of China (Grant Nos. W2441017, 22409103)the “Innovation Yongjiang 2035” Key R&D Program (Grant Nos. 2024Z040, 2025Z063)the National Key R&D Program of China (Grant No. 2023YFC2812700)the Natural Science Foundation of Shandong Province (Grant No. ZR2024YQ008)funding supports from the National Key R&D Program of China (Grant No. 2021YFB3800300)science and technology innovation fund for emission peak and carbon neutrality of Jiangsu province (Grant Nos. BK20220034, BK20231512)。
文摘With the widespread adoption of lithium-ion batteries(LIBs),safety concerns associated with flammable organic elec-trolytes have become increasingly critical.Solid-state lithium batteries(SSLBs),with enhanced safety and higher energy density potential,are regarded as a promising next-generation energy storage technology.However,the practical appli-cation of solid-state electrolytes(SSEs)remains hindered by several challenges,including low Li+ion conductivity,poor interfacial compatibility with electrodes,unfavorable mechanical properties and difficulties in scalable manufacturing.This review systematically examines recent progress in SSEs,including inorganic types(oxides,sulfides,halides),organic types(polymers,plastic crystals,poly(ionic liquids)(PILs)),and the emerging class of soft solid-state electrolytes(S3Es),especially those based on“rigid-flexible synergy”composites and“Li+-desolvation”mechanism using porous frameworks.Critical assessment reveals that single-component SSEs face inherent limitations that are difficult to be fully overcome through compositional and structural modification alone.In contrast,S3Es integrate the strength of complementary components to achieve a balanced and synergic enhancement in electrochemical properties(e.g.,ionic conductivity and stability window),mechanical integrity,and processability,showing great promise as next-generation SSEs.Furthermore,the application-ori-ented challenges and emerging trends in S3E research are outlined,aiming to provide strategic insights into future develop-ment of high-performance SSEs.
基金financial support received from the National Key R&D Program of China (2023YFB2504000)the financial support from the National Outstanding Youth Foundation of China (52125104)+2 种基金the National Natural Science Foundation of China (52071285)the Fundamental Research Funds for the Central Universities (226-2024-00075)the National Youth Top-Notch Talent Support Program。
文摘Solid-state batteries(SSBs) are highly attractive on account of their high energy density and good safety.In high-voltage and high-current conditions,however,the interface reactions,structural changes,and decomposition of the electrolyte impede the transmission of lithium ions in all-solid-state lithium batteries(ASSLBs),significantly reducing the charging and discharging capacity and cycling stability of the battery and therefore restricting its practical applications.The main content of review is to conduct an in-depth analysis of the existing problems of solid-state batteries from the aspects of interface reactions,material failure,ion migration,and dendrite growth,and points out the main factors influencing the electrochemical performance of ASSLBs.Additionally,the compatibility and ion conduction mechanisms between polymer electrolytes,inorganic solid electrolytes,and composite electrolytes and the electrode materials are discussed.Furthermore,the perspectives of electrode materials,electrolyte properties,and interface modification are summarized and prospected,providing new optimization directions for the future commercialization of high-voltage solid-state electrolytes.
基金supported by the National Natural Science Foundation of China(Grant No.22075064,52302234,52272241)Zhejiang Provincial Natural Science Foundation of China under Grant No.LR24E020001+2 种基金Natural Science of Heilongjiang Province(No.LH2023B009)China Postdoctoral Science Foundation(2022M710950)Heilongjiang Postdoctoral Fund(LBH-Z21131),National Key Laboratory Projects(No.SYSKT20230056).
文摘To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.
基金supported by the National Natural Science Foundation of China(Nos.52172243,52371215)。
文摘All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercialization of ASSLBs still faces challenges regarding the electrolyte/electrodes interfaces and growth of Li dendrites.Elemental doping is an effective and direct method to enhance the performance of SEs.Here,we report an Al-F co-doping strategy to improve the overall properties including ion conductivity,high voltage stability,and cathode and anode compatibility.Particularly,the Al-F co-doping enables the formation of a thin Li-Al alloy layer and fluoride interphases,thereby constructing a relatively stable interface and promoting uniform Li deposition.The similar merits of Al-F co-doping are also revealed in the Li-argyrodite series.ASSLBs assembled with these optimized electrolytes gain good electrochemical performance,demonstrating the universality of Al-F co-doping towards advanced SEs.
文摘The rising need for efficient and sustainable energy storage systems has led to increased interest in the use of advanced electrolytes consisting of deep eutectic solvents(DESs) and ionic liquids(ILs).These electrolytes are appealing candidates for supercapacitors,next-generation lithium-ion batteries,and different energy storage systems because of their special features including non-flammability,low volatility,lowtoxicity,good electrochemical stability,and good thermal and chemical stability.This review explores the advantages of the proposed electrolytes by examining their potential to address the critical challenges in lithium battery technology,including safety concerns,energy density limitations,and operational stability.To achieve this,a comprehensive overview of the lithium salts commonly employed in rechargeable lithium battery electrolytes is presented.Moreover,key physicochemical and functional attributes of ILs and DESs,such as electrochemical stability,ionic conductivity,nonflammability,and viscosity are also discussed with a focus on how these features impact battery performance.The integration of lithium salts with ILs and DESs in modern lithium battery technologies,including lithium-ion(Li-ion) batteries,lithium-oxygen(Li-O_(2)) batteries,and lithium-sulfur(Li-S) batteries,are further examined in the study.Various electrochemical performance metrics including cycling stability,charge/discharge profiles,retention capacity and battery's couiombic efficiency(CE) are also analyzed for the above-mentioned systems.By summarizing recent advances and challenges,this review also highlights the potential of electrolytes consisting of DESs and ILs to enhance energy density,durability,and safety in future energy storage applications.Additionally future research directions,including the molecular optimization of ILs and DESs,optimizing lithium salt compositions,and developing scalable synthesis methods to accelerate their practical implementation in next-generation energy storage applications are also explored.
基金supported by National Natural Science Foundation of China(No.22205182)National Science Fund for Distinguished Young Scholars(No.52025034)+2 种基金China Postdoctoral Science Foundation(Nos.2022M722594/2024T171170)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515011516)financially supported by Innovation Team of Shaanxi Sanqin Scholars。
文摘The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity(372 mAh g^(-1)).There is an urgent need to explore novel anode materials for lithium-ion batteries.Silicon(Si),the second-largest element outside of Earth,has an exceptionally high specific capacity(3579 mAh g^(-1)),regarded as an excellent choice for the anode material in high-capacity lithium-ion batteries.However,it is low intrinsic conductivity and volume amplification during service status,prevented it from developing further.These difficulties can be successfully overcome by incorporating carbon into pure Si systems to form a composite anode and constructing a buffer structure.This review looks at the diffusion mechanism,various silicon-based anode material configurations(including sandwich,core-shell,yolk-shell,and other 3D mesh/porous structures),as well as the appropriate binders and electrolytes.Finally,a summary and viewpoints are offered on the characteristics and structural layout of various structures,metal/non-metal doping,and the compatibility and application of various binders and electrolytes for silicon-based anodes.This review aims to provide valuable insights into the research and development of silicon-based carbon anodes for high-performance lithium-ion batteries,as well as their integration with binders and electrolyte.
基金supported by the National Natural Science Foundation of China (22379038)Science Research Project of Hebei Education Department (JZX2024015)+4 种基金Shijiazhuang Science and Technology Plan Project (241791357A)Central Guidance for Local Science and Technology Development Funds Project (246Z4408G)Excellent Youth Research Innovation Team of Hebei University (QNTD202410)High-level Talents Research Start-Up Project of Hebei University (521100224223)Hebei Province Innovation Capability Enhancement Plan Project (22567620H)。
文摘Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environmental friendliness, which is extremely important for wearable energy storage applications. Given that HEs play a critical role in building flexible RZIBs, it is urgent to summarize the recent advances in this field and elucidate the design principles of HEs for practical applications. This review systematically presents the development history, recent advances in the material fundamentals, functional designs, challenges, and prospects of the HEs-based RZIBs. Firstly, the fundamentals, species, and flexible mechanisms of HEs are discussed, along with their compatibility with Zn anodes and various cathodes. Then, the functional designs of hydrogel electrolytes in harsh conditions are comprehensively discussed, including high/low/wide-temperature windows, mechanical deformations(e.g., bending, twisting, and straining), and damages(e.g., cutting, burning, and soaking). Finally, the remaining challenges and future perspectives for advancing HEs-based RZIBs are outlined.
基金supported by the 2024 Capital Construction Funds within the Provincial Budget of Jilin Provincial Development and Reform Commission[2024C018-2].
文摘Traditional lithium-ion batteries(LIBs)employing liquid electrolytes face inherent safety risks,motivating the development of solid polymer electrolytes(SPEs)like polyethylene oxide(PEO).However,pure PEO suffers from low room-temperature ionic conductivity and poor mechanical strength.Composite solid electrolytes(CSEs)incorporating inorganic filler offer promise but are hindered by poor interfacial compatibility.This study addresses this critical issue through surface engineering.Mercaptopropyl trimethoxysilane(MPTMS)is used to modify garnet-type Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)particles,introducing thiol groups(-SH)onto their surface.Subsequently,thiol-functionalized LLZTO(LLZTO@MPTMS)participate in the insitu copolymerization of polyethylene glycol methyl methacrylate(PEGMEMA)and crosslinker polyethylene glycol dimethacrylate(PEGDMA),yielding a novel PEO-based CSE(PCSE).The effects of PEGMEMA molecular weight,PEGMEMA/PEGDMA ratio,and LLZTO@MPTMS content have been systematically examined to optimize the electrolyte.The resulting PCSE exhibits an ionic conductivity of 1.20×10^(-4)S·cm^(-1)at 30℃,a lithium-ion transference number of 0.36,and a wide electrochemical stability window up to 5.1 V(vs.Li^(+)/Li).Li/PCSE/Li symmetric cells demonstrate stable cycling for nearly 240 h at 0.05 mA·cm^(-2),indicating enhanced interface compatibility with lithium metal and effective dendrite suppression.Furthermore,LiFePO_(4)/PCSE/Li full cells deliver a high initial discharge capacity of 155.0 mAh·g^(-1)at 0.1 C and retain 76.0%capacity after 100 cycles,alongside excellent rate capability.These results confirm that the combined strategy of LLZTO surface modification with MPTMS and in-situ copolymerization effectively mitigates interfacial issues,presenting a promising material system for high-performance solid-state LIBs.
基金supported by the National Natural Science Foundation of China(52402316)the Natural Science Foundation of Zhejiang Province(LQ23B030002)the Start-up Foundation of Zhejiang University of Science and Technology(ZUST)。
文摘The preferential proton reduction over zinc-ion deposition in aqueous batteries arises from dual yet conflicting roles of water as charge carrier and parasitic reactant,posing persistent interfacial challenges.Although cosolvent engineering has shown promise in mitigating water activity through hydrogenbond network modulation,prevailing strategies remain limited by their narrow focus on electronic and functional group properties,neglecting the stereochemical influence on molecular assembly.In this work,we uncover how molecular chirality dictates the hierarchical organization of hydrogen-bonding networks between cosolvents and water,which is a critical but previously unrecognized determinant of interfacial stability.By interrogating enantiomeric pairs(L-/D-carnitine),we demonstrate that chiral constraints steer the spatial arrangement of hydration structures through stereoselective hydrogenbonding geometries.Combined spectroscopic and molecular dynamics analyses reveal that L-carnitine(L-CN)forms a three-dimensional hydrogen-bonded matrix with water,exhibiting superior directional connectivity relative to its D-isomer.This stereo-dependent architecture simultaneously reinforces Zn2+solvation shells via bridging H-bond interactions and generates a self-adaptive interfacial structure that kinetically isolates water from the zinc anode surface.This stereochemical optimization enables Zn||Zn symmetric cells with unprecedented cycling stability exceeding 2000 h at 0.5 mA cm^(-2)/0.5 mAh cm^(-2).Corresponding Zn||Cu asymmetric cells maintain a high average Coulombic efficiency of 99.7%over 500 cycles at 3.0 mA cm^(-2)/3.0 mAh cm^(-2).This study pioneers a stereochemical design framework for aqueous electrolytes,elucidating chiral recognition mechanisms in solvation structures and establishing molecular topology engineering as a transformative strategy for high-efficiency energy storage systems.
基金the generous support from the Singapore MOE-ARC grant(A-8001494-00-00)supported by the Ministry of Education,Singapore,under its Research Centre of Excellence award to the Institute for Functional Intelligent Materials(EDUNC-33-18-279-V12)。
文摘All-solid-state batteries(ASSBs)with Li or Si anodes promise enhanced safety and high energy densities but face challenges with complex fabrication,stringent storage requirements,and pressure-dependent operation.Polyethylene oxide(PEO)-based composite solid electrolytes(CSEs)enable easy processing and flexible interfaces,supporting pressure-free operation and reducing costs.However,their low ionic conductivity remains a key limitation.Here,we present a rapid(~5 min)and eco-friendly laser modification strategy for post-synthesized PEO CSEs,achieving enhanced ionic conductivity while retaining the attributes of simple fabrication and compatibility with Li and Si anodes under pressure-free operation.Laser engineering reduces PEO crystallinity,introduces additional Li^(+)coordination sites,and improves interfacial stability through tailored solid electrolyte interphases.The laser-modified electrolyte enables LiFePO_(4)//Li cells to retain 142.4 mAh g^(-1)after 800 cycles with 99.8%Coulombic efficiency at 1 C and 60℃.Moreover,without stack pressure,a Si anode paired with the laser-modified electrolyte delivers a high capacity of 1710.3 mAh g^(-1)with 56%retention at 0.5 A g^(-1)after 50 cycles at 60℃.Beyond performance enhancements,this work establishes a link between fluorescence emission and Li^(+)transport in CSEs.Specifically,fluorescence shifts to shorter wavelengths correspond to shorter molecular chain lengths and lower coordination bonds,supported by time-dependent density functional theory calculations.These factors give rise to improved Li^(+)transport.This optical probe offers a non-destructive approach for rapidly assessing electrolyte properties and enriching electrolyte design.Overall,this work demonstrates laser engineering as a practical post-synthetic strategy and highlights fluorescence as a practical indicator for advancing next-generation ASSBs.
基金supported by the National Natural Science Foundation of China(No.52472137)the Talent Introduction Research Project of Hebei University(No.521100224231)the Shanghai Magnolia Talent Plan Pujiang Project(23PJ1415600)。
文摘Compared to traditional liquid electrolyte batteries,solid metal batteries offer advantages such as a wide operating temperature range,high energy density,and improved safety,making them a promising energy storage technology.Solid electrolytes,as the core components of solid‐state batteries,are key factors in advancing solid‐state battery technology.Among various solid electrolytes,Na super ionic conductor(NASICON)‐type solid electrolytes exhibit high ionic conductivity(10−3 S·cm−1),a wide electrochemical window,and good thermal stability,providing room for the development of high energy‐density solid metal batteries.Since the discovery of NASICON‐type solid electrolytes in 1976,interest in their use in all‐solid‐state battery development has grown significantly.In this review,we comprehensively analyze the common features of NASICON lithium‐ion conductors and NASICON sodium‐ion conductors,review the historical development of NASICON‐type solid electrolytes,systematically summarize the transport mechanisms of metal cations in NASICON‐type solid electrolytes,discuss the latest strategies for enhancing ionic conductivity,elaborate on the latest methods for improving mechanical stability and interface stability,and point out the requirements of high energy density devices for NASICON‐type solid electrolytes as well as three types of in situ characterization techniques for interfaces.Finally,we highlight the challenges and potential solutions for the future development of NASICON‐type solid electrolytes and solid‐state metal batteries.
基金supported by the National Natural Science Foundation of China(W2412060 and 22325902)the Natural Science Foundation of Tianjin City(24ZXZSSS00310 and 24JCZXJC00170)the NCC Fund(NCC2022FH03)。
文摘Carbonate electrolytes have been widely applied in sodium-ion batteries(SIBs);however,the strong Na^(+) -solvent coordination induces sluggish desolvation kinetics and severe parasitic reactions at hard carbon(HC)anodes.Herein,tris(2,2,2-trifluoroethyl)phosphite(TFEPi)is introduced into a propylene carbonate/diethyl carbonate electrolyte(PDT,PC/DEC/TFEPi in a volume ratio of 5:4:1)to enhance the coordination of Na^(+)-PF_(6)^(-)for fast-charging SIBs.The electron-withdrawing CF_(3)groups in TFEPi reduce the electrondonating ability of carbonate solvents to weaken Na^(+) -solvent interactions and enrich PF_(6)^(-)in the first solvation sheath.This lowers Na^(+) desolvation energy from 68.1 kJ mol^(-1)in PC/DEC with a volume ratio of 5:5 to 54.1 kJ mol^(-1)in PDT.The anion-dominated solvation structure of PDT promotes its preferential adsorption on the HC anode,forming a NaF/Na_(3)PO_(4)-rich solid electrolyte interphase with enhanced Na^(+) transport and mechanical stability.Moreover,the phosphite group of TFEPi scavenges H/OH radicals to suppress combustion chain reactions,endowing PDT with exceptional flame retardancy with selfextinguishing time<1 s g^(-1).It is demonstrated that Na//HC half cell retains 80.6%and 61.7%of HC capacity at 200 and 500 mA g^(-1),respectively,and HC//Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF)full cell shows 80%charge capacity of NVPF within 5 min at 1000 mA g^(-1)at 25℃ and maintains stable operation from -20 to 60℃.This work provides new insights into electrolyte solvation engineering for high chargeability and safety of SIBs.
基金supports from the Beijing Laboratory of New Energy Storage Technology, North China Electric Power Universitythe Program of the National Energy Storage Industry-Education Platformthe Interdisciplinary Innovation Program of North China Electric Power University (No. XM2212315)
文摘Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recovery and conversion.Moreover,rechargeable nonaqueous metal-CO_(2)batteries have attracted much attention due to their high theoretical energy density.However,the stability issues of the electrode-electrolyte interfaces of nonaqueous metal-CO_(2)(lithium(Li)/sodium(Na)/potassium(K)-CO_(2))batteries have been troubling its development,and a large number of related research in the field of electrolytes have conducted in recent years.This review retraces the short but rapid research history of nonaqueous metal-CO_(2)batteries with a detailed electrochemical mechanism analysis.Then it focuses on the basic characteristics and design principles of electrolytes,summarizes the latest achievements of various types of electrolytes in a timely manner and deeply analyzes the construction strategies of stable electrode-electrolyte interfaces for metal-CO_(2)batteries.Finally,the key issues related to electrolytes and interface engineering are fully discussed and several potential directions for future research are proposed.This review enriches a comprehensive understanding of electrolytes and interface engineering toward the practical applications of next-generation metal-CO_(2)batteries.