期刊文献+
共找到927篇文章
< 1 2 47 >
每页显示 20 50 100
In-situ pH Measurement at the Electrode/Solution Interface
1
作者 Jian Min ZHANG Qiu Zhi SHI +1 位作者 Chang Chun YANG Quan Feng DONG(College of Chemistry and Chemical Engineering, Zhengzhou University, ZhengZhou 450052) 《Chinese Chemical Letters》 SCIE CAS CSCD 2000年第7期617-620,共4页
In this paper a pH microprobe technique was developed to measure in-situ the pH value at the electrode/solution interface. Iridium oxide was used as a pH sensitive material with good response behavior in the measured ... In this paper a pH microprobe technique was developed to measure in-situ the pH value at the electrode/solution interface. Iridium oxide was used as a pH sensitive material with good response behavior in the measured solutions. The experimental results indicated that the interfacial pH increased with the applied potential, first jumped to a maximum, then slowly decreased at the controlled potential during the electrodeposition process of functional ceramics. 展开更多
关键词 in-situ measurement pH microprobe electrode/solution interface
在线阅读 下载PDF
Frequency optimization for electrodes in implantable brain-computer interfaces
2
作者 CHEN Han LIU Xiangyu +2 位作者 CHENG Jiajun QIN Jiangfan ZHANG Xueli 《Journal of Southeast University(English Edition)》 2025年第3期366-374,共9页
Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the... Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the design of electroencephalography electrodes in fully implanted BCI systems,this study investigates the penetration and absorption characteristics of microwave signals in human brain tissue at different frequencies.Electromagnetic simulations are used to analyze the power density distribution and specific absorption rate(SAR)of signals at various frequen-cies.The results indicate that lower-frequency signals offer advantages in terms of power density and attenuation coeffi-cients.However,SAR-normalized analysis,which considers both power density and electromagnetic radiation hazards,shows that higher-frequency signals perform better at superficial to intermediate depths.Specifically,at a depth of 2 mm beneath the cortex,the power density of a 6.5 GHz signal is 247.83%higher than that of a 0.4 GHz signal.At a depth of 5 mm,the power density of a 3.5 GHz signal exceeds that of a 0.4 GHz signal by 224.16%.The findings suggest that 6.5 GHz is optimal for electrodes at a depth of 2 mm,3.5 GHz for 5 mm,2.45 GHz for depths of 15-20 mm,and 1.8 GHz for 25 mm. 展开更多
关键词 brain-computer interfaces electromagnetic simulation electroencephalography electrodes power den-sity specific absorption rate
在线阅读 下载PDF
Distinct electron-transfer processes at polymer electrolyte/electrode interfaces:Solvation-mediated versus proton-coupled pathways
3
作者 Kaiyue Zhao Xiaoting Chen Bingjun Xu 《Journal of Energy Chemistry》 2025年第8期693-701,共9页
Electron transfer processes at polymer electrolyte/electrode interfaces play a central role in modern electrochemical devices of energy conversion,however,current understanding of electron transfers through electroche... Electron transfer processes at polymer electrolyte/electrode interfaces play a central role in modern electrochemical devices of energy conversion,however,current understanding of electron transfers through electrochemical interfaces was established exclusively based on the studies of liquid/solid electrochemical interfaces.Thus,similarities and differences of liquid and polymer electrolyte/electrode interfaces need to be mapped out to guide the design of device level electrochemical interfaces.In this work,we employ the sulfonate adsorption/desorption as a probe reaction to understand the electron-transfer steps in polymer and liquid electrolytes.Through cyclic voltametric investigations on the well-define single-crystal Pd_(ML)Pt(111)electrode,we demonstrate that the oxidative adsorption and reductive desorption of sulfonates at the polymer electrolyte/electrode interface are chemically distinct from those in liquid electrolytes,with the former occurring mostly via the proton-coupled pathway while the latter proceeding mainly through the solvation-mediated pathway.Importantly,the sulfonate adsorption/desorption behaviors of alkylsulfonates become increasingly similar to those in Nafion with longer alkyl chains,suggesting that the interfacial hydrophobicity and solvation environment conferred by the perfluorinated polymer play a decisive role in the electron-transfer mechanism.Results reported in this study highlight the mechanistic distinctions between electron-transfer processes at electrochemical interfaces involving polymer and liquid electrolytes,and provide a framework for understanding electron-transfer processes at polymer electrolyte/electrode interfaces. 展开更多
关键词 Polymer electrolyte/electrode interface ELECTROCATALYSIS Single-crystal electrochemistry Electron transfer
在线阅读 下载PDF
Electrochemical reactions at the electrode/solution interface:Theory and applications to water electrolysis and oxygen reduction 被引量:5
4
作者 Fang, Ya Hui Liu, Zhi Pan 《Science China Chemistry》 SCIE EI CAS 2010年第3期542-551,共10页
Theoretical simulations on complex electrochemical processes have been developed on the basis of the understanding in electrochemistry,which has benefited from quantum mechanics calculations.This article reviews the r... Theoretical simulations on complex electrochemical processes have been developed on the basis of the understanding in electrochemistry,which has benefited from quantum mechanics calculations.This article reviews the recent progress on the theory and applications in electrocatalysis.Two representative reactions,namely water electrolysis and oxygen reduction,are selected to illustrate how the theoretical methods are applied to electrocatalytic reactions.The microscopic nature of these electrochemical reactions under the applied potentials is described and the understanding of the reactions is summarized.The thermodynamics and kinetics of the electrochemical reactions affected by the interplay of the electrochemical potential,the bonding strength and the local surface structure are addressed at the atomic level. 展开更多
关键词 density FUNCTIONAL THEORY electrode/solution interface water ELECTROLYSIS OXYGEN reduction REACTION review
原文传递
Recent Advances in Nanoengineering of Electrode-Electrolyte Interfaces to Realize High-Performance Li-Ion Batteries
5
作者 Na-Yeong Kim Ilgyu Kim +5 位作者 Behnoosh Bornamehr Volker Presser Hiroyuki Ueda Ho-Jin Lee Jun Young Cheong Ji-Won Jung 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期1-13,共13页
A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and developme... A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and development have recently been conducted to form a stable interface between the electrode and electrolyte.Therefore,it is essential to investigate emerging knowledge and contextualize it.The nanoengineering of the electrode-electrolyte interface has been actively researched at the electrode/electrolyte and interphase levels.This review presents and summarizes some recent advances aimed at nanoengineering approaches to build a more stable electrode-electrolyte interface and assess the impact of each approach adopted.Furthermore,future perspectives on the feasibility and practicality of each approach will also be reviewed in detail.Finally,this review aids in projecting a more sustainable research pathway for a nanoengineered interphase design between electrode and electrolyte,which is pivotal for high-performance,thermally stable Li-ion batteries. 展开更多
关键词 battery electrode ELECTROLYTE interface LITHIUM NANOENGINEERING
在线阅读 下载PDF
Interface and energy band manipulation of Bi2O3-Bi2S3 electrode enabling advanced magnesium-ion storage
6
作者 Qiang Tang Yingze Song +4 位作者 Xuan Cao Cheng Yang Dong Wang Tingting Qin Wei Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3543-3552,共10页
Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi... Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems. 展开更多
关键词 Magnesium-ion battery Bi2O3-Bi2S3 heterostructure interface and energy band engineering Electrochemical reaction kinetics electrode integrity
在线阅读 下载PDF
Adsorption of sodium polyacrylate at interface of dicalcium silicate-sodium aluminate solution 被引量:5
7
作者 于海燕 潘晓林 +3 位作者 丁婷婷 张武 刘涵 毕诗文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2323-2326,共4页
The adsorption isotherm of sodium polyacrylate on dicalcium silicate(2CaO-SiO2) in sodium aluminate solution at 80 ℃ was studied.The type of surface adsorption of sodium polyacrylate is saturated adsorption,and the... The adsorption isotherm of sodium polyacrylate on dicalcium silicate(2CaO-SiO2) in sodium aluminate solution at 80 ℃ was studied.The type of surface adsorption of sodium polyacrylate is saturated adsorption,and the adsorption behavior belongs to L-type,according with the monolayer adsorption model of Langmuir equation.The surface coverage of sodium polyacrylate is 1.06 mol/μm2.The relation curve between the surface pressure and the molecular area of adsorption film was obtained by Gibbs formula.The variation of interfacial energy caused by adsorption as well as the relationship between the relation curve and the type of adsorption was discussed. 展开更多
关键词 sodium aluminate solution sodium polyacrylate dicalcium silicate interface ADSORPTION
在线阅读 下载PDF
Bifunctional macromolecular design for dual interface-passivating regulation towards practical stable lithium-sulfur batteries
8
作者 Meng-Yu Li Bo-Bo Zou +3 位作者 Yu Yan Ting-Ting Wang Xinyan Liu Hong-Jie Peng 《Journal of Energy Chemistry》 2025年第7期710-717,共8页
Lithium-sulfur(Li-S)battery is recognized for the high theoretical energy density and cost-effective raw materials.However,the instability of Li metal anodes limits the cycle life of Li-S batteries under practical con... Lithium-sulfur(Li-S)battery is recognized for the high theoretical energy density and cost-effective raw materials.However,the instability of Li metal anodes limits the cycle life of Li-S batteries under practical conditions.In this study,we propose a dual interface-passivating regulation strategy using nitrocellulose(NC),a macromolecular nitrate,to stabilize the interface/interphase between the electrolyte and Li metal anode.Specifically,the macromolecular crowding effect and the reduction in lithium polysulfides(LiPSs)activity through nitrate coordination endow NC desirable bifunctionality to simultaneously suppress the depletion of Li salts and LiPSs corrosion,leading to better interface passivation than mono-functional additives such as LiNO_(3)and carboxymethyl cellulose.Consequently,the cycle life of Li-S batteries under practically demanding conditions(50μm Li anodes;4.0 mg cm^(-2)S athodes)is extended to 180 cycles,outperforming those of additive-free or LiNO_(3)-containing commercial electrolytes.This study highlights the potential of bifunctional macromolecular additive design for effectively dual-passivating the anode/electrolyte interface towards highly stable practical Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries NITROCELLULOSE Electrolyte additives Lithium anodes Electrolyte/electrode interface
在线阅读 下载PDF
THE FREE INTERFACE PROBLEM OF PLASMA-VACUUM WITH SURFACE TENSION IN A TUBE DOMAIN
9
作者 Biran ZHANG 《Acta Mathematica Scientia》 2025年第4期1307-1342,共36页
In this paper,we consider the plasma-vacuum interface problem in a cylindrical tube region impressed by a special background magnetic field.The interior region is occupied with plasma,which is governed by the incompre... In this paper,we consider the plasma-vacuum interface problem in a cylindrical tube region impressed by a special background magnetic field.The interior region is occupied with plasma,which is governed by the incompressible inviscid and resistive MHD system without damping term.The exterior vacuum region is governed by the so-called the“pre-Maxwell equations”.And on the free interface,additionally,the effect of surface tension is taken into account.The original region can be transformed into a horizontally periodic slab through the cylindrical coordinate transformation,which will be impressed by a uniform nonhorizontal magnetic field.Appending with the appropriate physical boundary conditions,the global well-posedness of the problem is established by the energy method. 展开更多
关键词 MHD the free interface problem energy estimates global solution local wellposedness
在线阅读 下载PDF
Unlocking the stable interface in aqueous zinc-ion battery with multifunctional xylose-based electrolyte additives
10
作者 Xiaoqin Li Jian Xiang +9 位作者 Lu Qiu Xiaohan Chen Yinkun Zhao Yujue Wang Qu Yue Taotao Gao Wenlong Liu Dan Xiao Zhaoyu Jin Panpan Li 《Journal of Energy Chemistry》 2025年第1期770-778,共9页
The growth of dendrites and the side reactions occurring at the Zn anode pose significant challenges to the commercialization of aqueous Zn-ion batteries(AZIBs). These challenges arise from the inherent conflict betwe... The growth of dendrites and the side reactions occurring at the Zn anode pose significant challenges to the commercialization of aqueous Zn-ion batteries(AZIBs). These challenges arise from the inherent conflict between mass transfer and electrochemical kinetics. In this study, we propose the use of a multifunctional electrolyte additive based on the xylose(Xylo) molecule to address these issues by modulating the solvation structure and electrode/electrolyte interface, thereby stabilizing the Zn anode. The introduction of the additive alters the solvation structure, creating steric hindrance that impedes charge transfer and then reduces electrochemical kinetics. Furthermore, in-situ analyses demonstrate that the reconstructed electrode/electrolyte interface facilitates stable and rapid Zn^(2+)ion migration and suppresses corrosion and hydrogen evolution reactions. As a result, symmetric cells incorporating the Xylo additive exhibit significantly enhanced reversibility during the Zn plating/stripping process, with an impressively long lifespan of up to 1986 h, compared to cells using pure ZnSO4electrolyte. When combined with a polyaniline cathode, the full cells demonstrate improved capacity and long-term cyclic stability. This work offers an effective direction for improving the stability of Zn anode via electrolyte design, as well as highperformance AZIBs. 展开更多
关键词 Aqueous Zn-ion battery Electrolyte additive Solvation structure electrode/electrolyte interface Zn anode
在线阅读 下载PDF
Catalytic electrode comprising a gas diffusion layer and bubble-involved mass transfer in anion exchange membrane water electrolysis:A critical review and perspectives
11
作者 Ning Yang Haonan Li +6 位作者 Xiao Lin Stella Georgiadou Liang Hong Zhaohua Wang Fan He Zhifu Qi Wen-Feng Lin 《Journal of Energy Chemistry》 2025年第6期669-701,I0014,共34页
Production of green hydrogen through water electrolysis powered by renewable energy sources has garnered increasing attention as an attractive strategy for the storage of clean and sustainable energy.Among various ele... Production of green hydrogen through water electrolysis powered by renewable energy sources has garnered increasing attention as an attractive strategy for the storage of clean and sustainable energy.Among various electrolysis technologies,the emerging anion exchange membrane water electrolyser(AEMWE)exhibits the most potential for green hydrogen production,offering a potentially costeffective and sustainable approach that combines the advantages of high current density and fast start from proton exchange membrane water electrolyser(PEMWE)and low-cost catalyst from traditional alkaline water electrolyser(AWE)systems.Due to its relatively recent emergence over the past decade,a series of efforts are dedicated to improving the electrochemical reaction performance to accelerate the development and commercialization of AEMWE technology.A catalytic electrode comprising a gas diffusion layer(GDL)and a catalyst layer(CL)is usually called a gas diffusion electrode(GDE)that serves as a fundamental component within AEMWE,and also plays a core role in enhancing mass transfer during the electrolysis process.Inside the GDEs,bubbles nucleate and grow within the CL and then are transported through the GDL before eventually detaching to enter the electrolyte in the flow field.The transfer processes of water,gas bubbles,charges,and ions are intricately influenced by bubbles.This phenomenon is referred to as bubble-associated mass transfer.Like water management in fuel cells,effective bubble management is crucial in electrolysers,as its failure can result in various overpotential losses,such as activation losses,ohmic losses,and mass transfer losses,ultimately degrading the AEMWE performance.Despite significant advancements in the development of new materials and techniques in AEMWE,there is an urgent need for a comprehensive discussion focused on GDEs,with a particular emphasis on bubbleassociated mass transfer phenomena.This review aims to highlight recent findings regarding mass transfer in GDEs,particularly the impacts of bubble accumulation;and presents the latest advancements in designing CLs and GDLs to mitigate bubble-related issues.It is worth noting that a series of innovative bubble-free-GDE designs for water electrolysis are also emphasized in this review.This review is expected to be a valuable reference for gaining a deeper understanding of bubble-related mass transfer,especially the complex bubble behavior associated with GDEs,and for developing innovative practical strategies to advance AEMWE for green hydrogen production. 展开更多
关键词 Green hydrogen production Water electrolysis Catalytic electrode Gas diffusion layer Bubble-involved mass transfer Electrocatalytic interface designing strategy
在线阅读 下载PDF
Phosphonated ionomer modulates electrochemical interfaces in high temperature polymer electrolyte membrane fuel cells
12
作者 Yangyang Hu Zhangxun Xia +3 位作者 Congrong Yang Jicai Huang Suli Wang Gongquan Sun 《Journal of Energy Chemistry》 2025年第4期850-857,共8页
Liquid phosphoric acid(PA),as the proton carrier for high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs),presents challenges such as catalyst poisoning,high gas transport resistance and electrolyte los... Liquid phosphoric acid(PA),as the proton carrier for high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs),presents challenges such as catalyst poisoning,high gas transport resistance and electrolyte loss.These issues significantly impede the performance and durability of HT-PEMFCs,thereby limiting their potential for further application.In this study,poly(2,3,5,6-tetrafluorostylene-4-phosphonic acid)(PWN)with intrinsic proton conduction ability was employed as catalyst layer binder to reveal the impacts of the ionomer's molecular structure on mass transport within the catalyst layer.Our findings demonstrated that increasing the phosphorylation degree of PWN could enhance both pore formation at the catalyst layer and electrode acidophilic capability while improving proton conduction ability and reducing cells'internal resistance.However,adverse effects included increased local oxygen transport resistance and decreased catalyst utilization resulting from electrode acidophilic capability.This research offers valuable insights for the relationships between micro-scale molecule structure,mesoscale electrode architecture,and membrane electrode assembly design in HT-PEMFCs. 展开更多
关键词 High temperature polymer electrolyte membrane fuel cells Phosphonated ionomers Oxygen transport resistance Electrochemical interface Porous electrode
在线阅读 下载PDF
Exact solution of plane isolated crack normal to a bimaterial interface of infinite extent 被引量:4
13
作者 Tianhu Hao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第5期455-468,共14页
This paper presents an exact solution for the transverse interface crack in the plane strain case. The crack is perpendicular to the interface and in one material. The exact complex stress functions are first obtained... This paper presents an exact solution for the transverse interface crack in the plane strain case. The crack is perpendicular to the interface and in one material. The exact complex stress functions are first obtained with some unknown constants. The satisfactions of all boundary conditions are then checked, the condition at infinity is considered and the unknown constants are determined. Further study may focus on the case with different shear moduli and the influence of the large deformation. 展开更多
关键词 Exact solution interface crack Plane strain problem
在线阅读 下载PDF
Investigation of polysulfone film on high-performance anode with stabilized electrolyte/electrode interface for lithium batteries 被引量:2
14
作者 Yuyan Ma Chen Dong +5 位作者 Qiuli Yang Yuxin Yin Xiaoping Bai Shuying Zhen Cheng Fan Kening Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期49-55,共7页
Lithium metal has been considered to be the most promising anode material for the new generation of energy-storage system.However,challenges still stand in protecting lithium metal from spontaneous reactions with elec... Lithium metal has been considered to be the most promising anode material for the new generation of energy-storage system.However,challenges still stand in protecting lithium metal from spontaneous reactions with electrolytes and preventing the dendritic propagation,both of which would lead to undesirable decrease in Coulombic efficiency.Polysulfone(PSf)membrane with high rigidity and free-volume cavities of approximately 0.3 nm was employed to provide a stable interface on the surface of anodic electrode.The isotropic channels were constructed by the interconnected and uniformly distributed free volumes in the polymer matrix,and were expected to be swelled by solvent molecules and anions of lithium salt and to allow Li+ions to pass through onto the electrode surface.As a result,dendrite-free morphology of deposited lithium was observed.The stabilized interface arose from the PSf film was verified by the promoted performances of Cu|Li cells and steady voltage polarization of Li|Li cells.The full cell with PSf coated anode exhibited excellent cyclability(85%capacity retention rate over 400 cycles at 1C)and an outstanding rate capability(117 m Ah g-1 at 5C).The beneficial performances were further verified by the EIS results.This work provides a new strategic idea to settle the dendritic problems of Li metal anodes. 展开更多
关键词 Lithium metal Electrolyte/electrode interface Dendrite-free POLYSULFONE Free volume
在线阅读 下载PDF
Current status and trends of carbon-based electrodes for fully solution-processed perovskite solar cells 被引量:3
15
作者 Laura MGonzález Daniel Ramirez Franklin Jaramillo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期222-246,共25页
Perovskite solar cells(PSCs) have revolutionized photovoltaic research. As a result, a certified power conversion efficiency(PCE) of 25.5% was recorded in late 2020. Although this efficiency is comparable with silicon... Perovskite solar cells(PSCs) have revolutionized photovoltaic research. As a result, a certified power conversion efficiency(PCE) of 25.5% was recorded in late 2020. Although this efficiency is comparable with silicon solar cells;some issues remain partially unsolved, such as lead toxicity, instability of perovskite materials under continuous illumination, moisture and oxygen, and degradation of the metallic counter electrodes. As an alternative to tackle this last concern, carbon materials have been recently used, due to their good electrical and thermal conductivity, and chemical stability, which makes them one of the most promising materials to replace metallic counter electrodes in the fabrication of PSCs. This review highlights the recent advances of carbon-based PSCs, where the carbon electrode(CE) is the main actor.CEs have become very promising candidates for PSCs;they are mainly fabricated using a simple combination of graphite and carbon black powders embedded in a binder matrix, giving a paste that is then solution-processable, resulting in devices with improved quality stability, when compared to metallic electrodes. In this review, CE’s composition is emphasized, since it can give both, high and lowtemperature processed electrodes, compatible with different device configurations. Finally, the tendencies and opportunities to use CE in PSCs devices are presented. 展开更多
关键词 Perovskite solar cells Carbon electrodes Scaling up Stability solution processing
在线阅读 下载PDF
Solution‑Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency 被引量:5
16
作者 Juanyong Wan Yonggao Xia +8 位作者 Junfeng Fang Zhiguo Zhang Bingang Xu Jinzhao Wang Ling Ai Weijie Song Kwun Nam Hui Xi Fan Yongfang Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期39-52,共14页
Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through soluti... Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through solution manufacturing.Herein,we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid(CF3SO3H).Through a low-concentration and low-temperature CF3SO3H doping,the conducting polymer anodes exhibited a main sheet resistance of 35Ωsq−1(minimum value:32Ωsq−1),a raised work function(≈5.0 eV),a superior wettability,and a high electrical stability.The high work function minimized the energy level mismatch among the anodes,hole-transporting layers and electron-donors of the active layers,thereby leading to an enhanced carrier extraction.The solution-processed flexible OSCs yielded a record-high efficiency of 16.41%(maximum value:16.61%).Besides,the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85°C,demonstrating a high flexibility and a good thermal stability. 展开更多
关键词 solution-processed transparent conducting electrode Flexible organic solar cell PEDOT:PSS Trifluoromethanesulfonic acid doping solution processing
在线阅读 下载PDF
Diffusion-controlled Adsorption Kinetics of Surfactant at Air/Solution Interface 被引量:3
17
作者 刘俊吉 徐芸 孙红秀 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第9期953-958,共6页
For the diffusion-controlled adsorption, the expression of dynamic surface adsorption P(t) was ob- tained by solving the diffusion equation. Two cases, i.e. the short and long time limits, were mainly discussed in t... For the diffusion-controlled adsorption, the expression of dynamic surface adsorption P(t) was ob- tained by solving the diffusion equation. Two cases, i.e. the short and long time limits, were mainly discussed in this paper. From the measured dynamic surface tension of aqueous surfactant sodium dodecyl sulfate (SDS) solutions at 25 ℃, the adsorption kinetics of SDS at air/solution interface was studied. It was proved that for both of the short and long time limits, the adsorption process of SDS was controlled by diffusion. 展开更多
关键词 ADSORPTION air/solution interface dynamic surface tension
在线阅读 下载PDF
Structure and resistance of concentration polar layer on cation exchange membrane-solution interface 被引量:1
18
作者 桑商斌 黄可龙 +1 位作者 李晓刚 王显 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2006年第6期1436-1441,共6页
Membrane/solution interface consists of a neutral concentration polai layer(CPL) and a charge layer(CL) under external electrical field, and the neutral CPL can be neglected under high frequency AC electrical field. T... Membrane/solution interface consists of a neutral concentration polai layer(CPL) and a charge layer(CL) under external electrical field, and the neutral CPL can be neglected under high frequency AC electrical field. The relationship of CL thickness e with electrolyte concentration C and fixed ion exchange sites density σ in membrane surface layer can be expressed as e 展开更多
关键词 ion exchange membrane AC electrical field AC impedance membrane/solution interface STRUCTURE RESISTANCE
在线阅读 下载PDF
A facile finger-paint physical modification for bilateral electrode/electrolyte interface towards a stable aqueous Zn battery 被引量:1
19
作者 Hang Yang Duo Chen +6 位作者 Yicheng Tan Hao Xu Li Li Yiming Zhang Chenglin Miao Guangshe Li Wei Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期101-109,I0004,共10页
Since the electrode/electrolyte interface(EEI)is the main redox center of electrochemical processes,proper manipulation of the EEI microenvironment is crucial to stabilize interfacial behaviors.Here,a finger-paint met... Since the electrode/electrolyte interface(EEI)is the main redox center of electrochemical processes,proper manipulation of the EEI microenvironment is crucial to stabilize interfacial behaviors.Here,a finger-paint method is proposed to enable quick physical modification of glass-fiber separator without complicated chemical technology to modulate EEI of bilateral electrodes for aqueous zinc-ion batteries(ZIBs).An elaborate biochar derived from Aspergillus Niger is exploited as the modification agent of EEI,in which the multi-functional groups assist to accelerate Zn^(2+)desolvation and create a hydrophobic environment to homogenize the deposition behavior of Zn anode.Importantly,the finger-paint interface on separator can effectively protect cathodes from abnormal capacity fluctuation and/or rapid attenuation induced by H_(2)O molecular on the interface,which is demonstrated in modified MnO_(2),V_(2)O_(5),and KMn HCF-based cells.The as-proposed finger-paint method opens a new idea of bilateral interface engineering to facilitate the access to the practical application of the stable zinc electrochemistry. 展开更多
关键词 Aqueous Zinc battery electrode/electrolyte interface interface modification MnO_(2) V_(2)O_(5) KMnHCF
在线阅读 下载PDF
Insightful understanding of three-phase interface behaviors in 1T-2H MoS_(2)/CFP electrode for hydrogen evolution improvement 被引量:1
20
作者 Jiamu Cao Jing Zhou +3 位作者 Mingxue Li Junyu Chen Yufeng Zhang Xiaowei Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期3745-3751,共7页
Hydrogen evolution reaction(HER)catalytic electrodes under actual working conditions show interesting mass transfer behaviors at solid(electrode)/liquid(electrolyte)/gas(hydrogen)three-phase interfaces.These behaviors... Hydrogen evolution reaction(HER)catalytic electrodes under actual working conditions show interesting mass transfer behaviors at solid(electrode)/liquid(electrolyte)/gas(hydrogen)three-phase interfaces.These behaviors are essential for forming a continuous and effective physical contact region between the electrolyte and the electrode and require further detailed understanding.Here,a case study on 1 T-2 H phase molybdenum disulfide(Mo S_(2))/carbon fiber paper(CFP)catalytic electrodes is performed.Rapid gas-liquid mass transfer at the interface for enhancing the working area stability and capillarity for increasing the electrode working area is found.The real scenario,wherein the energy utilization efficiency of the as-prepared non-noble metal catalytic electrode exceeds that of the noble metal catalytic electrode,is disclosed.Specifically,a fluid dynamics model is developed to investigate the behavior mechanism of hydrogen bubbles from generation to desorption on the catalytic electrode surface with different hydrophilic and hydrophobic properties.These new insights and theoretical evidence on the non-negligible three-phase interface behaviors will identify opportunities and motivate future research in high-efficiency,stability,and low-cost HER catalytic electrode development. 展开更多
关键词 Hydrogen evolution reaction Three-phase interface behavior Catalytic electrode Fluid dynamics 1T-2H MoS_(2)
原文传递
上一页 1 2 47 下一页 到第
使用帮助 返回顶部