期刊文献+
共找到183,185篇文章
< 1 2 250 >
每页显示 20 50 100
Saturated Alcohols Electrocatalytic Oxidations on Ni-Co Bimetal Oxide Featuring Balanced B-and L-Acidic Active Sites
1
作者 Junqing Ma Wenshu Luo +9 位作者 Xunlu Wang Xu Yu Jiacheng Jayden Wang Huashuai Hu Hanxiao Du Jianrong Zeng Wei Chen Minghui Yang Jiacheng Wang Xiangzhi Cui 《Nano-Micro Letters》 2026年第2期105-123,共19页
Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electro... Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electrocatalytic oxidations of saturated alcohols(C_(1)-C_(6))to selectively form formate using Ni Co hydroxide(Ni Co-OH)derived Ni Co_(2)O_(4)solid-acid electrocatalysts with balanced Lewis acid(LASs)and Brønsted acid sites(BASs).Thermal treatment transforms BASs-rich(89.6%)Ni Co-OH into Ni Co_(2)O_(4)with nearly equal distribution of LASs(53.1%)and BASs(46.9%)which synergistically promote adsorption and activation of OH-and alcohol molecules for enhanced oxidation activity.In contrast,BASs-enriched Ni Co-OH facilitates formation of higher valence metal sites,beneficial for water oxidation.The combined experimental studies and theoretical calculation imply the oxidation ability of C1-C6alcohols increases as increased number of hydroxyl groups and decreased HOMO-LUMO gaps:methanol(C_(1))<ethylene glycol(C_(2))<glycerol(C3)<meso-erythritol(C4)<xylitol(C5)<sorbitol(C6),while the formate selectivity shows the opposite trend from 100 to 80%.This study unveils synergistic roles of LASs and BASs,as well as hydroxyl group effect in electro-upgrading of alcohols using solid-acid electrocatalysts. 展开更多
关键词 Solid-acid electrocatalyst Alcohol oxidation reaction Bronsted acid sites Lewis acid sites C_(1)-C_(6)saturated alcohols
在线阅读 下载PDF
High-performance electrocatalytic nitrogen oxidation of two-dimensional MOF based on a rod-manganese motifs
2
作者 YAO Xiaoyan LI Quan +4 位作者 ZHAO Xiangyu WU Mingrui LIU Licheng WANG Wentai YAO Shuo 《燃料化学学报(中英文)》 北大核心 2025年第9期1364-1372,I0015-I0026,共21页
The electrocatalytic nitrogen oxidation reaction(NOR)is a sustainable approach for converting N_(2)to NO_(3)^(-)under mild conditions.However,it still faces challenges including inefficient N_(2)absorption/activation ... The electrocatalytic nitrogen oxidation reaction(NOR)is a sustainable approach for converting N_(2)to NO_(3)^(-)under mild conditions.However,it still faces challenges including inefficient N_(2)absorption/activation and oxygen evolution competition,sluggish kinetics,low Faradaic efficiency,and limited nitrate yields.In this work,a novel two-dimensional(2D)layered MOF Mn-BCPPy(H_(2)BCPPy=3,5-di(4'-carboxyphenyl)pyridine)has been successfully synthesized.The framework is composed of a rod-manganese motifs and possesses abundant active sites including open metal sites(OMSs)and Lewis base sites(LBSs).The Mn-BCPPy is the first MOF catalyst applied in electrocatalytic NOR which NO_(3)^(-)exhibited relatively high activity with a yield of 99.75μg/(h·mg)and a Faraday efficiency(FE)of 32.09%.Furthermore,it can be used as fluorescent sensor for selectively and sensitively detect nitrofuran antibiotics(NFs).Therefore,this work explores the application of MOF materials in the field of electrocatalytic NOR,which reveals that manganese-based MOFs have great potential prospects. 展开更多
关键词 metal-organic framework electrocatalytic nitrogen oxidation NITRATE fluorescence sensor
在线阅读 下载PDF
Recent advances on the electrocatalytic oxidation of biomass-derived aldehydes
3
作者 Zhikeng Zheng Ke Li +3 位作者 Lu Lin Zhiwei Jiang Yuchen Wang Kai Yan 《Green Energy & Environment》 2025年第5期898-916,共19页
The escalating demand for sustainable and environmentally benign chemical processes has driven the exploration of biomass as an alternative to non-renewable resources.Electrocatalytic upgrading of biomass-derived alde... The escalating demand for sustainable and environmentally benign chemical processes has driven the exploration of biomass as an alternative to non-renewable resources.Electrocatalytic upgrading of biomass-derived aldehydes plays a crucial role in biomass refining,and has become a frontier of mainstream research.This paper reviews the recent advances on the electrocatalytic oxidation of typical biomass-derived aldehydes(5-hydroxymethylfurfural,furfural,glucose,xylose,vanillin and benzaldehyde,etc.).The research presented in this review covers a wide range of oxidation mechanisms for each aldehyde.It is evident from the current literature that challenges related to the comprehensiveness of mechanistic studies,catalyst stability,and reaction scalability remain,but the rapid progress offers hope for future advancements.Finally,we elucidate the challenges in this domain and provide the perspectives on future developments.This review corroborates the significance of investigating the electrocatalytic oxidation of biomass-derived aldehydes and emphasizes the need for continued research to refine these processes for industrial applications. 展开更多
关键词 electrocatalytic oxidation BIOMASS ALDEHYDES 5-HYDROXYMETHYLFURFURAL FURFURAL
在线阅读 下载PDF
CC/CoNi-LDH anode doped with Ce^(3+)achieving enhanced electrocatalytic oxidation of ciprofloxacin
4
作者 Xiao Wei Xuan Fang +7 位作者 Shuming Ma Huaqiang He Zhixin Wu Silin Li Shihao Zhang Pei Nian Wenlan Ji Yibin Wei 《Chinese Journal of Chemical Engineering》 2025年第4期79-88,共10页
Addressing the contamination of antibiotics has attracted ever-increasing and imperative attention due to their widespread existence,easy-to-cause drug-resistant bacteria infection,coupled with their intrinsic toxicit... Addressing the contamination of antibiotics has attracted ever-increasing and imperative attention due to their widespread existence,easy-to-cause drug-resistant bacteria infection,coupled with their intrinsic toxicity and hazard to environments and human health.Herein,a novel CC/CoNi-LDH-10%Ce anode material was directly constructed through a simple and rapid electrodeposition strategy,serving as an efficacious electrocatalyst for removing ciprofloxacin(CIP)from aqueous solution.Such novel CC/CoNi-LDH-10%Ce anode delivered a higher charge transfer,relatively abundant oxygen vacancies,and a higher electrochemical active area.The as-fabricated CC/CoNi-LDH-10%Ce electrode achieved a substantially boosted CIP removal efficiency of 52.5%relative to that of pure CC at about 23.9%.Notably,doping an appropriate amount of Ce^(3+)can endow the pristine CC/CoNi-LDH with richer oxygen vacancies and excellent electrocatalytic performance.Additionally,the electrocatalytic oxidation of CIP was attributed to both direct oxidation on the electrode surface and indirect oxidation induced by the generated active species(superoxide radicals and hydroxyl radicals).This study provides a simple,universal and flexible tactic for other researchers in designing and manufacturing avenues of electrodes. 展开更多
关键词 Layered double hydroxides CIPROFLOXACIN Rare earth metals Conductive carriers electrocatalytic oxidation
在线阅读 下载PDF
Enhanced electrocatalytic oxidation of high-salinity quaternary ammonium compound wastewater using CNTs-(Ru_(x)Ir_(y)O_(2))/Ti Anode
5
作者 Hao-Tian Liu Han-Qing Zhao +7 位作者 Yi-Rui Yang Shuang Wu Jia-Ping Huang Rui-Han Yu Hongcheng Bai Aqiang Ding Daijun Zhang Peili Lu 《Journal of Environmental Sciences》 2025年第11期879-889,共11页
The organic pollutants,such as quaternary ammonium compounds,in high salinity flowback water from shale gas extraction may pose a severe risk to public health.Conventional biological technologies have limited effectiv... The organic pollutants,such as quaternary ammonium compounds,in high salinity flowback water from shale gas extraction may pose a severe risk to public health.Conventional biological technologies have limited effectiveness in the treatment of high-salt wastewaters,whereas electrocatalytic oxidation has shown potential for treating organic pollutants in high-salt flowback water.This study developed a carbon nanotubes(CNTs)doped Ru/Ir oxide coated Ti electrode CNTs-(Ru_(x)Ir_(y)O_(2))/Ti,which exhibited enhanced electrocatalytic performance for the treatment of quaternary ammonium compound in high-salt wastewater compared to the control metal oxide coated Ti anode(Ru_(x)Ir_(y)O_(2))/Ti,with pseudofirst-order reaction rate constant improved from 7.36×10^(-3) to 1.12×10^(-2) min−1.Moreover,the CNTs-(Ru_(x)Ir_(y)O_(2))/Ti anode electrocatalytic oxidation system exhibited excellent cycling stability.Mechanism studies indicated that the CNTs-(Ru_(x)Ir_(y)O_(2))/Ti electrode enhanced singlet oxygen(^(1)O_(2))generation,which played a major role in pollutant degradation.Furthermore,the formation of high concentrations of HClO and H_(2)O_(2) further facilitated the generation of ^(1)O_(2).This study may provide an efficient and green technology for the treatment of organic pollutants in high-salt shale gas flowback water. 展开更多
关键词 High salt wastewater Quaternary ammonium compound electrocatalytic oxidation CNTs doping Dimensionally stable anode
原文传递
Hydrophobic interface engineering of nickel hydroxide for efficient electrocatalytic fatty alcohol oxidation coupled with hydrogen production
6
作者 Ruiqi Du Rui Jia +5 位作者 Bingjie Yuan Zemao Chen Kaizheng Zhang Kaiqi Nie Binhang Yan Yi Cheng 《Journal of Energy Chemistry》 2025年第11期255-262,I0008,共9页
Electrocatalysis has emerged as a sustainable approach for the selective oxidation of fatty alcohols to fatty acids,circumventing the environmental concerns associated with conventional routes.However,the low aqueous ... Electrocatalysis has emerged as a sustainable approach for the selective oxidation of fatty alcohols to fatty acids,circumventing the environmental concerns associated with conventional routes.However,the low aqueous solubility of hydrophobic fatty alcohols presents a major challenge.While nickel hydroxide(Ni(OH)_(2))serves as a cost-effective catalyst for alcohol oxidation,its hydrophilic nature limits substrate accessibility and mass transport,causing sluggish kinetics and competing oxygen evolution.Herein,we propose a hydrophobic interface engineering strategy via co-electrodeposition of Ni(OH)_(2)with polytetrafluoroethylene(PTFE),fabricating the composite electrode(ED-Ni(OH)_(2)-PTFE).The optimized electrode achieves 95%Faradaic efficiency for octanoic acid at 1.5 V vs.RHE,with a production rate 2–3 times higher than pristine Ni(OH)_(2).Mechanistic studies combining in situ Raman spectroscopy,fluorescence imaging,and coarse-grained molecular dynamics simulations reveal that PTFE selectively enriches octanol at the electrode-electrolyte interface by modulating interfacial hydrophobicity.A continuous-flow microreactor integrating anodic octanol oxidation with cathodic hydrogen evolution reduces cell voltage by~100 m V,achieving simultaneous fatty acid and hydrogen production.This work highlights the critical role of hydrophobic interfacial microenvironment design in organic electrosynthesis,offering a promising strategy for upgrading fatty alcohols under mild conditions. 展开更多
关键词 electrocatalytic oxidation Nickel hydroxide Hydrophobic interface Fatty acid Hydrogen production
在线阅读 下载PDF
Mn_(0.6)Ce_(0.4)O_(2)/CNT electrocatalyst boosts the efficient electrocatalytic oxidation of toluene to benzoic acid
7
作者 Aixin Ma Yue Shi +4 位作者 Jiejie Bai Hangkai Shi G.A.Bagliuk Jianping Lai Lei Wang 《Journal of Energy Chemistry》 2025年第5期565-575,共11页
Electrocatalytic toluene(TL)oxidation to produce benzoic acid(BAC)process is largely hindered due to sluggish kinetics associated with the transformation of the rate-determining step,because of weak TL adsorption and ... Electrocatalytic toluene(TL)oxidation to produce benzoic acid(BAC)process is largely hindered due to sluggish kinetics associated with the transformation of the rate-determining step,because of weak TL adsorption and high rate-determining step energy barrier for difficult to dehydrogenate.Herein,we report Mn_(x)Ce_(1-x)O_(2)/CNT catalyst for accelerated reaction kinetics.Theoretical and experimental studies indicate that Ce sites promote TL adsorption and polyvalent Mn modulates the electronic structure of Ce sites reducing the rate-determining step energy barrier.This results in increasing^(*)C_(6)H_(5)CH_(2)coverage and effectively accelerating TL oxidation reaction(TOR)kinetics.Excitingly,the Faraday efficiency(FE)and BAC yield of optimized Mn_(0.6)Ce_(0.4)O_(2)/CNT at 2.6 V vs.RHE could reach 85.9%and 653.9 mg h^(-1)cm^(-2),respectively.In addition,the Mn_(0.6)Ce_(0.4)O_(2)/CNT displays a high selectivity of 96.3%for BAC.Combining the TL oxidation reaction with hydrogen evolution reaction,the anion exchange membrane electrolyzer of Mn_(0.6)Ce_(0.4)O_(2)/CNT(+)||Pt/C(-)can reach 100 mA cm^(-2)at the voltage of 3.0 V,in which the BAC yield is 579.4 mg h^(-1)cm^(-2)and the FE is 83.6%.This work achieved high selectivity of TOR at industrial-relevant current densities of 100 mA cm^(-2)at the low voltage for the first time. 展开更多
关键词 electrocatalytic oxidation AEM electrolyzer Mn_(0.6)Ce_(0.4)O_(2)/CNT catalyst Toluene oxidation Benzoic acid
在线阅读 下载PDF
Structural designs and mechanism insights into electrocatalytic oxidation of 5-hydroxymethylfurfural 被引量:1
8
作者 Jing Lei Huijie Zhang +4 位作者 Jian Yang Jia Ran Jiqiang Ning Haiyan Wang Yong Hu 《Journal of Energy Chemistry》 2025年第1期792-814,共23页
Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for ... Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for the mild synthesis conditions and high conversion efficiency to obtain 2,5-furan dicarboxylic acid(FDCA),but there still remain problems such as limited yield,short cycle life,and ambiguous reaction mechanism.Despite many reviews highlighting a variety of electrocatalysts for electrochemical oxidation of HMF,a detailed discussion of the structural modulation of catalyst and the underlying catalytic mechanism is still lacking.We herein provide a comprehensive summary of the recent development of electrochemical oxidation of HMF to FDCA,particularly focusing on the mechanism studies as well as the advanced strategies developed to regulate the structure and optimize the performance of the electrocatalysts,including heterointerface construction,defect engineering,single-atom engineering,and in situ reconstruction.Experimental characterization techniques and theoretical calculation methods for mechanism and active site studies are elaborated,and challenges and future directions of electrochemical oxidation of HMF are also prospected.This review will provide guidance for designing advanced catalysts and deepening the understanding of the reaction mechanism beneath electrochemical oxidation of HMF to FDCA. 展开更多
关键词 Electrochemical oxidation of 5- HYDROXYMETHYLFURFURAL 2 5-Furan dicarboxylic acid Structural design MECHANISM ELECTROCATALYSTS
在线阅读 下载PDF
Understanding oxidation state of Cu-based catalysts for electrocatalytic CO_(2) reduction
9
作者 Ping Zhu Yuan-Chu Qin +7 位作者 Xin-Hao Cai Wen-Min Wang Ying Zhou Lin-Lin Zhou Peng-Hui Liu Lu Peng Wen-Long Wang Qian-Yuan Wu 《Journal of Materials Science & Technology》 2025年第15期1-24,共24页
Electrocatalytic CO_(2) reduction(ECR)is a promising approach for achieving carbon neutrality due to its ability to convert CO_(2) to valuable chemicals.Recent advances have significantly enhanced the ECR performance ... Electrocatalytic CO_(2) reduction(ECR)is a promising approach for achieving carbon neutrality due to its ability to convert CO_(2) to valuable chemicals.Recent advances have significantly enhanced the ECR performance of various catalysts by tuning their oxidation states,particularly for Cu-based catalysts that can reduce CO_(2) to multiple products.However,the oxidation state of copper(OSCu),especially Cu+,changes during the reaction process,posing significant challenges for both catalyst characterization and performance.In this review,the current understanding of the effect of oxidation states on product selectivity was first discussed.A comprehensive overview of in situ/operando characterization techniques,used to monitor the dynamic evolution of oxidation states during ECR,was then provided.Various strategies for stabilizing oxidation states through modification of catalysts and manipulation of external conditions were discussed.This review aimed to deepen the understanding of oxidation states in ECR and enlighten the development of more efficient electrocatalysts. 展开更多
关键词 electrocatalytic CO_(2)reduction Cu-based catalysts oxidation state In situ/operando characterization techniques Stabilization strategies
原文传递
Degradation of leachate and high concentration emerging pollutant tetracycline through electro oxidation
10
作者 Siyi Li Qiaona Xie +3 位作者 Mingdi Yang Ningrui Wu Yiting Lian Chengran Fang 《Journal of Environmental Sciences》 2026年第1期142-153,共12页
In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti... In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti-mization,for the degradation of landfill leachate(LL)containing elevated levels of tetracycline(TC),and explored its mechanism of action.Firstly,titanium-based ruthenium-iridium(Ti/RuO_(2)-IrO_(2)),titanium-based ruthenium-iridium-platinum(Ti/Pt-RuO_(2)-IrO_(2)),and titanium-based tin-antimony(Ti/SnO_(2)-Sb_(2)O_(3))were employed as an-odes in the electrocatalytic oxidation system,with titanium and stainless steel plates serving as cathodes,to construct the optimal two-dimensional electrocatalytic oxidation system(2D-ECO)through cross-comparison ex-periments.Subsequently,using granular activated carbon(GAC),coconut shell biochar(CBC),walnut shell carbon(WBC),and bamboo charcoal(BBC)as particle electrodes,a 3D-ECO system was developed.The influence of var-ious operational parameters on treating TC-containing LL was investigated.The optimal operating parameters obtained from the study was:pH=5,current density of 30 mA/cm^(2),particle dosage of 7 g/L,particle size ranging from 1.70 to 2.00 mm,and electrode spacing of 4 cm.Under these conditions,the COD removal rate of 3D-ECO within three hours was 90.25%,the TC removal rate was 72.41%,and the NH_(3)-N removal rate was 39.52%.The removal of TC followed a pseudo-first-order kinetic model.Additionally,degradation mechanisms were elucidated through electron paramagnetic resonance(EPR)spectrometer and Tert-Butanol(TBA)quenching experiments,indicating that the degradation primarily occurred through a non-radical(1O_(2))pathway.This re-search offers a comprehensive analysis of the simultaneous breakdown of intricate LL matrices and TC,enhancing our comprehension of the degradation processes and underlying mechanisms. 展开更多
关键词 Particle electrodes TETRACYCLINE Landfill leachate Three-dimensional electrocatalytic oxidation Degradation mechanism
原文传递
Electrocatalytic glucose oxidation activity of Ni/CNT composites based on low-temperature discharge synthesis
11
作者 Yulong Men Haoxin Chen +5 位作者 Jianqiao Wang Jiafu Zou Yan Chen Ning Dou Peng Liu Yunxiang Pan 《Chinese Journal of Chemical Engineering》 2025年第10期114-122,共9页
Electrochemical reaction is emerging as a powerful approach for glucose detection and biomass conversion.However,it has been rarely explored for glucose detection and biomass conversion into valueadded chemicals.Previ... Electrochemical reaction is emerging as a powerful approach for glucose detection and biomass conversion.However,it has been rarely explored for glucose detection and biomass conversion into valueadded chemicals.Previously reported glucose oxidase reduction(GOR)catalysts exhibit issues such as low activity,limited detection range,poor sensitivity,and overreliance on noble metals.Here,we employ an impregnation method to load transition metal nickel onto carbon nanotubes(CNT)and fabricated Ni/CNT30 catalyst via a discharge process.Ni/CNT30 catalyst exhibits a remarkably high catalytic activity of up to 3336.7μA·cm^(-2)·mmol^(-1)·L,a detection limit of 2.43μmol·L^(-1),outstanding stability,and excellent resistance to impurities and interference,surpassing other noble metal-based and oxide-based materials.Hence,this material provides a new approach for the preparation of glucose sensors to achieve precise mobile measurement of glucose concentration and biofuel cells in future. 展开更多
关键词 Interface ELECTROCATALYSIS Nickel-based GLUCOSE oxidation
在线阅读 下载PDF
Effect of Substrate Micro-arc Oxidation Pretreatment on Microstructure and High-Temperature Oxidation Resistance of Si-Cr-Ti-Zr Coating on Ta12W Alloy
12
作者 Yang Fan Chang Jianxiu +2 位作者 Wang Xin Li Hongzhan Yan Peng 《稀有金属材料与工程》 北大核心 2026年第1期92-104,共13页
To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretre... To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretreatment was employed to construct a Ta_(2)O_(5)ceramic layer on the Ta12W alloy surface.Subsequently,a slurry spraying-vacuum sintering method was used to prepare a Si-Cr-Ti-Zr coating on the pretreated substrate.Comparative studies were conducted on the microstructure,phase composition,and isothermal oxidation resistance(at 1600℃)of the as-prepared coatings with and without the micro-arc oxidation ceramic layer.The results show that the Ta_(2)O_(5)layer prepared at 400 V is more continuous and has smaller pores than that prepared at 350 V.After microarc oxidation pretreatment,the Si-Cr-Ti-Zr coating on Ta12W alloy consists of three distinct layers:an upper layer dominated by Ti_(5)Si_(3),Ta_(5)Si_(3),and ZrSi;a middle layer dominated by TaSi_(2);a coating/substrate interfacial reaction layer dominated by Ta_(5)Si_(3).Both the Si-Cr-Ti-Zr coatings with and without the Ta_(2)O_(5)ceramic layer do not fail after isothermal oxidation at 1600℃for 5 h.Notably,the addition of the Ta2O5 ceramic layer reduces the high-temperature oxidation rate of the coating. 展开更多
关键词 tantalum-tungsten alloy silicide coating micro-arc oxidation reaction formation mechanism high-temperature oxidation
原文传递
Efficient electrocatalytic oxidation of glycerol toward formic acid over well-defined nickel nanoclusters capped by ligands
13
作者 Dan Yang Xiang Cui +8 位作者 Zhou Xu Qian Yan Yating Wu Chunmei Zhou Yihu Dai Xiaoyue Wan Yuguang Jin Leonid M.Kustov Yanhui Yang 《Chinese Journal of Catalysis》 2025年第9期185-197,共13页
The electrocatalytic oxidation of glycerol toward formic acid is one of the most promising pathways for transformation and utilization of glycerol.Herein,a series of well-defined Ni_(n)(SR)_(2n) nanoclusters(n=4,5,6;d... The electrocatalytic oxidation of glycerol toward formic acid is one of the most promising pathways for transformation and utilization of glycerol.Herein,a series of well-defined Ni_(n)(SR)_(2n) nanoclusters(n=4,5,6;denoted as Ni NCs)were prepared for the electrocatalytic glycerol oxidation toward formic acid,in which Ni_(6)-PET-50CV afforded the most excellent electrocatalytic performance with a high formic acid selectivity of 93% and a high glycerol conversion of 86%.This was attributed to the lowest charge transfer impedance and the most rapid reaction kinetics.Combined electrochemical measurements and X-ray absorption fine structure measurements revealed that the structures of Ni NCs remained intact after CV scanning pretreatment and electrocatalysis via forming the Ni–O bond.Additionally,the kinetic studies and in-situ Fourier transformed infrared suggested a sequential oxidation mechanism,in which the main reaction steps of glycerol→glyceraldehyde→glyceric acid were very rapid to produce a high selectivity of formic acid even though the low glycerol conversion.This work presents an opportunity to study Ni NCs for the efficient electrocatalytic oxidation of biomass-derived polyhydroxyl platform molecules to produce value-added carboxylic acids. 展开更多
关键词 Nickel nanocluster Well-defined structure Electrocatalysis Glycerol oxidation Formic acid
在线阅读 下载PDF
Boron‑Insertion‑Induced Lattice Engineering of Rh Nanocrystals Toward Enhanced Electrocatalytic Conversion of Nitric Oxide to Ammonia
14
作者 Peng Han Xiangou Xu +13 位作者 Weiwei Chen Long Zheng Chen Ma Gang Wang Lei Xu Ping Gu Wenbin Wang Qiyuan He Zhiyuan Zeng Jinlan Wang Dong Su Chongyi Ling Zhengxiang Gu Ye Chen 《Nano-Micro Letters》 2026年第3期85-102,共18页
Electrocatalytic nitric oxide(NO)reduction reaction(NORR)is a promising and sustainable process that can simultaneously realize green ammonia(NH3)synthesis and hazardous NO removal.However,current NORR performances ar... Electrocatalytic nitric oxide(NO)reduction reaction(NORR)is a promising and sustainable process that can simultaneously realize green ammonia(NH3)synthesis and hazardous NO removal.However,current NORR performances are far from practical needs due to the lack of efficient electrocatalysts.Engineering the lattice of metal-based nanomaterials via phase control has emerged as an effective strategy to modulate their intrinsic electrocatalytic properties.Herein,we realize boron(B)-insertion-induced phase regulation of rhodium(Rh)nanocrystals to obtain amorphous Rh_(4)B nanoparticles(NPs)and hexagonal close-packed(hcp)RhB NPs through a facile wet-chemical method.A high Faradaic efficiency(92.1±1.2%)and NH_(3) yield rate(629.5±11.0μmol h^(−1) cm^(−2))are achieved over hcp RhB NPs,far superior to those of most reported NORR nanocatalysts.In situ spectro-electrochemical analysis and density functional theory simulations reveal that the excellent electrocatalytic performances of hcp RhB NPs are attributed to the upshift of d-band center,enhanced NO adsorption/activation profile,and greatly reduced energy barrier of the rate-determining step.A demonstrative Zn-NO battery is assembled using hcp RhB NPs as the cathode and delivers a peak power density of 4.33 mW cm−2,realizing simultaneous NO removal,NH3 synthesis,and electricity output. 展开更多
关键词 Lattice engineering of nanomaterials Phase engineering of nanomaterials Wet-chemical synthesis Metal nanocatalysts Nitric oxide reduction reaction electrocatalytic ammonia synthesis
在线阅读 下载PDF
Recent advances in the preparation of glycolic acid by selective electrocatalytic oxidation of ethylene glycol
15
作者 Jie Chen Jing Li Zidong Wei 《Chinese Journal of Catalysis》 2025年第6期79-98,共20页
Ethylene glycol(EG)is a biomass derivative of polyethylene terephthalate(PET),and its electrocatalytic conversion into high-value chemicals has sparked widespread interest.This study reviews the most recent research d... Ethylene glycol(EG)is a biomass derivative of polyethylene terephthalate(PET),and its electrocatalytic conversion into high-value chemicals has sparked widespread interest.This study reviews the most recent research development in electrocatalysis-based EG to glycolic acid(GA)conversion.Firstly,the strategies and research results of modulating the electronic structure of catalysts for efficient selective GA production from EG are reviewed.Second,by reviewing the data of in-situ Fourier transform infrared spectroscopy and in-situ electrochemically attenuated total reflection surface enhanced infrared absorption spectroscopy,the reaction pathway and catalytic mechanism of EG partial oxidation to GA were clarified.Finally,the design and regulation of catalysts for selective oxidation of EG by electrocatalysis in the future are prospected. 展开更多
关键词 ELECTROCATALYSIS Ethylene glycol Glycolic acid Ethylene glycol oxidization reaction Noble metal catalyst
在线阅读 下载PDF
Advances in platinum-based materials for electrocatalytic ammonia oxidation:Mechanisms and research progress
16
作者 Youpeng Wang Yuan Ji +5 位作者 Chengbo Li Zhaoyang Chen Xu Li Tingting Zheng Qiu Jiang Chuan Xia 《Chinese Chemical Letters》 2025年第9期269-279,共11页
As an emergent energy carrier,ammonia benefits from a well-established industrial infrastructure for its transportation and production,positioning it as a promising candidate toward a carbon-free energy landscape.With... As an emergent energy carrier,ammonia benefits from a well-established industrial infrastructure for its transportation and production,positioning it as a promising candidate toward a carbon-free energy landscape.Within this context,the electrocatalytic ammonia oxidation reaction(AOR)is pivotal.Platinum(Pt),recognized as the most efficient AOR catalyst,has undergone extensive development over the years,yielding notable advancements across various domains,ranging from elucidating the reaction mechanism to exploring innovative materials.This review begins by elucidating the mechanism of ammonia oxidation,summarizing the evolution of the mechanism and the diverse intermediates identified through various detection methods.Subsequently,it outlines the research progress surrounding different Pt-based catalysts,followed by a discussion on standard protocols for electrochemical ammonia oxidation testing,which facilitates meaningful comparisons across studies and catalyzes the development of more efficient and potent catalysts.Moreover,the review addresses current challenges in ammonia oxidation and outlines potential future directions,providing a comprehensive outlook on the field. 展开更多
关键词 Ammonia energy Electrochemical ammonia oxidation reaction intermediate detection Pt-based catalyst Electrochemical protocols
原文传递
Crystal orientation dependent charge transfer dynamics and interfacial water configuration boosting photoelectrocatalytic water oxidation to H2O_(2)
17
作者 Yan Zhao Zhenming Tian +7 位作者 Qisen Jia Ting Yao Jiashu Li Yanan Wang Xuejing Cui Jing Liu Xin Chen Luhua Jiang 《Chinese Journal of Structural Chemistry》 2025年第7期35-48,共14页
Photoelectrochemical water oxidation reaction (PEC-WOR) as a sustainable route to produce H_(2)O_(2) is attractive but limited by low activity and poor product selectivity of photoanodes due to limited photogenerated ... Photoelectrochemical water oxidation reaction (PEC-WOR) as a sustainable route to produce H_(2)O_(2) is attractive but limited by low activity and poor product selectivity of photoanodes due to limited photogenerated charge efficiency and unfavorable thermodynamics. Herein, by crystal orientation engineering, the WO_(3) photoanode exposing (200) facets achieves both superior WOR activity (15.4 mA cm^(−2) at 1.76 VRHE) and high selectivity to H_(2)O_(2) (∼70%). Comprehensive experimental and theoretical investigations discover that the high PEC-WOR activity of WO_(3)-(200) is attributed to the rapid photogenerated charge separation/transfer both in bulk and at interfaces of WO_(3)-(200) facet, which reduces the charge transfer resistance. This, coupling with the unique defective hydrogen bonding network at the WO_(3)-(200)/electrolyte interface evidenced by operando PEC Fourier transform infrared spectroscopy, facilitating the outward-transfer of the WOR-produced H^(+), lowers the overall reaction barrier for the PEC-WOR. The superior selectivity of PEC-WOR to H_(2)O_(2) is ascribed to the unique defective hydrogen bonding network alleviated adsorption of ∗OH over the WO_(3)-(200) facet, which specially lowers the energy barrier of the 2-electron pathway, as compared to the 4-electron pathway. This work addresses the significant role of crystal orientation engineering on photoelectrocatalytic activity and selectivity, and sheds lights on the underlying PEC mechanism by understanding the water adsorption behaviors under illumination. The knowledge gained is expected to be extended to other photoeletrochemical reactions. 展开更多
关键词 Photoelectrocatalytic water oxidation SELECTIVITY Crystal orientation engineering Operando fourier transform infrared spectroscopy Interfacial water structure
原文传递
Atomically dispersed tungsten enhances CO tolerance in electrocatalytic hydrogen oxidation by regulating the 5d-orbital electrons of platinum
18
作者 Xu Zhang Peng Yu +4 位作者 Di Shen Bin Cai Tianyu Han Ying Xie Lei Wang 《Advanced Powder Materials》 2025年第3期67-77,共11页
The susceptibility of Pt catalyst surfaces to carbon monoxide(CO)poisoning in anodic hydrogen oxidation reaction(HOR)has been a critical constraint on the development of proton exchange membrane fuel cells(PEMFCs).Eff... The susceptibility of Pt catalyst surfaces to carbon monoxide(CO)poisoning in anodic hydrogen oxidation reaction(HOR)has been a critical constraint on the development of proton exchange membrane fuel cells(PEMFCs).Effectively regulating the electronic structure of Pt to enhance CO resistance is crucial for developing high-performance catalysts with robust anti-poisoning capabilities.Herein,the Pt/W@NCNF featured by Pt nanoparticles and atomical dispersed tungsten(W)sites on N-doped carbon nanofibers is developed for CO tolerance HOR catalyst.The presence of W enables the electron transfer from Pt,which promotes electron rearrangement in the Pt-5d orbitals.It not only optimizes the adsorption of H^(*) and CO^(*)on Pt,but also the OH^(*) intermediates adsorbed on the W sites oxidize the CO*adsorbed on Pt,thereby retaining more active sites for H_(2) adsorption and oxidation.The HOR exchange current density of Pt/W@NCNF reaches 1.35 times that of commercial Pt/C,and the limiting current density decreases by only 3.4%after introducing 1000 ppm CO in H_(2).Notably,the Pt/W@NCNF-based PEMFCs deliver markedly superior performance across a range of CO concentrations.The present study demonstrates that electronic modulation of Pt is an effective strategy for simultaneously achieving resistance to CO and promoted HOR activity. 展开更多
关键词 Modulation electron structure Atomical dispersed W sites Pt 5d-orbital Hydrogen oxidation reaction Anti-CO poisoning
在线阅读 下载PDF
P doped Ni_(3)S_(2)and Ni heterojunction bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled hydrogen evolution reaction
19
作者 Mengzhao Liu Jie Yin +4 位作者 Chengjian Wang Weiji Wang Yuan Gao Mengxia Yan Ping Geng 《Chinese Chemical Letters》 2025年第9期384-389,共6页
The biomass electrochemical oxidation coupled with hydrogen evolution reaction has received widespread attention due to its carbon-neutral and sustainable properties.The electrosynthesis of 2,5-furanodicarboxylic acid... The biomass electrochemical oxidation coupled with hydrogen evolution reaction has received widespread attention due to its carbon-neutral and sustainable properties.The electrosynthesis of 2,5-furanodicarboxylic acid(FDCA)from 5-hydroxymethylfurfural(HMF)oxidation is one of the most promising means for the production of bioplastic monomers.In this work,we constructed a novel P-doped Ni_(3)S_(2)and Ni heterojunction on nickel foam(P-Ni_(3)S_(2)/Ni/NF)using electrodeposition methods and thermal sulfuration techniques as a bifunctional catalyst for the simultaneous anodic oxidation of HMF to FDCA(HMFOR)and the cathodic hydrogen evolution reaction(HER).On one hand,the synergistic promotion of P doping and the heterojunction of Ni_(3)S_(2)and Ni accelerated electron transfer,and on the other hand,the structure of three-dimensional microsphere stacking on NF surface to form macropores enhances the exposure of catalytically active sites.The prepared P-Ni_(3)S_(2)/Ni/NF exhibited remarkable performance with high HMF conversion(99.2%),FDCA yield(98.1%),and Faraday efficiency(98.8%),and excellent stability with good product selectivity for 7 consecutive cycles,which stands at a higher level than majority of previously published electrocatalysts.Furthermore,P-Ni_(3)S_(2)/Ni/NF also shows a significant response in HER.By using HMFOR and HER as the anodic reaction and cathodic reaction,respectively,the biomass upgrading and hydrogen production can be carried out simultaneously.The synthesized P-Ni_(3)S_(2)/Ni/NF only need a voltage of 1.31V to achieve a current density of 10mA/cm^(2)in a two-electrode system of HMFOR and HER,which is much lower than that of 1.48 V in OER and HER process,thus potentially reducing the cost of this process. 展开更多
关键词 5-Hydroxymethylfurfural oxidation Hydrogen evolution reaction Bifunctional electrocatalyst P-doped Ni_(3)S_(2)
原文传递
Determining the Effect of Grain Size on the Microstructure and Oxidation of Nuclear Graphite
20
作者 Xu Qiao Xinlei Cao +6 位作者 Yuying Zhang Wei Chen Chunzhen Yang Zhengcao Li Xing Zhou Ke Shen Zhou Zhou 《Carbon Energy》 2026年第1期138-152,共15页
Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,... Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,understanding the oxidation behavior of nuclear graphite is essential for reactor safety.The influence of oxidation involves multiple factors,including temperature,sample size,oxidant,impurities,filler type and size,etc.The size of the filler particles plays a crucial role in this study.Five ultrafine-and superfine-grained nuclear graphite samples(5.9-34.4μm)are manufactured using identical raw materials and manufacturing processes.Isothermal oxidation tests conducted at 650℃-750℃ are used to study the oxidation behavior.Additionally,comprehensive characterization is performed to analyze the crystal structure,surface morphology,and nanoscale to microscale pore structure of the samples.Results indicate that oxidation behavior cannot be predicted solely based on filler grain size.Reactive site concentration,characterized by active surface area,dominates the chemical reaction kinetics,whereas pore tortuosity,quantified by the structural parameterΨ,plays a key role in regulating oxidant diffusion.These findings clarify the dual role of microstructure in oxidation mechanisms and establish a theoretical and experimental basis for the design of high-performance nuclear graphite capable of long-term service in high-temperature gas-cooled reactors. 展开更多
关键词 DIFFUSION nuclear graphite oxidation pore structure reaction rate
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部