期刊文献+
共找到181,776篇文章
< 1 2 250 >
每页显示 20 50 100
Pilot-scale Study on Electro-catalytic Oxidation of High-salt Wastewater from Coal Chemical Industry
1
作者 ZHAOHaixia 《外文科技期刊数据库(文摘版)自然科学》 2022年第6期059-062,共4页
Industrial wastewater from modern industrial production often contains excessive organic hazardous substances or excessive salts, acids and bases, etc. Traditional methods cannot play an effective role in the treatmen... Industrial wastewater from modern industrial production often contains excessive organic hazardous substances or excessive salts, acids and bases, etc. Traditional methods cannot play an effective role in the treatment of such wastewater. Moreover, since such wastewater is also not suitable for the growth of microorganisms, the way of wastewater treatment by microorganisms is also greatly limited. For this kind of industrial waste water, apart from the degradation of organic matters, the separation of inorganic salts and waste water is also required to meet the sewage discharge standard. Based on this, the article focuses on the coal chemical high salt wastewater electro-catalytic oxidation pilot study. 展开更多
关键词 coal chemical industry high-salt wastewater electro-catalytic oxidation pilot-scale study
原文传递
Electro-catalytic oxidation of phenol with Ti-base lead dioxide electrode 被引量:1
2
作者 王东田 魏杰 +1 位作者 于秀娟 杨红 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第1期19-23,共5页
The Ti base PbO 2 electrode prepared by electrodeposition of PbO 2 on the surface of titanium was used for electro catalytic oxidation of phenol in waste water. The experimental results show that the electrodeposition... The Ti base PbO 2 electrode prepared by electrodeposition of PbO 2 on the surface of titanium was used for electro catalytic oxidation of phenol in waste water. The experimental results show that the electrodeposition of PbO 2 at a higher current density for a short time, then followed by a lower current density can get a compact and combinative PbO 2 layer. The properties of a Ti/PbO 2 electrode with an interlayer of oxide are the best. When this kind of electrode is used to treat phenol containing waste water, the phenol removal rate is higher and the slot voltage is lower. In addition, by using the phenol removal rate as an index, the influences of electrolysis current density, mass transfer condition and pH were studied and the optimal condition was confirmed. 展开更多
关键词 electro catalysis Ti base oxide electrode PHENOL
在线阅读 下载PDF
The graphene nanopowder for electro-catalytic oxidation of dopamine and uric acid in the presence of ascorbic acid
3
作者 Yuan Bu Wenle Dai +2 位作者 Nan Li Xinran Zhao Xia Zuo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第5期685-689,共5页
The graphene nanopowder for electro-catalytic oxidation of dopamine and uric acid in the presence of ascorbic acid has been investigated by cyclic voltammetry,linear polarization and chronoamperometry.The graphene nan... The graphene nanopowder for electro-catalytic oxidation of dopamine and uric acid in the presence of ascorbic acid has been investigated by cyclic voltammetry,linear polarization and chronoamperometry.The graphene nanopowder modified electrode was prepared using the drop coating method,which displayed excellent electrocatalytic activity towards the oxidation of dopamine and uric acid compared with the bare glassy carbon electrode in phosphate buffer solution at pH=7.0.Linear responses for dopamine and uric acid were obtained in the ranges of3.3μmol/L to 249.1μmol/L and 6.7μmol/L to 386.3μmol/L with detection limits of 1.5μmol/L and 2.7μmol/L(S/N=3),respectively.The response time was less than 2 s in case of dopamine and 3 s in case of uric acid,respectively.The results demonstrated that the graphene nanopowder had potential for detecting dopamine and uric acid. 展开更多
关键词 graphene nanopowder electro-catalytic DOPAMINE uric acid
在线阅读 下载PDF
Cobalt phthalocyanine-graphene complex for electro-catalytic oxidation of dopamine 被引量:6
4
作者 Jinghe Yang Di Mu +3 位作者 Yongjun Gao Juan Tan Anhui Lu Ding Ma 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第3期265-269,共5页
Cobalt phthalocyanine-graphene (CoPc-Gr) complex are fabricated through 7r-Tr interaction of each components, with CoPc adsorbed/inserted on/in the graphene sheets. The obtained complex could be used in the electro-... Cobalt phthalocyanine-graphene (CoPc-Gr) complex are fabricated through 7r-Tr interaction of each components, with CoPc adsorbed/inserted on/in the graphene sheets. The obtained complex could be used in the electro-chemical detection of various medicines. CoPc-Gr modified glassy electrode shows excellent response to the electro-oxidation of dopamine (DA) and ascorbic acid (AA), much better than those of CoPc, graphene oxide (GrO) or graphene (Gr) modified electrode. Significantly, the detection of dopamine is a diffusion-controlled process, highly selective, and has a low detection limit and broad linear range. 展开更多
关键词 cobalt phthalocyanine-graphene DOPAMINE electro-oxidation selective detection
在线阅读 下载PDF
H_(2)O_(2) treatment boosts activity of NiFe layered double hydroxide for electro-catalytic oxidation of urea
5
作者 Jinshan Wei Jin Wang Xiaoming Sun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第7期152-160,共9页
Urea oxidation reaction(UOR)provides a method for hydrogen production besides wastewater treatment,but the current limited catalytic activity has prevented the application.Herein,we develop a novel H_(2)O_(2) treatmen... Urea oxidation reaction(UOR)provides a method for hydrogen production besides wastewater treatment,but the current limited catalytic activity has prevented the application.Herein,we develop a novel H_(2)O_(2) treatment strategy for tailoring the surface oxygen ligand of NiFe-layered double hydroxides(NiFe-LDH).The sample after H_(2)O_(2) treatment(NiFeOLDH)shows significant enhancement on UOR efficiency,with the potential of 1.37 V(RHE)to reach a current density of 10 mA/cm^(2).The boost is attributed to the richness adsorption O ligand on NiFeO-LDH as revealed by XPS and Raman analysis.DFT calculation indicates formation of two possible types of oxygen ligands:adsorbed oxygen on the surface and exposed from hydroxyl group,lowered the desorption energy of CO_(2) product,which lead to the lowered onset potential.This strategy is further extended to NiFe-LDH nano sheet on Ni foam to reach a higher current density of 440 mA/cm^(2) of UOR at 1.8 V(RHE).The facile surface O ligand manipulation is also expected to give chance to many other electro-catalytic oxidations. 展开更多
关键词 NiFe-LDH Urea oxidation reaction H_(2)O_(2)treatment ELECTRO-CATALYSIS Hydrogen production
原文传递
Effect of Substrate Micro-arc Oxidation Pretreatment on Microstructure and High-Temperature Oxidation Resistance of Si-Cr-Ti-Zr Coating on Ta12W Alloy
6
作者 Yang Fan Chang Jianxiu +2 位作者 Wang Xin Li Hongzhan Yan Peng 《稀有金属材料与工程》 北大核心 2026年第1期92-104,共13页
To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretre... To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretreatment was employed to construct a Ta_(2)O_(5)ceramic layer on the Ta12W alloy surface.Subsequently,a slurry spraying-vacuum sintering method was used to prepare a Si-Cr-Ti-Zr coating on the pretreated substrate.Comparative studies were conducted on the microstructure,phase composition,and isothermal oxidation resistance(at 1600℃)of the as-prepared coatings with and without the micro-arc oxidation ceramic layer.The results show that the Ta_(2)O_(5)layer prepared at 400 V is more continuous and has smaller pores than that prepared at 350 V.After microarc oxidation pretreatment,the Si-Cr-Ti-Zr coating on Ta12W alloy consists of three distinct layers:an upper layer dominated by Ti_(5)Si_(3),Ta_(5)Si_(3),and ZrSi;a middle layer dominated by TaSi_(2);a coating/substrate interfacial reaction layer dominated by Ta_(5)Si_(3).Both the Si-Cr-Ti-Zr coatings with and without the Ta_(2)O_(5)ceramic layer do not fail after isothermal oxidation at 1600℃for 5 h.Notably,the addition of the Ta2O5 ceramic layer reduces the high-temperature oxidation rate of the coating. 展开更多
关键词 tantalum-tungsten alloy silicide coating micro-arc oxidation reaction formation mechanism high-temperature oxidation
原文传递
Determining the Effect of Grain Size on the Microstructure and Oxidation of Nuclear Graphite
7
作者 Xu Qiao Xinlei Cao +6 位作者 Yuying Zhang Wei Chen Chunzhen Yang Zhengcao Li Xing Zhou Ke Shen Zhou Zhou 《Carbon Energy》 2026年第1期138-152,共15页
Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,... Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,understanding the oxidation behavior of nuclear graphite is essential for reactor safety.The influence of oxidation involves multiple factors,including temperature,sample size,oxidant,impurities,filler type and size,etc.The size of the filler particles plays a crucial role in this study.Five ultrafine-and superfine-grained nuclear graphite samples(5.9-34.4μm)are manufactured using identical raw materials and manufacturing processes.Isothermal oxidation tests conducted at 650℃-750℃ are used to study the oxidation behavior.Additionally,comprehensive characterization is performed to analyze the crystal structure,surface morphology,and nanoscale to microscale pore structure of the samples.Results indicate that oxidation behavior cannot be predicted solely based on filler grain size.Reactive site concentration,characterized by active surface area,dominates the chemical reaction kinetics,whereas pore tortuosity,quantified by the structural parameterΨ,plays a key role in regulating oxidant diffusion.These findings clarify the dual role of microstructure in oxidation mechanisms and establish a theoretical and experimental basis for the design of high-performance nuclear graphite capable of long-term service in high-temperature gas-cooled reactors. 展开更多
关键词 DIFFUSION nuclear graphite oxidation pore structure reaction rate
在线阅读 下载PDF
Sub-nano clusters:Advanced catalysts for low-temperature CO and volatile organic compounds catalytic oxidation
8
作者 Chuanqi Pan Guanting Di +2 位作者 Xiao Du Di Xu Baozhong Zhang 《Nano Research》 2026年第1期180-193,共14页
Effective control of gas-phase pollutants(volatile organic compounds(VOCs)and CO)is critical to human health and the ecological environment.Catalytic oxidation is one of the most promising technologies for achieving e... Effective control of gas-phase pollutants(volatile organic compounds(VOCs)and CO)is critical to human health and the ecological environment.Catalytic oxidation is one of the most promising technologies for achieving efficient volatile organic compounds and CO emission control.The subnano cluster catalyst can not only provide catalytic sites with multiple metal atoms,but also maintain full utilization efficiency.Almost all metal atoms in highly dispersed clusters can be used for adsorption and conversion of reactants.Recently,various types of sub-nano clusters,including subnano cluster oxides,have been developed and demonstrated excellent performance in low-temperature gas-phase pollutants combustion.In this mini review,we systematically summarize the structure,physicochemical properties,characterization,and applications of sub-nano cluster catalysts in catalytic oxidation of CO,methane,propane,propylene,toluene and its derivatives,formaldehyde and chlorinated volatile organic compounds.Finally,we have analyzed and discussed the problems and challenges faced by sub-nano cluster catalysts in both basic research and practical applications,providing a scientific basis for the design,synthesis,and application of efficient heterogeneous catalysts for CO and VOCs oxidation. 展开更多
关键词 sub-nano cluster LOW-TEMPERATURE catalytic oxidation volatile organic compounds
原文传递
Dynamic restructuring of Pd-Pt concave nanocubes boosts methanol oxidation
9
作者 Rongao Zhang Limin Liu +7 位作者 Jiayong Yang Zirui Xu Zixiang Huang Lihui Wu Haibin Pan Xusheng Zheng Ming Gong Yu Bai 《Nano Research》 2026年第1期1371-1378,共8页
Methanol oxidation reaction(MOR)is a key process in direct methanol fuel cells(DMFCs),determining both energy efficiency and stability.Despite efforts,the impact of dynamic structural changes of Pt-based catalysts on ... Methanol oxidation reaction(MOR)is a key process in direct methanol fuel cells(DMFCs),determining both energy efficiency and stability.Despite efforts,the impact of dynamic structural changes of Pt-based catalysts on MOR performance remains poorly understood.Here,we report on the impact mechanism of dynamic changes on MOR performance in the Pd-Pt concave nanocubes(CNCs)system.Pt with high-index facets exposed abundant active sites for methanol oxidation,resulting in an exceptional mass activity of 0.89 A·mg_(Pt)^(-1).Pd underwent an oxidationredeposition process during MOR,dynamically restructuring the catalyst and producing a volcano-type activity.Pd^(δ+)species generated during oxidative etching promoted OH*formation,accelerating CO oxidation on Pt sites,thus mitigating poisoning.With continued cycling,redeposited Pd partially blocked Pt sites,counteracting the positive effect of the generated Pd^(δ+).The dynamic balance of Pd oxidation and redeposition governed the activity evolution while sustaining the exceptional durability of Pd-Pt CNCs during prolonged cycling. 展开更多
关键词 methanol oxidation structure evolution oxidation-redeposition synchrotron radiation electron microscope
原文传递
Degradation of leachate and high concentration emerging pollutant tetracycline through electro oxidation
10
作者 Siyi Li Qiaona Xie +3 位作者 Mingdi Yang Ningrui Wu Yiting Lian Chengran Fang 《Journal of Environmental Sciences》 2026年第1期142-153,共12页
In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti... In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti-mization,for the degradation of landfill leachate(LL)containing elevated levels of tetracycline(TC),and explored its mechanism of action.Firstly,titanium-based ruthenium-iridium(Ti/RuO_(2)-IrO_(2)),titanium-based ruthenium-iridium-platinum(Ti/Pt-RuO_(2)-IrO_(2)),and titanium-based tin-antimony(Ti/SnO_(2)-Sb_(2)O_(3))were employed as an-odes in the electrocatalytic oxidation system,with titanium and stainless steel plates serving as cathodes,to construct the optimal two-dimensional electrocatalytic oxidation system(2D-ECO)through cross-comparison ex-periments.Subsequently,using granular activated carbon(GAC),coconut shell biochar(CBC),walnut shell carbon(WBC),and bamboo charcoal(BBC)as particle electrodes,a 3D-ECO system was developed.The influence of var-ious operational parameters on treating TC-containing LL was investigated.The optimal operating parameters obtained from the study was:pH=5,current density of 30 mA/cm^(2),particle dosage of 7 g/L,particle size ranging from 1.70 to 2.00 mm,and electrode spacing of 4 cm.Under these conditions,the COD removal rate of 3D-ECO within three hours was 90.25%,the TC removal rate was 72.41%,and the NH_(3)-N removal rate was 39.52%.The removal of TC followed a pseudo-first-order kinetic model.Additionally,degradation mechanisms were elucidated through electron paramagnetic resonance(EPR)spectrometer and Tert-Butanol(TBA)quenching experiments,indicating that the degradation primarily occurred through a non-radical(1O_(2))pathway.This re-search offers a comprehensive analysis of the simultaneous breakdown of intricate LL matrices and TC,enhancing our comprehension of the degradation processes and underlying mechanisms. 展开更多
关键词 Particle electrodes TETRACYCLINE Landfill leachate Three-dimensional electrocatalytic oxidation Degradation mechanism
原文传递
Hollow engineering of CoP with facilitated phase reconstruction for efficient electrocatalytic HMF oxidation
11
作者 Qiongyi Xie Hongchuan Fu +2 位作者 Kui Shen Liyu Chen Yingwei Li 《Nano Research》 2026年第1期216-223,共8页
Co-based materials usually undergo in-situ surface reconstruction during oxidation reactions,forming high-valent Co_(3)+/Co4+species as the true active sites.However,conventional bulk structures of Co-based materials ... Co-based materials usually undergo in-situ surface reconstruction during oxidation reactions,forming high-valent Co_(3)+/Co4+species as the true active sites.However,conventional bulk structures of Co-based materials hinder deep phase transformation,limiting the utilization of internal Co sites and suppressing catalytic efficiency.Here,we report the hollow engineering of cobalt phosphide(CoP)to facilitate exposure of Co sites and promote in-situ transformation to Co_(3+)/Co^(4+)active species for enhanced oxidation activity.Hollow CoP(H-CoP)is derived from ZIF-67 via controlled etching and phosphorization,with electrochemically active surface area 2.1 times that of conventional solid CoP(S-CoP).H-CoP achieves a current density of 10 mA·cm^(-2) at a lower potential(1.26 V vs.reversible hydrogen electrode(RHE))in 5-hydroxymethylfurfural oxidation reaction(HMFOR),with a HMF conversion of 99.5%,2,5-furandicarboxylic acid yield of 98.6%,and Faraday efficiency of 97.5% at 1.45 V(vs.RHE),much superior to S-CoP.When applied as a bifunctional catalyst in the HMFOR coupled with hydrogen evolution reaction(HER)electrolyzer,H-CoP requires an ultralow voltage of 1.64 V to reach 10 mA·cm^(-2),with the cell voltage reduced by 190 mV compared to the conventional oxygen evolution reaction coupled with HER water splitting system. 展开更多
关键词 biomass conversion 5-hydroxymethylfurfural oxidation reaction ELECTROCATALYST hollow structure structural transformation
原文传递
Boosting cumene hydrogen transfer via a Ru-based porphyrin covalent organic framework for tandem air epoxidation of olefins
12
作者 Dongpo Li Chao Xiong +4 位作者 Qianqian Mao Luying Xi Tianfu Yang Peng Hu Hongbing Ji 《Nano Research》 2026年第1期253-267,共15页
Constructing catalysts featuring an ordered structure,stable performance,and uniformly dispersed catalytic sites is vital for the epoxidation of small-molecular olefins.Here,we design catalysts by tracing the oxidatio... Constructing catalysts featuring an ordered structure,stable performance,and uniformly dispersed catalytic sites is vital for the epoxidation of small-molecular olefins.Here,we design catalysts by tracing the oxidationprocess origin and synthesize a series of highly dispersed metal porphyrin-based covalent organic frameworks(COFs)materials.The aim is to efficiently oxidize the C-H bonds of cumene by air to in-situ generate organic peroxides at a safe concentration,and integrate the multi-step oxidation method of cumene in industry into a one-step method for olefins’epoxidation.The carbonyl-ruthenium COF(Ru-COF-1)exhibits excellent performance,with 98% epoxide selectivity,1221.77 h^(-1) productivity,and over 95% selectivity after 9 cycles for 1-hexene.Analysis of structure-properties-catalytic relationships of Ru-COF-1 shows that,compared with Ru-porphyrins and metal-free COFs,the enhanced reaction performance mainly results from Ru metal introduction,which promotes benzylic proton transfer in cumene.Besides,Ru-COF-1’s porous,ordered structure aids oxygen enrichment,forming active peroxy radicals with the cumene carboncentered radicals formed on the catalyst surface.Ru-H sites then accelerate active oxygen transfer from peroxy radicals,enabling olefin tandem epoxidation.Density functional theory(DFT)calculations verify the reaction mechanism,and this work offers a reference for the design of catalysts for the green,safe,and efficient oxidation of olefins. 展开更多
关键词 porphyrin covalent organic framework dehydrogenation enhancement air oxidation tandem catalysis inert olefins
原文传递
High-temperature oxidation resistance of TiB_(2)coatings on molybdenum produced by molten salt electrophoretic deposition
13
作者 Qian Kou Chuntao Ge +6 位作者 Yanlu Zhou Wenjuan Qi Junjie Xu Weiliang Jin Jun Zhang Hongmin Zhu Saijun Xiao 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期282-291,共10页
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti... TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance. 展开更多
关键词 molten salt electrophoretic deposition MOLYBDENUM TiB_(2)coating high-temperature oxidation resistance
在线阅读 下载PDF
Saturated Alcohols Electrocatalytic Oxidations on Ni-Co Bimetal Oxide Featuring Balanced B-and L-Acidic Active Sites
14
作者 Junqing Ma Wenshu Luo +9 位作者 Xunlu Wang Xu Yu Jiacheng Jayden Wang Huashuai Hu Hanxiao Du Jianrong Zeng Wei Chen Minghui Yang Jiacheng Wang Xiangzhi Cui 《Nano-Micro Letters》 2026年第2期105-123,共19页
Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electro... Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electrocatalytic oxidations of saturated alcohols(C_(1)-C_(6))to selectively form formate using Ni Co hydroxide(Ni Co-OH)derived Ni Co_(2)O_(4)solid-acid electrocatalysts with balanced Lewis acid(LASs)and Brønsted acid sites(BASs).Thermal treatment transforms BASs-rich(89.6%)Ni Co-OH into Ni Co_(2)O_(4)with nearly equal distribution of LASs(53.1%)and BASs(46.9%)which synergistically promote adsorption and activation of OH-and alcohol molecules for enhanced oxidation activity.In contrast,BASs-enriched Ni Co-OH facilitates formation of higher valence metal sites,beneficial for water oxidation.The combined experimental studies and theoretical calculation imply the oxidation ability of C1-C6alcohols increases as increased number of hydroxyl groups and decreased HOMO-LUMO gaps:methanol(C_(1))<ethylene glycol(C_(2))<glycerol(C3)<meso-erythritol(C4)<xylitol(C5)<sorbitol(C6),while the formate selectivity shows the opposite trend from 100 to 80%.This study unveils synergistic roles of LASs and BASs,as well as hydroxyl group effect in electro-upgrading of alcohols using solid-acid electrocatalysts. 展开更多
关键词 Solid-acid electrocatalyst Alcohol oxidation reaction Bronsted acid sites Lewis acid sites C_(1)-C_(6)saturated alcohols
在线阅读 下载PDF
Dynamic active sites on plasma engraved Ni hydroxide for enhanced electro-catalytic urea oxidation 被引量:2
15
作者 Dan Li Yuefeng Zhang +19 位作者 Xiaomin Zhou Chao Huang Ying Wen Liangliang Liu Qingwei Li Yue Xu Yuzheng Wu Qingdong Ruan Yinghe Ma Fangyu Xiong Dezhi Xiao Pei Liu Guomin Wang Babak Mehrjou Bin Wang Hao Li Rongsheng Chen Hongwei Ni Zhiyuan Zeng Paul K.Chu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期150-158,I0005,共10页
The urea oxidization reaction(UOR)is an important anodic reaction in electro-catalytic energy conversion.However,the sluggish reaction kinetics and complex catalyst transformation in electrocatalysis require activity ... The urea oxidization reaction(UOR)is an important anodic reaction in electro-catalytic energy conversion.However,the sluggish reaction kinetics and complex catalyst transformation in electrocatalysis require activity improvement and better mechanistic understanding of the state-of-the-art Ni(OH)_(2) catalyst.Herein,by utilizing low-temperature argon(Ar)plasma processing,tooth-wheel Ni(OH)_(2) nanosheets self-supported on Ni foam(Ni(OH)_(2)-Ar)are demonstrated to have improved UOR activity compared to conventional Ni(OH)_(2).The theoretical assessment confirms that the edge has a smaller cation vacancy formation energy than the basal plane,consequently explaining the structural formation.Operando and quasi-operando methods are employed to investigate the dynamic evolution of the Ni(OH)_(2) film in UOR.The crucial dehydrogenation products of Ni(OH)_(5)O^(-)intermediates are identified to be stable on the etched edge and explain the enhanced UOR in the low potential region.In addition,the dynamic active sites are monitored to elucidate the reaction mechanism in different potential ranges. 展开更多
关键词 Urea oxidization reaction Ni hydroxide Plasma processing DEHYDROGENATION Active site
在线阅读 下载PDF
Elucidating the electro-catalytic oxidation of hydrazine over carbon nanotube-based transition metal single atom catalysts 被引量:3
16
作者 Jin Zhang Yaxin Wang +7 位作者 Chujie Yang Sian Chen Zhengjian Li Yi Cheng Haining Wang Yan Xiang Shanfu Lu Shuangyin Wang 《Nano Research》 SCIE EI CSCD 2021年第12期4650-4657,共8页
Elucidating the reaction mechanism of hydrazine oxidation reaction(HzOR)over carbon-based catalysts is highly propitious for the rational design of novel electrocatalysts for HzOR.In present work,isolated first-row tr... Elucidating the reaction mechanism of hydrazine oxidation reaction(HzOR)over carbon-based catalysts is highly propitious for the rational design of novel electrocatalysts for HzOR.In present work,isolated first-row transition metal atoms have been coordinated with N atoms on the graphite layers of carbon nanotubes via a M-N_(4)-C configuration(MSA/CNT,M=Fe,Co and Ni).The HzOR over the three single atom catalysts follows a predominant 4-electron reaction pathway to emit N_(2) and a negligible 1-electron pathway to emit trace of NH3,while their electrocatalytic activity for HzOR is dominated by the absorption energy of N2H4 on them.Furthermore,FeSA/CNT reverses the passivation effect on Fe/C and shows superior performance than CoSA/CNT and NiSA/CNT with a recorded high mass activity for HzOR due to the higher electronic charge of Fe over Co and Ni in the M-N_(4)-C configuration and the lowest absorption energy of N_(2)H_(4) on FeSA/CNT among the three MSA/CNT catalysts. 展开更多
关键词 hydrazine oxidation single atom catalyst transition metals differential electrochemical mass spectroscopy direct hydrazine fuel cell
原文传递
Soft-sensing modeling of chemical oxygen demand in photo-electro-catalytic oxidation treatment of papermaking wastewater
17
作者 Xuewen Zhang Yuefei Zhu +2 位作者 Xiaoquan Chen Wenhao Shen Ryan Lutes 《Journal of Bioresources and Bioproducts》 EI 2018年第2期71-77,共7页
Photo-electro-catalytic(PEC)oxidation has been widely recognized as an effective technology for advanced treatment of papermaking wastewater.To optimize the oxidation process,it is important of monitor continuously th... Photo-electro-catalytic(PEC)oxidation has been widely recognized as an effective technology for advanced treatment of papermaking wastewater.To optimize the oxidation process,it is important of monitor continuously the chemical oxygen demand(COD)of inflow and outflow wastewater.However,online COD sensors are expensive difficult to maintain,and therefore COD is usually analyzed off-line in laboratories in most cases.The objective of this study is to develop an inexpensive method for on-line COD measurement.The oxidation-reduction potential(ORP),pH,and dissolved oxygen(DO)of wastewater were selected as the key parameters,which consists of four different types of artificial neural network(ANNs)methods:multi-layer perceptron neural network(MLP),back propagation neural network(BPNN),radial basis neural network(RBNN)and generalized regression neural network(GRNN).These parameters were applied in the development of COD soft-sensing models.Six batches of papermaking wastewater with different pollution loads were treated with PEC technology over a period of 90 minutes,and a total of 546 data points was collected,including the on-line measurements of ORP,pH and DO,as well as off-line COD data.The 546 data points were divided into training set(410 data,75%of total)and validation set(136 data,25%of total).Four statistical criteria,namely,root mean square error(RMSE),mean absolute error(MAE),mean absolute relative error(MARE),and determination coefficient(R2)were used to assess the performance of the models developed with the training set of data.The comparison of results for the four ANN models for COD soft-sensing indicated that the RBNN model behaved most favorably,which possessed precise and predictable results with R2=0.913 for the validation set.Lastly,the proposed RBNN model was applied to a new batch of PEC oxidation of papermaking wastewater,and the results indicated that the model could be applied successfully for COD soft-sensing for the wastewater. 展开更多
关键词 COD PEC oxidation papermaking wastewater soft-sensing
在线阅读 下载PDF
High temperature oxidation behavior of TiNbMoAlSi refractory high entropy alloy developed by electron beam additive manufacturing 被引量:3
18
作者 Zhe Li Liang Wang +9 位作者 Yong Yang Chen Liu Baoxian Su Qingda Zhang Zhiwen Li Jiaqi Huang Binbin Wang Liangshun Luo Ruirun Chen Yanqing Su 《Journal of Materials Science & Technology》 2025年第12期131-146,共16页
Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-depo... Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys. 展开更多
关键词 Refractory high entropy alloy oxidation Electron beam freeform fabrication Multilayer oxide First principles calculations
原文传递
Impact of pitch fraction oxidation on the structure and sodium storage properties of derived carbon materials 被引量:1
19
作者 QI Su-xia YANG Tao +6 位作者 SONG Yan ZHAO Ning LIU Jun-qing TIAN Xiao-dong WU Jin-ru LI Hui LIU Zhan-jun 《新型炭材料(中英文)》 北大核心 2025年第2期421-439,共19页
Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation ac... Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g). 展开更多
关键词 Pitch fractions Air oxidation Derived carbon materials Na^(+)storage
在线阅读 下载PDF
High-Temperature Oxidation Property and Corrosion and Wear Resistance of Laser Cladding Co-based Coatings on Pure Zr Surface 被引量:1
20
作者 Xia Chaoqun Yang Bo +3 位作者 Liu Shuguang Zhang Bo Zhong Hua Li Qiang 《稀有金属材料与工程》 北大核心 2025年第6期1397-1409,共13页
Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,a... Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution. 展开更多
关键词 Zr metal laser cladding Co-based coating high-temperature oxidation resistance wear resistance
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部