The Generalized Markov Fluid Model(GMFM)is assumed for modeling sources in the network because it is versatile to describe the traffic fluctuations.In order to estimate resources allocations or in other words the chan...The Generalized Markov Fluid Model(GMFM)is assumed for modeling sources in the network because it is versatile to describe the traffic fluctuations.In order to estimate resources allocations or in other words the channel occupation of each source,the concept of effective bandwidth(EB)proposed by Kelly is used.In this paper we use an expression to determine the EB for this model which is of particular interest because it allows expressing said magnitude depending on the parameters of the model.This paper provides EB estimates for this model applying Kernel Estimation techniques in data networking.In particular we will study two differentiated cases:dispatches following a Gaussian and Exponential distribution.The performance of the proposed method is analyzed using simulated traffic traces generated by Monte Carlo Markov Chain algorithms.The estimation process worked much better in the Gaussian distribution case than in the Exponential one.展开更多
A novel Call Admission Control(CAC)scheme is proposed for multimedia CDMA systems.The effectivebandwidth of real time calls is reserved in the CAC with the consideration of active factors.The admission of non-real tim...A novel Call Admission Control(CAC)scheme is proposed for multimedia CDMA systems.The effectivebandwidth of real time calls is reserved in the CAC with the consideration of active factors.The admission of non-real timecalls is controlled by the system according to the residual effective bandwidth left from real time calls.Simulation resultshave shown that the novel CAC has greatly enlarged the admission region for real time calls and make the transmission de-lay of non-real time calls under an acceptable level.展开更多
This study applies a double snap-through mechanism on a box-type oscillating buoy(OB)wave energy converter(WEC)-floating breakwater integrated system(OB WEC-FB)to simultaneously achieve efficient wave energy conversio...This study applies a double snap-through mechanism on a box-type oscillating buoy(OB)wave energy converter(WEC)-floating breakwater integrated system(OB WEC-FB)to simultaneously achieve efficient wave energy conversion and nearshore protection within a low-frequency bandwidth.This mechanism consists of four oblique springs and can operate in mono-stable,bi-stable,and tri-stable modes.A viscous-flow-based numerical model is established to investigate the hydrodynamic performance and dynamic behavior of the proposed multi-stable breakwater.The operational performance of the breakwater at different dynamic modes is first compared.The effects of the springs’original length and stiffness coefficient are then analyzed.The results show that the tri-stable breakwater has a wider resonance frequency tuning range than the bi-stable one,both of which outperform the mono-stable and linear ones in shifting the effective bandwidth to a lower frequency range.For a tri-stable breakwater,a large distance between outermost potential wells is conducive to tuning resonance frequency,whereas shallow potential wells limit this effect.The increase in spring stiffness distinctly causes a higher potential barrier and thus constrains the motion response of the breakwater.A well-designed double snap-through mechanism can excite large-amplitude inter-well motion,tune the resonance frequency of breakwater from 3.98 to 1.96 rad/s,and decrease the lower limit of the effective transmission bandwidth from 3.75 to 3.00 rad/s.It is crucial for improving the power absorption and wave attenuation capabilities of multi-stable OB WEC-FB.This study contributes to the limited research on the implementation of a double snap-through mechanism on multifunctional marine structures.It establishes the underlying connection between nonlinear dynamic behaviors and hydrodynamic coefficients.展开更多
Three sets of MXene(Ti_(3)C_(2)T_(x))@nano-Fe_(1)Co_(0.8)Ni_(1)composites with 15,45,and 90 mg MXene were prepared by in-situ liquid-phase deposition to effectively investigate the impact of the relationship between M...Three sets of MXene(Ti_(3)C_(2)T_(x))@nano-Fe_(1)Co_(0.8)Ni_(1)composites with 15,45,and 90 mg MXene were prepared by in-situ liquid-phase deposition to effectively investigate the impact of the relationship between MXene(Ti_(3)C_(2)T_(x))and nano-Fe_(1)Co_(0.8)Ni_(1)magnetic particles on the electromagnetic absorption properties of the composites.The microstructure,static magnetic properties,and electromag-netic absorption performance of these composites were studied.Results indicate that the MXene@nano-Fe_(1)Co_(0.8)Ni_(1)composites were primarily composed of face-centered cubic crystal structure particles and MXene,with spherical Fe_(1)Co_(0.8)Ni_(1)particles uniformly distrib-uted on the surface of the multilayered MXene.The alloy particles had an average particle size of approximately 100 nm and exhibited good dispersion without noticeable particle aggregation.With the increase in MXene content,the specific saturation magnetic and coer-civity of the composite initially decreased and then increased,displaying typical soft magnetic properties.Compared with those of the Fe_(1)Co_(0.8)Ni_(1)magnetic alloy particles alone,MXene addition caused an increasing trend in the real and imaginary parts of the dielectric constant of the composite.Meanwhile,the real and imaginary parts of the magnetic permeability exhibit decreasing trend.With the in-crease in MXene addition,the material attenuation constant increased and the impedance matching decreased.The minimum reflection loss increased,and the maximum effective absorption bandwidth decreased.When the MXene addition was 90 mg,the composite exhib-ited a minimum reflection loss of-46.9 dB with a sample thickness of 1.1 mm and a maximum effective absorption bandwidth of 3.60 GHz with a sample thickness of 1.0 mm.The effective absorption bandwidth of the composites and their corresponding thicknesses showed a decreasing trend with the increase in MXene addition,reducing by 50%from 1.5 mm without MXene addition to 1 mm with 90 mg of MXene addition.展开更多
Cobalt nickel bimetallic oxides(NiCo_(2)O_(4))have received numerous attentions in terms of their controllable morphology,high temperature,corrosion resistance and strong electromagnetic wave(EMW)absorption capability...Cobalt nickel bimetallic oxides(NiCo_(2)O_(4))have received numerous attentions in terms of their controllable morphology,high temperature,corrosion resistance and strong electromagnetic wave(EMW)absorption capability.However,broadening the absorption bandwidth is still a huge challenge for NiCo_(2)O_(4)-based absorbers.Herein,the unique NiCo_(2)O_(4)@C core-shell microcubes with hollow structures were fabricated via a facile sacrificial template strategy.The concentration of oxygen vacancies and morphologies of the three-dimensional(3D)cubic hollow core-shell NiCo_(2)O_(4)@C framework were effectively optimized by adjusting the calcination temperature.The specially designed 3D framework structure facilitated the multiple reflections of incident electromagnetic waves and provided rich interfaces between multiple components,generating significant interfacial polarization losses.Dipole polarizations induced by oxygen vacancies could further enhance the attenuation ability for the incident EM waves.The optimized NiCo_(2)O_(4)@C hollow microcubes exhibit superior EMW absorption capability with minimum RL(RLmin)of-84.45 dB at 8.4 GHz for the thickness of 3.0 mm.Moreover,ultrabroad effective absorption bandwidth(EAB)as large as 12.48 GHz(5.52-18 GHz)is obtained.This work is believed to illuminate the path to synthesis of high-performance cobalt nickel bimetallic oxides for EMW absorbers with excellent EMW absorption capability,especially in broadening effective absorption bandwidth.展开更多
The easy-plane anisotropy of the Y_(2)Co_(17)rare earth soft magnetic alloy has high saturation magnetization and operating frequency,and good impedance matching.Therefore,it is expected to become a kind of high-perfo...The easy-plane anisotropy of the Y_(2)Co_(17)rare earth soft magnetic alloy has high saturation magnetization and operating frequency,and good impedance matching.Therefore,it is expected to become a kind of high-performance microwave absorbing material.In this paper,Y_(2)Co_(17)alloy was prepared by a reduction-diffusion method,and its micropowder was prepared as polyurethane(PU)based composite absorbing materials(Y_(2)Co_(17)/PU composites).The microwave properties of composites with different volume fractions were calculated.The composites showed outstanding absorption characteristics in the range of 20-30 vol%,and the minimum reflection loss(RL)was less than-50 d B.When the volume fraction was25%,the effective absorption bandwidth could cover the X-band at a thickness of 1.5 mm,and the Ku-band at a thickness of1.08 mm.The absorption mechanism was analyzed by the interface reflection model.The RL absorption peak bandwidth mechanism was discussed by using the amplitude relation and calculating the effective absorption bandwidth at different thicknesses.The effective absorption bandwidth values were in good agreement with the theoretical expectation.展开更多
During seismic data acquisition, a high-sensitivity geophone with a high inherent frequency can increase high frequency energy by suppressing low frequency signals. This could cause a worse response at low frequencies...During seismic data acquisition, a high-sensitivity geophone with a high inherent frequency can increase high frequency energy by suppressing low frequency signals. This could cause a worse response at low frequencies. If the advantages of high-sensitivity data and conventional data are combined, the effective bandwidth will be broadened. Considering this, we propose a partial frequency band match filtering method which can combine the advantages of both high frequency and conventional frequency ranges. By introducing Ricker wavelets with different dominant frequencies and amplitudes, we established a theoretical model which possesses characteristics of both types of seismic data and demonstrates the feasibility of the partial frequency band match filtering method. A test using single shot records shows the effectiveness of this method for widening the effective frequency band.展开更多
A flame length optimization scheme is proposed for multi-antenna downlink systems to guarantee diverse delay- bound violation probability constraints. Due to the difficulties of extracting the quality of service (QoS...A flame length optimization scheme is proposed for multi-antenna downlink systems to guarantee diverse delay- bound violation probability constraints. Due to the difficulties of extracting the quality of service (QoS) metrics from the conventional physical-layer channel models, the link-layer models named effective bandwidth and effective capacity are applied to statistically characterize the source traffic patterns and the queuing service dynamics. With these link-layer models, the source traffic process and the channel service process are mapped to certain QoS parameters. The packet delay-bound violation probability constraints are converted into minimum data rate constraints and the optimization problem is thus formulated into simultaneous inequalities. With the assumption of ergodic block-fading channels, the optimal frame lengths of single-user and multiuser systems are calculated respectively by numerical iterative methods. Theoretical analyses and simulation results show that the given delay-bound violation probability constraints are well satisfied with the optimal frame length.展开更多
This paper studies statistical multiplexing performance by input of video traffic and data traffic. The inputs have different Qos requirements such as loss and delay jitter. By applying a modified FBM model, we presen...This paper studies statistical multiplexing performance by input of video traffic and data traffic. The inputs have different Qos requirements such as loss and delay jitter. By applying a modified FBM model, we present methods to estimate effective bandwidth of the aggregated traffic. Simulations were performed to evaluate effective bandwidth. The comparison between the estimation and the simulation shows that the estimations can give correct data for the effective bandwidths in terms of our interests. The analysis of gain by using priority multiplexing also addresses proper Qos configuration for the inputs in order to achieve positive gains.展开更多
Modelling WiMAX network traffic based on the self-similarity character is better than the traditional model based on the Poisson process, because the former can provide more accurate calculation for effective bandwidt...Modelling WiMAX network traffic based on the self-similarity character is better than the traditional model based on the Poisson process, because the former can provide more accurate calculation for effective bandwidth. In this paper we propose a WiMAX network traffic model based on M/Pareto model to describe its self-similarity character. Then we deduce the average transmission rate and the variance coefficient for the FBM traffic model by the M/Pareto model, and get the Hurst parameter of the FBM traffic model by statistical analysis method. By the FBM traffic model we get a formula for calculating the effective bandwidth. Accordingly, we propose a modified self-similar call admission control algorithm (SS-CAC). SS-CAC can avoid measuring the parameter values of FBM traffic flow to do call admission control. Simulation results show that SS-CAC greatly reduces the call blocking rate and improves the bandwidth utilization.展开更多
The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar st...The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar stealth for protecting the weapons from being detected.Many nanomaterials were studied as MAMs,but not all of them have the satisfactory performance.Recently,metal-organic frameworks(MOFs) have attracted tremendous attention owing to their tunable chemical structures,diverse properties,large specific surface area and uniform pore distribution.MOF can transform to porous carbon(PC) which is decorated with metal species at appropriate pyrolysis temperature.However,the loss mechanism of pure MOF-derived PC is often relatively simple.In order to further improve the MA performance,the MOFs coupled with other loss materials are a widely studied method.In this review,we summarize the theories of MA,the progress of different MOF-derived PC-based MAMs,tunable chemical structures incorporated with dielectric loss or magnetic loss materials.The different MA performance and mechanisms are discussed in detail.Finally,the shortcomings,challenges and perspectives of MOF-derived PC-based MAMs are also presented.We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application.展开更多
This paper presents an experimental study of the broadband energy harvesting and dynamic responses of an L-shaped piezoelectric cantilever beam.Experimental results show that the L-shaped piezoelectric beam generates ...This paper presents an experimental study of the broadband energy harvesting and dynamic responses of an L-shaped piezoelectric cantilever beam.Experimental results show that the L-shaped piezoelectric beam generates two optimal voltage peaks when the horizontal beam size is similar to the vertical beam size.Several optimized L-shaped piezoelectric cantilever beam structures are proposed.Power generation using the inverted bistable L-shaped beam is better.It is observed experimentally that the inverted bistable L-shaped beam structure shows obvious bistable characteristics and hard spring characteristics.Furthermore,the corresponding relationship between the bistable phase portrait and the potential energy curve is found in the experiment.This is the first time that a phase portrait for stiffness hardening of an L-shaped beam has been found experimentally.These results can be applied to analysis of new piezoelectric power generation structures.展开更多
To solve the electromagnetic pollution,herein,a CoFe_(2)O_(4)/C/PANI composite was developed by a green route,which was constructed with spinel of metal oxide,graphitized carbon and conductive polymer composites.Benef...To solve the electromagnetic pollution,herein,a CoFe_(2)O_(4)/C/PANI composite was developed by a green route,which was constructed with spinel of metal oxide,graphitized carbon and conductive polymer composites.Benefiting from the designable interfaces and increased dipoles,the microwave dielectric response capability can be boosted significantly and resulted in the enhanced microwave absorbing performance.As revealed by the reflection loss curve,the minimum reflection loss(RLmin) reached-51.81 dB at 12.4 GHz under a matched thickness of 2.57 mm.At 2.5 mm,the effective absorbing band covered 8.88 GHz,suggesting the desirable wideband feature.In our case,the method of utilization of a novel green way to fabricate multiple-component EM absorber can be a promising candidate for high-performance EM absorber.展开更多
Traditional ferrites are of poor electromagnetic wave(EMW) absorption while doping rare earth elements(REEs) can greatly enhance their permeability to improve the EMW loss performance.In this study,Co-Zn ferrite nanop...Traditional ferrites are of poor electromagnetic wave(EMW) absorption while doping rare earth elements(REEs) can greatly enhance their permeability to improve the EMW loss performance.In this study,Co-Zn ferrite nanoparticles doped with various amounts of REEs(Gd^(3+),Nd^(3+)and Pr^(3+)) were synthesized by a hydrothermal method,and their particle morphology and an EMW absorption performance were characterized by using transmission electron microscopy(TEM) and a Vector network analyzer(VNA).The results show that the initial spherical Co-Zn ferrite nanoparticles present an irregular quadrilateral structure after Gd^(3+)doping,and the average particle size of Co_(0.5)Zn_(0.5-x)Gd_(x)Fe_(2) O_(4) increases from 26 to 50 nm with x increasing from 0 to 0.35.At x of 0.25,the reflectivity absorbance achieves-27.94 dB at 18 GHz with the effective absorption bandwidth(EAB) of 4.08 GHz at a sample thickness of 2.5 mm.When Nd^(3+)doping amount reaches x=0.3,the minimum reflection loss(RL)is-25.63 dB at 18 GHz and EAB is 3.91 GHz.Doping Pr^(3+)(x=0.25) in the sample broadens EAB,and the minimum RL is-16.1 dB at 16.81 GHz and EAB is 7.31 GHz.This study shows that the magnetic moment produced by doping REES can form magnetic domains,which affects the incident EMW and improves the magnetic loss.It is expected that REEs-doped Co-Zn ferrite nanoparticles can be used as efficient electromagnetic shielding materials in aerospace.展开更多
In this work,hierarchical hybrid composites consisting of porous three-dimensional reduced graphene oxide(3D-rGO)skeleton and lamellar boron nitride(BN)/silicon carbide(SiC)coatings are prepared by chemical vapor infi...In this work,hierarchical hybrid composites consisting of porous three-dimensional reduced graphene oxide(3D-rGO)skeleton and lamellar boron nitride(BN)/silicon carbide(SiC)coatings are prepared by chemical vapor infiltration(CVI)process.The graphene framework prepared by 3D printing and frozen self-assembly exhibits a lightweight structure and a perforated conductive network,which extends the transmission path of incident microwaves.The introduced ceramic coatings can effectively tune the impedance matching degree and supply a lossy phase,and the hierarchical structure of the composites enhances the multiple scattering of the incident microwaves.As expected,the 3D-rGO/BN/SiC composites possess an excellent absorbing performance with a minimum reflection loss value of–37.8 dB,and the widest effective absorbing bandwidth(RL<–10 dB)of 5.90 GHz is obtained.The controllable fabrication of composites can provide a guideline for rational design and fabrication of high-performance electromagnetic waves absorbing materials in practical applications.展开更多
Hollow engineering is considered to be an essential subfield in promoting electromagnetic(EM)wave absorption intensity and realizing lightweight characteristics.However,the enhancement of the effective absorption band...Hollow engineering is considered to be an essential subfield in promoting electromagnetic(EM)wave absorption intensity and realizing lightweight characteristics.However,the enhancement of the effective absorption bandwidth(EAB)still faces considerable challenges.Herein,hollow carbon nanocages with CoFe_(2)Se_(4)quantum dots(HCNs@CoFe_(2)Se_(4)-QDs)with superior EM wave absorption intensity and ultra broadband EAB are produced by using tightly arranged SiO_(2)spheres as hard-template materials.Specifically,the removal of SiO_(2)templates inevitably results in the formation of a hollow cavity,which is favorable for optimizing impedance matching and increasing the absorption intensity.In addition,the incorporation of selenium powder effectively increases the number of heterogeneous interfaces by forming CoFe_(2)Se_(4)quantum dots(QDs)during the pyrolysis process,leading to strengthened interfacial polarization and ultra broadband EAB.As a result,superior EM wave attenuation with a minimum reflection loss(RL)of−67.6 dB and an EAB of 11.4 GHz is achieved with only a 20 wt%filler ratio.This design concept of hollow engineering with magnetic QDs provides inspiration for optimizing the EM wave absorption intensity and simultaneously promoting the absorption bandwidth.展开更多
In this paper, we theoretically deduce the expressions of half-wave voltage and 3-dB modulation bandwidth in which conductor loss is taken into account. The results suggest that it will affect the theoretical values o...In this paper, we theoretically deduce the expressions of half-wave voltage and 3-dB modulation bandwidth in which conductor loss is taken into account. The results suggest that it will affect the theoretical values of half-wave voltage and bandwidth as well as the optimized electrode's dimension whether considering the conductor loss or not. As an example, we present a Mach-Zehnder (MZ) type polymer waveguide amplitude modulator. The half-wave voltage increases by 1 V and the 3-dB bandwidth decreases by 30% when the conductor loss is taken into account. Besides, the effects of impedance mismatching and velocity mismatching between microwave and light wave on the half-wave voltage, and 3-dB bandwidth are discussed.展开更多
We compared efficiencies of different PMD compensation feedback methods against transmission signal bandwidth, including NRZ, RZ, CRZ format under various duty cycles. We found that the critical factor determining the...We compared efficiencies of different PMD compensation feedback methods against transmission signal bandwidth, including NRZ, RZ, CRZ format under various duty cycles. We found that the critical factor determining the efficiency of PMD compensation is not the modulation format, but the spectral bandwidth of the transmission signal.展开更多
An optical bandwidth analysis of a quantum-well (16 nm) transistor laser with 150-μm cavity length using a charge control model is reported in order to modify the quantum-well location through the base region. At c...An optical bandwidth analysis of a quantum-well (16 nm) transistor laser with 150-μm cavity length using a charge control model is reported in order to modify the quantum-well location through the base region. At constant bias current, the simulation shows significant enhancement in optical bandwidth due to moving the quantum well in the direction of collector-base junction. No remarkable resonance peak, limiting factor in laser diodes, is observed during this modification in transistor laser structure. The method can be utilized for transistor laser structure design.展开更多
This paper proposes a grouping decision algorithm for random access networks with the carrier sense multiple access (CSMA) mechanism, which can balance the traffic load and solve the hidden terminal issue. Considering...This paper proposes a grouping decision algorithm for random access networks with the carrier sense multiple access (CSMA) mechanism, which can balance the traffic load and solve the hidden terminal issue. Considering the arrival characteristics of terminals and quality of service (QoS) requirements, the traffic load is evaluated based on the effective bandwidth theory. Additionally, a probability matrix of hidden terminals is constructed to take into account the dynamic nature of hidden terminal relations. In the grouping process, an income function is established with a view to the benefits of decreasing the probability of hidden terminal collisions and load balancing. Then, we introduce the grey wolf optimization (GWO) algorithm to implement the grouping decision. Simulation results demonstrate that the grouping algorithm can effectively alleviate the performance degradation and facilitate the management of network resources.展开更多
文摘The Generalized Markov Fluid Model(GMFM)is assumed for modeling sources in the network because it is versatile to describe the traffic fluctuations.In order to estimate resources allocations or in other words the channel occupation of each source,the concept of effective bandwidth(EB)proposed by Kelly is used.In this paper we use an expression to determine the EB for this model which is of particular interest because it allows expressing said magnitude depending on the parameters of the model.This paper provides EB estimates for this model applying Kernel Estimation techniques in data networking.In particular we will study two differentiated cases:dispatches following a Gaussian and Exponential distribution.The performance of the proposed method is analyzed using simulated traffic traces generated by Monte Carlo Markov Chain algorithms.The estimation process worked much better in the Gaussian distribution case than in the Exponential one.
文摘A novel Call Admission Control(CAC)scheme is proposed for multimedia CDMA systems.The effectivebandwidth of real time calls is reserved in the CAC with the consideration of active factors.The admission of non-real timecalls is controlled by the system according to the residual effective bandwidth left from real time calls.Simulation resultshave shown that the novel CAC has greatly enlarged the admission region for real time calls and make the transmission de-lay of non-real time calls under an acceptable level.
基金supported by the National Natural Science Foundation of China Program(No.51739010).
文摘This study applies a double snap-through mechanism on a box-type oscillating buoy(OB)wave energy converter(WEC)-floating breakwater integrated system(OB WEC-FB)to simultaneously achieve efficient wave energy conversion and nearshore protection within a low-frequency bandwidth.This mechanism consists of four oblique springs and can operate in mono-stable,bi-stable,and tri-stable modes.A viscous-flow-based numerical model is established to investigate the hydrodynamic performance and dynamic behavior of the proposed multi-stable breakwater.The operational performance of the breakwater at different dynamic modes is first compared.The effects of the springs’original length and stiffness coefficient are then analyzed.The results show that the tri-stable breakwater has a wider resonance frequency tuning range than the bi-stable one,both of which outperform the mono-stable and linear ones in shifting the effective bandwidth to a lower frequency range.For a tri-stable breakwater,a large distance between outermost potential wells is conducive to tuning resonance frequency,whereas shallow potential wells limit this effect.The increase in spring stiffness distinctly causes a higher potential barrier and thus constrains the motion response of the breakwater.A well-designed double snap-through mechanism can excite large-amplitude inter-well motion,tune the resonance frequency of breakwater from 3.98 to 1.96 rad/s,and decrease the lower limit of the effective transmission bandwidth from 3.75 to 3.00 rad/s.It is crucial for improving the power absorption and wave attenuation capabilities of multi-stable OB WEC-FB.This study contributes to the limited research on the implementation of a double snap-through mechanism on multifunctional marine structures.It establishes the underlying connection between nonlinear dynamic behaviors and hydrodynamic coefficients.
文摘Three sets of MXene(Ti_(3)C_(2)T_(x))@nano-Fe_(1)Co_(0.8)Ni_(1)composites with 15,45,and 90 mg MXene were prepared by in-situ liquid-phase deposition to effectively investigate the impact of the relationship between MXene(Ti_(3)C_(2)T_(x))and nano-Fe_(1)Co_(0.8)Ni_(1)magnetic particles on the electromagnetic absorption properties of the composites.The microstructure,static magnetic properties,and electromag-netic absorption performance of these composites were studied.Results indicate that the MXene@nano-Fe_(1)Co_(0.8)Ni_(1)composites were primarily composed of face-centered cubic crystal structure particles and MXene,with spherical Fe_(1)Co_(0.8)Ni_(1)particles uniformly distrib-uted on the surface of the multilayered MXene.The alloy particles had an average particle size of approximately 100 nm and exhibited good dispersion without noticeable particle aggregation.With the increase in MXene content,the specific saturation magnetic and coer-civity of the composite initially decreased and then increased,displaying typical soft magnetic properties.Compared with those of the Fe_(1)Co_(0.8)Ni_(1)magnetic alloy particles alone,MXene addition caused an increasing trend in the real and imaginary parts of the dielectric constant of the composite.Meanwhile,the real and imaginary parts of the magnetic permeability exhibit decreasing trend.With the in-crease in MXene addition,the material attenuation constant increased and the impedance matching decreased.The minimum reflection loss increased,and the maximum effective absorption bandwidth decreased.When the MXene addition was 90 mg,the composite exhib-ited a minimum reflection loss of-46.9 dB with a sample thickness of 1.1 mm and a maximum effective absorption bandwidth of 3.60 GHz with a sample thickness of 1.0 mm.The effective absorption bandwidth of the composites and their corresponding thicknesses showed a decreasing trend with the increase in MXene addition,reducing by 50%from 1.5 mm without MXene addition to 1 mm with 90 mg of MXene addition.
基金This work was supported by Natural Science Foundation of Shandong Province(ZR2022ME089)National Natural Science Foundation of China(52207249)Yantai Basic Research Project(2022JCYJ04).
文摘Cobalt nickel bimetallic oxides(NiCo_(2)O_(4))have received numerous attentions in terms of their controllable morphology,high temperature,corrosion resistance and strong electromagnetic wave(EMW)absorption capability.However,broadening the absorption bandwidth is still a huge challenge for NiCo_(2)O_(4)-based absorbers.Herein,the unique NiCo_(2)O_(4)@C core-shell microcubes with hollow structures were fabricated via a facile sacrificial template strategy.The concentration of oxygen vacancies and morphologies of the three-dimensional(3D)cubic hollow core-shell NiCo_(2)O_(4)@C framework were effectively optimized by adjusting the calcination temperature.The specially designed 3D framework structure facilitated the multiple reflections of incident electromagnetic waves and provided rich interfaces between multiple components,generating significant interfacial polarization losses.Dipole polarizations induced by oxygen vacancies could further enhance the attenuation ability for the incident EM waves.The optimized NiCo_(2)O_(4)@C hollow microcubes exhibit superior EMW absorption capability with minimum RL(RLmin)of-84.45 dB at 8.4 GHz for the thickness of 3.0 mm.Moreover,ultrabroad effective absorption bandwidth(EAB)as large as 12.48 GHz(5.52-18 GHz)is obtained.This work is believed to illuminate the path to synthesis of high-performance cobalt nickel bimetallic oxides for EMW absorbers with excellent EMW absorption capability,especially in broadening effective absorption bandwidth.
基金Project supported by the National Key R&D Program of China(Grant No.2021YFB3501302)the National Natural Science Foundation of China(Grant No.51731001)supported by the State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization’s key of research and development projects。
文摘The easy-plane anisotropy of the Y_(2)Co_(17)rare earth soft magnetic alloy has high saturation magnetization and operating frequency,and good impedance matching.Therefore,it is expected to become a kind of high-performance microwave absorbing material.In this paper,Y_(2)Co_(17)alloy was prepared by a reduction-diffusion method,and its micropowder was prepared as polyurethane(PU)based composite absorbing materials(Y_(2)Co_(17)/PU composites).The microwave properties of composites with different volume fractions were calculated.The composites showed outstanding absorption characteristics in the range of 20-30 vol%,and the minimum reflection loss(RL)was less than-50 d B.When the volume fraction was25%,the effective absorption bandwidth could cover the X-band at a thickness of 1.5 mm,and the Ku-band at a thickness of1.08 mm.The absorption mechanism was analyzed by the interface reflection model.The RL absorption peak bandwidth mechanism was discussed by using the amplitude relation and calculating the effective absorption bandwidth at different thicknesses.The effective absorption bandwidth values were in good agreement with the theoretical expectation.
基金financially supported by the National Natural Science Foundation of China(No.41104072)College Students Science and Technology Innovation Activity Plan in Zhejiang Province(No. 2012R401214)
文摘During seismic data acquisition, a high-sensitivity geophone with a high inherent frequency can increase high frequency energy by suppressing low frequency signals. This could cause a worse response at low frequencies. If the advantages of high-sensitivity data and conventional data are combined, the effective bandwidth will be broadened. Considering this, we propose a partial frequency band match filtering method which can combine the advantages of both high frequency and conventional frequency ranges. By introducing Ricker wavelets with different dominant frequencies and amplitudes, we established a theoretical model which possesses characteristics of both types of seismic data and demonstrates the feasibility of the partial frequency band match filtering method. A test using single shot records shows the effectiveness of this method for widening the effective frequency band.
基金The National Science and Technology M ajor Project(No.2012ZX03004005-003)the National Natural Science Foundation of China(No.61171081,61201175)the Research Fund of National M obile Communications Research Laboratory of Southeast University(No.2014A03)
文摘A flame length optimization scheme is proposed for multi-antenna downlink systems to guarantee diverse delay- bound violation probability constraints. Due to the difficulties of extracting the quality of service (QoS) metrics from the conventional physical-layer channel models, the link-layer models named effective bandwidth and effective capacity are applied to statistically characterize the source traffic patterns and the queuing service dynamics. With these link-layer models, the source traffic process and the channel service process are mapped to certain QoS parameters. The packet delay-bound violation probability constraints are converted into minimum data rate constraints and the optimization problem is thus formulated into simultaneous inequalities. With the assumption of ergodic block-fading channels, the optimal frame lengths of single-user and multiuser systems are calculated respectively by numerical iterative methods. Theoretical analyses and simulation results show that the given delay-bound violation probability constraints are well satisfied with the optimal frame length.
文摘This paper studies statistical multiplexing performance by input of video traffic and data traffic. The inputs have different Qos requirements such as loss and delay jitter. By applying a modified FBM model, we present methods to estimate effective bandwidth of the aggregated traffic. Simulations were performed to evaluate effective bandwidth. The comparison between the estimation and the simulation shows that the estimations can give correct data for the effective bandwidths in terms of our interests. The analysis of gain by using priority multiplexing also addresses proper Qos configuration for the inputs in order to achieve positive gains.
文摘Modelling WiMAX network traffic based on the self-similarity character is better than the traditional model based on the Poisson process, because the former can provide more accurate calculation for effective bandwidth. In this paper we propose a WiMAX network traffic model based on M/Pareto model to describe its self-similarity character. Then we deduce the average transmission rate and the variance coefficient for the FBM traffic model by the M/Pareto model, and get the Hurst parameter of the FBM traffic model by statistical analysis method. By the FBM traffic model we get a formula for calculating the effective bandwidth. Accordingly, we propose a modified self-similar call admission control algorithm (SS-CAC). SS-CAC can avoid measuring the parameter values of FBM traffic flow to do call admission control. Simulation results show that SS-CAC greatly reduces the call blocking rate and improves the bandwidth utilization.
基金financial support from Ministry of Science and Technology of China(MoST,2016YFA0200200)the National Natural Science Foundation of China(NSFC,21875114,51373078,and 51422304)NSF of Tianjin City(15JCYBJC17700)。
文摘The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar stealth for protecting the weapons from being detected.Many nanomaterials were studied as MAMs,but not all of them have the satisfactory performance.Recently,metal-organic frameworks(MOFs) have attracted tremendous attention owing to their tunable chemical structures,diverse properties,large specific surface area and uniform pore distribution.MOF can transform to porous carbon(PC) which is decorated with metal species at appropriate pyrolysis temperature.However,the loss mechanism of pure MOF-derived PC is often relatively simple.In order to further improve the MA performance,the MOFs coupled with other loss materials are a widely studied method.In this review,we summarize the theories of MA,the progress of different MOF-derived PC-based MAMs,tunable chemical structures incorporated with dielectric loss or magnetic loss materials.The different MA performance and mechanisms are discussed in detail.Finally,the shortcomings,challenges and perspectives of MOF-derived PC-based MAMs are also presented.We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application.
基金supported by the National Natural Science Foundation of China(Grants 11772008,11172009,11372015,11232009,10872010,11290152,10732020)the Tianjin Natural Science Foundation(Grant 19JCZDJC32300).
文摘This paper presents an experimental study of the broadband energy harvesting and dynamic responses of an L-shaped piezoelectric cantilever beam.Experimental results show that the L-shaped piezoelectric beam generates two optimal voltage peaks when the horizontal beam size is similar to the vertical beam size.Several optimized L-shaped piezoelectric cantilever beam structures are proposed.Power generation using the inverted bistable L-shaped beam is better.It is observed experimentally that the inverted bistable L-shaped beam structure shows obvious bistable characteristics and hard spring characteristics.Furthermore,the corresponding relationship between the bistable phase portrait and the potential energy curve is found in the experiment.This is the first time that a phase portrait for stiffness hardening of an L-shaped beam has been found experimentally.These results can be applied to analysis of new piezoelectric power generation structures.
基金financially supported by the National Natural Science Foundation of China (Nos.51407134 and 51801001)the Natural Science Foundation of Shandong Province (No.ZR2019YQ24)+6 种基金the China Postdoctoral Science Foundation (Nos.2016M590619 and 2016M601878)the Provincial Key Research and Development Program of Shaanxi (No.2019GY-197)the Qingchuang Talents Induction Program of Shandong Higher Education Institution (Research and Innovation Team of Structural Functional Polymer Composites)support from The Thousand Talents PlanThe World-Class University and DisciplineThe Taishan Scholar’s Advantageous and Distinctive Discipline Program of Shandong ProvinceThe World-Class Discipline Program of Shandong Province。
文摘To solve the electromagnetic pollution,herein,a CoFe_(2)O_(4)/C/PANI composite was developed by a green route,which was constructed with spinel of metal oxide,graphitized carbon and conductive polymer composites.Benefiting from the designable interfaces and increased dipoles,the microwave dielectric response capability can be boosted significantly and resulted in the enhanced microwave absorbing performance.As revealed by the reflection loss curve,the minimum reflection loss(RLmin) reached-51.81 dB at 12.4 GHz under a matched thickness of 2.57 mm.At 2.5 mm,the effective absorbing band covered 8.88 GHz,suggesting the desirable wideband feature.In our case,the method of utilization of a novel green way to fabricate multiple-component EM absorber can be a promising candidate for high-performance EM absorber.
基金Project supported by the National Key Research and Development Program of China (2017YFB0304301)the National Natural Science Foundation of China (51804346)China Postdoctoral Science Foundation(2020T130730)。
文摘Traditional ferrites are of poor electromagnetic wave(EMW) absorption while doping rare earth elements(REEs) can greatly enhance their permeability to improve the EMW loss performance.In this study,Co-Zn ferrite nanoparticles doped with various amounts of REEs(Gd^(3+),Nd^(3+)and Pr^(3+)) were synthesized by a hydrothermal method,and their particle morphology and an EMW absorption performance were characterized by using transmission electron microscopy(TEM) and a Vector network analyzer(VNA).The results show that the initial spherical Co-Zn ferrite nanoparticles present an irregular quadrilateral structure after Gd^(3+)doping,and the average particle size of Co_(0.5)Zn_(0.5-x)Gd_(x)Fe_(2) O_(4) increases from 26 to 50 nm with x increasing from 0 to 0.35.At x of 0.25,the reflectivity absorbance achieves-27.94 dB at 18 GHz with the effective absorption bandwidth(EAB) of 4.08 GHz at a sample thickness of 2.5 mm.When Nd^(3+)doping amount reaches x=0.3,the minimum reflection loss(RL)is-25.63 dB at 18 GHz and EAB is 3.91 GHz.Doping Pr^(3+)(x=0.25) in the sample broadens EAB,and the minimum RL is-16.1 dB at 16.81 GHz and EAB is 7.31 GHz.This study shows that the magnetic moment produced by doping REES can form magnetic domains,which affects the incident EMW and improves the magnetic loss.It is expected that REEs-doped Co-Zn ferrite nanoparticles can be used as efficient electromagnetic shielding materials in aerospace.
基金supported by the National Natural Science Foundation of China(No.51772310)National Natural Science Foundation of China(No.52222202)+3 种基金Chinese Academy of Sciences Key Research Program of Frontier Sciences(No.QYZDYSSWJSC031)Key Deployment Projects of the Chinese Academy of Sciences(No.ZDRW-CN2019-01)Shanghai Sailing Program(No.21YF1454600)Outstanding Chinese and Foreign Youth Exchange Program of China Association of Science and Technology.
文摘In this work,hierarchical hybrid composites consisting of porous three-dimensional reduced graphene oxide(3D-rGO)skeleton and lamellar boron nitride(BN)/silicon carbide(SiC)coatings are prepared by chemical vapor infiltration(CVI)process.The graphene framework prepared by 3D printing and frozen self-assembly exhibits a lightweight structure and a perforated conductive network,which extends the transmission path of incident microwaves.The introduced ceramic coatings can effectively tune the impedance matching degree and supply a lossy phase,and the hierarchical structure of the composites enhances the multiple scattering of the incident microwaves.As expected,the 3D-rGO/BN/SiC composites possess an excellent absorbing performance with a minimum reflection loss value of–37.8 dB,and the widest effective absorbing bandwidth(RL<–10 dB)of 5.90 GHz is obtained.The controllable fabrication of composites can provide a guideline for rational design and fabrication of high-performance electromagnetic waves absorbing materials in practical applications.
基金supported by the National Natural Science Foundation of China(No.52373271)the Open Foundation of the Key Laboratory of Multispectral Absorbing Materials and Structures,Ministry of Education(No.KPKFJJ20250011-2).
文摘Hollow engineering is considered to be an essential subfield in promoting electromagnetic(EM)wave absorption intensity and realizing lightweight characteristics.However,the enhancement of the effective absorption bandwidth(EAB)still faces considerable challenges.Herein,hollow carbon nanocages with CoFe_(2)Se_(4)quantum dots(HCNs@CoFe_(2)Se_(4)-QDs)with superior EM wave absorption intensity and ultra broadband EAB are produced by using tightly arranged SiO_(2)spheres as hard-template materials.Specifically,the removal of SiO_(2)templates inevitably results in the formation of a hollow cavity,which is favorable for optimizing impedance matching and increasing the absorption intensity.In addition,the incorporation of selenium powder effectively increases the number of heterogeneous interfaces by forming CoFe_(2)Se_(4)quantum dots(QDs)during the pyrolysis process,leading to strengthened interfacial polarization and ultra broadband EAB.As a result,superior EM wave attenuation with a minimum reflection loss(RL)of−67.6 dB and an EAB of 11.4 GHz is achieved with only a 20 wt%filler ratio.This design concept of hollow engineering with magnetic QDs provides inspiration for optimizing the EM wave absorption intensity and simultaneously promoting the absorption bandwidth.
文摘In this paper, we theoretically deduce the expressions of half-wave voltage and 3-dB modulation bandwidth in which conductor loss is taken into account. The results suggest that it will affect the theoretical values of half-wave voltage and bandwidth as well as the optimized electrode's dimension whether considering the conductor loss or not. As an example, we present a Mach-Zehnder (MZ) type polymer waveguide amplitude modulator. The half-wave voltage increases by 1 V and the 3-dB bandwidth decreases by 30% when the conductor loss is taken into account. Besides, the effects of impedance mismatching and velocity mismatching between microwave and light wave on the half-wave voltage, and 3-dB bandwidth are discussed.
文摘We compared efficiencies of different PMD compensation feedback methods against transmission signal bandwidth, including NRZ, RZ, CRZ format under various duty cycles. We found that the critical factor determining the efficiency of PMD compensation is not the modulation format, but the spectral bandwidth of the transmission signal.
文摘An optical bandwidth analysis of a quantum-well (16 nm) transistor laser with 150-μm cavity length using a charge control model is reported in order to modify the quantum-well location through the base region. At constant bias current, the simulation shows significant enhancement in optical bandwidth due to moving the quantum well in the direction of collector-base junction. No remarkable resonance peak, limiting factor in laser diodes, is observed during this modification in transistor laser structure. The method can be utilized for transistor laser structure design.
基金supported by the Science and Technology Development Plan Project of Jilin Province under Grant YDZJ202401383ZYTS.
文摘This paper proposes a grouping decision algorithm for random access networks with the carrier sense multiple access (CSMA) mechanism, which can balance the traffic load and solve the hidden terminal issue. Considering the arrival characteristics of terminals and quality of service (QoS) requirements, the traffic load is evaluated based on the effective bandwidth theory. Additionally, a probability matrix of hidden terminals is constructed to take into account the dynamic nature of hidden terminal relations. In the grouping process, an income function is established with a view to the benefits of decreasing the probability of hidden terminal collisions and load balancing. Then, we introduce the grey wolf optimization (GWO) algorithm to implement the grouping decision. Simulation results demonstrate that the grouping algorithm can effectively alleviate the performance degradation and facilitate the management of network resources.