The buried depth of the gas-producing reservoir in the Kuqa foreland thrust belt of the Tarim Basin exceeds 6000 m.The average matrix porosity of the reservoir is 5.5%,and the average matrix permeability is 0.128×...The buried depth of the gas-producing reservoir in the Kuqa foreland thrust belt of the Tarim Basin exceeds 6000 m.The average matrix porosity of the reservoir is 5.5%,and the average matrix permeability is 0.128×10^(−3)μm^(2).In order to reveal the characteristics and efectiveness of ultra-deep fractures and their efects on reservoir properties and natural gas production,outcrops,cores,thin section,image logs and production testing data are used to investigate the efectiveness of tectonic fractures in ultra-deep reservoirs in the Kuqa foreland thrust zone,and the corresponding geological signifcance for oil and gas exploration and development are discussed.Tectonic fractures in the thrust belt include EW-trending high-angle tensile fractures and NS-trending vertical shear fractures.The former has a relatively high flling rate,while the latter is mostly unflled.Micro-fractures are usually grain-piercing-through cracks with width of 10-100 microns.In the planar view,the efective fractures are concentrated in the high part and wing zones of the long axis of the anticline,and along the vertical direction,they are mainly found in the tensile fracture zone above the neutral plane.The adjustment fracture zone has the strongest vertical extension abilities and high efectiveness,followed by the nearly EW longitudinal tensile fracture zone,and the netted fracture zone with multiple dip angles.The efectiveness of fracture is mainly controlled by fracture aperture and flling degrees.Efective fractures can increase reservoir permeability by 1-2 orders of magnitude.The higher part of the anticline is associated with high tectonic fracture permeability,which control enrichment and high production of natural gas.The netted vertical open fractures efectively communicate with pores and throats of the reservoir matrix,which forms an apparent-homogenous to medium-heterogeneous body that is seen with high production of natural gas sustained for a long term.展开更多
The low density and high corrosion resistance of titanium alloy make it a material with various applications in the aerospace industry. However, because of its high specifc strength and poor thermal conductivity, ther...The low density and high corrosion resistance of titanium alloy make it a material with various applications in the aerospace industry. However, because of its high specifc strength and poor thermal conductivity, there are problems such as high cutting force, poor surface integrity, and high cutting temperature during conventional machining. As an advanced processing method with high efciency and low damage, laser-assisted machining can improve the machinability of titanium alloy. In this study, a picosecond pulse laser-assisted scratching (PPLAS) method considering both the temperature-dependent material properties and ultrashort pulse laser’s characteristics is frst proposed. Then, the efects of laser power, scratching depth, and scratching speed on the distribution of stress and temperature feld are investigated by simulation. Next, PPLAS experiments are conducted to verify the correctness of the simulation and reveal the removal behavior at various combinations of laser power and scratching depths. Finally, combined with simulated and experimental results, the removal mechanism under the two machining methods is illustrated. Compared with conventional scratching (CS), the tangential grinding force is reduced by more than 60% and the material removal degree is up to 0.948 during PPLAS, while the material removal is still primarily in the form of plastic removal. Grinding debris in CS takes the form of stacked fakes with a “fsh scale” surface, whereas it takes the form of broken serrations in PPLAS. This research can provide important guidance for titanium alloy grinding with high surface quality and low surface damage.展开更多
Shape memory alloys(SMAs)can recover their original shape after deformation when heated above a specifc transformation temperature.This study investigates the induction of the two-way shape memory efect(TWSME)in SMA f...Shape memory alloys(SMAs)can recover their original shape after deformation when heated above a specifc transformation temperature.This study investigates the induction of the two-way shape memory efect(TWSME)in SMA flms through laser surface treatment.Ti50Ni40Cu10 SMA flms with thicknesses of 20–40μm were fabricated using the melt-spinning method and subjected to laser irradiation under varying conditions.The efects of flm thickness and laser parameters on actuation characteristics and crystalline structure were evaluated.The results demonstrate the successful induction of TWSME in the laser-treated SMA flms,with actuation capability depending on the balance between the modifed and unmodifed layers through the thickness.X-ray difraction analysis reveals the presence of residual martensitic phase in the laser-treated specimens,contributing to the TWSME.Optimal actuation is achieved with a relatively thick modifed layer while maintaining sufcient unmodifed material for recovery to the memorized shape.This study provides insights into the laser-induced TWSME in SMA flms and its potential applications in microactuators,where bidirectional actuation without external preloading is desirable.展开更多
Interlayer antiferromagnetic coupling,small magnetic anisotropy,and low air stability of the intrinsic magnetic topological insulator MnBi_(2)Te_(4)have been critical bottlenecks to the future application of the quant...Interlayer antiferromagnetic coupling,small magnetic anisotropy,and low air stability of the intrinsic magnetic topological insulator MnBi_(2)Te_(4)have been critical bottlenecks to the future application of the quantum anomalous Hall efect(QAHE)at zero magnetic feld.In this study,we propose a scheme to utilize capped sliding van der Waals materials to efectively modulate the magnetic and topological properties of MnBi_(2)Te_(4).Our results demonstrate that the h-BN/MnBi_(2)Te_(4)/h-BN heterostructure,constructed by sliding ferroelectric h-BN bilayer and MnBi_(2)Te_(4),not only realizes a transition from interlayer antiferromagnetic to ferromagnetic coupling but also signifcantly enhances the out-of-plane magnetism and air stability of MnBi_(2)Te_(4).Moreover,the above magnetic properties can be further improved by tuning the interlayer distance between h-BN and MnBi_(2)Te_(4).Additionally,the obtained band structures and topological properties clearly support that the h-BN/MnBi_(2)Te_(4)/hBN heterostructure can harbor the QAHE with a Chern number of C=1.This work provides a new and nonvolatile modulation approach to achieve high-temperature and high-precision QAHE at zero magnetic feld.展开更多
Background:The new waves of COVID-19 outbreaks caused by the SARS-CoV-2 Omicron variant are developing rapidly and getting out of control around the world,especially in highly populated regions.The healthcare capacity...Background:The new waves of COVID-19 outbreaks caused by the SARS-CoV-2 Omicron variant are developing rapidly and getting out of control around the world,especially in highly populated regions.The healthcare capacity(especially the testing resources,vaccination coverage,and hospital capacity)is becoming extremely insufcient as the demand will far exceed the supply.To address this time-critical issue,we need to answer a key question:How can we efectively infer the daily transmission risks in diferent districts using machine learning methods and thus lay out the corresponding resource prioritization strategies,so as to alleviate the impact of the Omicron outbreaks?Methods:We propose a computational method for future risk mapping and optimal resource allocation based on the quantitative characterization of spatiotemporal transmission patterns of the Omicron variant.We collect the publicly available data from the ofcial website of the Hong Kong Special Administrative Region(HKSAR)Government and the study period in this paper is from December 27,2021 to July 17,2022(including a period for future prediction).First,we construct the spatiotemporal transmission intensity matrices across diferent districts based on infection case records.With the constructed cross-district transmission matrices,we forecast the future risks of various locations daily by means of the Gaussian process.Finally,we develop a transmission-guided resource prioritization strategy that enables efective control of Omicron outbreaks under limited capacity.Results:We conduct a comprehensive investigation of risk mapping and resource allocation in Hong Kong,China.The maps of the district-level transmission risks clearly demonstrate the irregular and spatiotemporal varying patterns of the risks,making it difcult for the public health authority to foresee the outbreaks and plan the responses accordingly.With the guidance of the inferred transmission risks,the developed prioritization strategy enables the optimal testing resource allocation for integrative case management(including case detection,quarantine,and further treatment),i.e.,with the 300,000 testing capacity per day;it could reduce the infection peak by 87.1% compared with the population-based allocation strategy(case number reduces from 20,860 to 2689)and by 24.2% compared with the case-based strategy(case number reduces from 3547 to 2689),signifcantly alleviating the burden of the healthcare system.Conclusions:Computationally characterizing spatiotemporal transmission patterns allows for the efective risk mapping and resource prioritization;such adaptive strategies are of critical importance in achieving timely outbreak control under insufcient capacity.The proposed method can help guide public-health responses not only to the Omicron outbreaks but also to the potential future outbreaks caused by other new variants.Moreover,the investigation conducted in Hong Kong,China provides useful suggestions on how to achieve efective disease control with insufcient capacity in other highly populated countries and regions.展开更多
Analysis of glass homogeneity using the attaching interferometric data model neglects body distribution.To improve analysis accuracy,we establish the three-dimensional gradient index(GRIN) model of glass index by anal...Analysis of glass homogeneity using the attaching interferometric data model neglects body distribution.To improve analysis accuracy,we establish the three-dimensional gradient index(GRIN) model of glass index by analyzing fused silica homogeneity distribution in two perpendicular measurement directions.Using the GRIN model,a lithography projection lens with a numerical aperture of 0.75 is analyzed.Root mean square wavefront aberration deteriorates from 0.9 to 9.65 nm and then improves to 5.9 nm after clocking.展开更多
Over the last decade,nuclear theory has made dramatic progress in few-body and ab initio many-body calculations.These great advances stem from chiral efective feld theory(xEFT),which provides an efcient expansion and ...Over the last decade,nuclear theory has made dramatic progress in few-body and ab initio many-body calculations.These great advances stem from chiral efective feld theory(xEFT),which provides an efcient expansion and consistent treatment of nuclear forces as inputs of modern many-body calculations,among which the in-medium similarity renormalization group(IMSRG)and its variants play a vital role.On the other hand,signifcant eforts have been made to provide a unifed description of the structure,decay,and reactions of the nuclei as open quantum systems.While a fully comprehensive and microscopic model has yet to be realized,substantial progress over recent decades has enhanced our understanding of open quantum systems around the dripline,which are often characterized by exotic structures and decay modes.To study these interesting phenomena,Gamow coupled-channel(GCC)method,in which the open quantum nature of few-body valence nucleons coupled to a deformed core,has been developed.This review focuses on the developments of the advanced IMSRG and GCC and their applications to nuclear structure and reactions.展开更多
The incre asing interest in RNA modifications has signifcantly advanced epigenomic and epitranscriptomic technologies.This study focuses on the immuno oncological impact of ALYREF in human cancer through a pan-cancer ...The incre asing interest in RNA modifications has signifcantly advanced epigenomic and epitranscriptomic technologies.This study focuses on the immuno oncological impact of ALYREF in human cancer through a pan-cancer analysis,enhancing understanding of this gene's role in cancer.We observed differential ALYREF expression between tumor and normal samples,correl ating strongly with prognosis in various cancers,particularly kidney renal papillary cell carcinoma(KIRP)and liver hepatocellular carcinoma(LIHC).ALYREF showed a negative correlation with most tumor-infitrating cells in lung squamous cell carcinoma(LUSC)and lymphoid neoplasm difuse large B-cell lymphoma(DLBC),while positive correlations were noted in IIHC,kidney chromophobe(KICH),mesothelioma(MESO),KIRP,pheochromocytoma and paraganglioma(PARD),and glioma(GBMLGG).Aditionally,ALYREF expression was closely associated with tumor heterogeneity,stemness indices,and a high mutation rate in TP53 across these cancers.In conclusion,ALYREF may serve as an oncogenic biomarker in numerous cancers,meriting further research attention.展开更多
基金This work was supported by the National Key Research and Development Project(No.2019YFC0605501)the National Science and Technology Major Project(2016ZX05003001).
文摘The buried depth of the gas-producing reservoir in the Kuqa foreland thrust belt of the Tarim Basin exceeds 6000 m.The average matrix porosity of the reservoir is 5.5%,and the average matrix permeability is 0.128×10^(−3)μm^(2).In order to reveal the characteristics and efectiveness of ultra-deep fractures and their efects on reservoir properties and natural gas production,outcrops,cores,thin section,image logs and production testing data are used to investigate the efectiveness of tectonic fractures in ultra-deep reservoirs in the Kuqa foreland thrust zone,and the corresponding geological signifcance for oil and gas exploration and development are discussed.Tectonic fractures in the thrust belt include EW-trending high-angle tensile fractures and NS-trending vertical shear fractures.The former has a relatively high flling rate,while the latter is mostly unflled.Micro-fractures are usually grain-piercing-through cracks with width of 10-100 microns.In the planar view,the efective fractures are concentrated in the high part and wing zones of the long axis of the anticline,and along the vertical direction,they are mainly found in the tensile fracture zone above the neutral plane.The adjustment fracture zone has the strongest vertical extension abilities and high efectiveness,followed by the nearly EW longitudinal tensile fracture zone,and the netted fracture zone with multiple dip angles.The efectiveness of fracture is mainly controlled by fracture aperture and flling degrees.Efective fractures can increase reservoir permeability by 1-2 orders of magnitude.The higher part of the anticline is associated with high tectonic fracture permeability,which control enrichment and high production of natural gas.The netted vertical open fractures efectively communicate with pores and throats of the reservoir matrix,which forms an apparent-homogenous to medium-heterogeneous body that is seen with high production of natural gas sustained for a long term.
基金Supported by National Natural Science Foundation of China(Grant No.52175377)Chongqing Municipal Science Foundation(Grant No.CSTB2022NSCQ-LZX0080)+1 种基金Fundamental Research Funds for Central Universities(Grant Nos.2023CDJXY-026 and 2023CDJXY-021)National Science and Technology Major Project(Grant No.2017-VII-0002-0095).
文摘The low density and high corrosion resistance of titanium alloy make it a material with various applications in the aerospace industry. However, because of its high specifc strength and poor thermal conductivity, there are problems such as high cutting force, poor surface integrity, and high cutting temperature during conventional machining. As an advanced processing method with high efciency and low damage, laser-assisted machining can improve the machinability of titanium alloy. In this study, a picosecond pulse laser-assisted scratching (PPLAS) method considering both the temperature-dependent material properties and ultrashort pulse laser’s characteristics is frst proposed. Then, the efects of laser power, scratching depth, and scratching speed on the distribution of stress and temperature feld are investigated by simulation. Next, PPLAS experiments are conducted to verify the correctness of the simulation and reveal the removal behavior at various combinations of laser power and scratching depths. Finally, combined with simulated and experimental results, the removal mechanism under the two machining methods is illustrated. Compared with conventional scratching (CS), the tangential grinding force is reduced by more than 60% and the material removal degree is up to 0.948 during PPLAS, while the material removal is still primarily in the form of plastic removal. Grinding debris in CS takes the form of stacked fakes with a “fsh scale” surface, whereas it takes the form of broken serrations in PPLAS. This research can provide important guidance for titanium alloy grinding with high surface quality and low surface damage.
文摘Shape memory alloys(SMAs)can recover their original shape after deformation when heated above a specifc transformation temperature.This study investigates the induction of the two-way shape memory efect(TWSME)in SMA flms through laser surface treatment.Ti50Ni40Cu10 SMA flms with thicknesses of 20–40μm were fabricated using the melt-spinning method and subjected to laser irradiation under varying conditions.The efects of flm thickness and laser parameters on actuation characteristics and crystalline structure were evaluated.The results demonstrate the successful induction of TWSME in the laser-treated SMA flms,with actuation capability depending on the balance between the modifed and unmodifed layers through the thickness.X-ray difraction analysis reveals the presence of residual martensitic phase in the laser-treated specimens,contributing to the TWSME.Optimal actuation is achieved with a relatively thick modifed layer while maintaining sufcient unmodifed material for recovery to the memorized shape.This study provides insights into the laser-induced TWSME in SMA flms and its potential applications in microactuators,where bidirectional actuation without external preloading is desirable.
基金supported by the National Key R&D Program of China(Grant No.2024YFA1408103)National Natural Science Foundation of China(Grants No.11974098,12474158,12234017 and 12488101)+3 种基金Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302800)Natural Science Foundation of Hebei Province(Grant No.A202305017)Anhui Initiative in Quantum Information Technologies(Grant No.AHY170000)Fundamental Research Funds for the Central Universities(Grant No.WK2340000082)。
文摘Interlayer antiferromagnetic coupling,small magnetic anisotropy,and low air stability of the intrinsic magnetic topological insulator MnBi_(2)Te_(4)have been critical bottlenecks to the future application of the quantum anomalous Hall efect(QAHE)at zero magnetic feld.In this study,we propose a scheme to utilize capped sliding van der Waals materials to efectively modulate the magnetic and topological properties of MnBi_(2)Te_(4).Our results demonstrate that the h-BN/MnBi_(2)Te_(4)/h-BN heterostructure,constructed by sliding ferroelectric h-BN bilayer and MnBi_(2)Te_(4),not only realizes a transition from interlayer antiferromagnetic to ferromagnetic coupling but also signifcantly enhances the out-of-plane magnetism and air stability of MnBi_(2)Te_(4).Moreover,the above magnetic properties can be further improved by tuning the interlayer distance between h-BN and MnBi_(2)Te_(4).Additionally,the obtained band structures and topological properties clearly support that the h-BN/MnBi_(2)Te_(4)/hBN heterostructure can harbor the QAHE with a Chern number of C=1.This work provides a new and nonvolatile modulation approach to achieve high-temperature and high-precision QAHE at zero magnetic feld.
文摘Background:The new waves of COVID-19 outbreaks caused by the SARS-CoV-2 Omicron variant are developing rapidly and getting out of control around the world,especially in highly populated regions.The healthcare capacity(especially the testing resources,vaccination coverage,and hospital capacity)is becoming extremely insufcient as the demand will far exceed the supply.To address this time-critical issue,we need to answer a key question:How can we efectively infer the daily transmission risks in diferent districts using machine learning methods and thus lay out the corresponding resource prioritization strategies,so as to alleviate the impact of the Omicron outbreaks?Methods:We propose a computational method for future risk mapping and optimal resource allocation based on the quantitative characterization of spatiotemporal transmission patterns of the Omicron variant.We collect the publicly available data from the ofcial website of the Hong Kong Special Administrative Region(HKSAR)Government and the study period in this paper is from December 27,2021 to July 17,2022(including a period for future prediction).First,we construct the spatiotemporal transmission intensity matrices across diferent districts based on infection case records.With the constructed cross-district transmission matrices,we forecast the future risks of various locations daily by means of the Gaussian process.Finally,we develop a transmission-guided resource prioritization strategy that enables efective control of Omicron outbreaks under limited capacity.Results:We conduct a comprehensive investigation of risk mapping and resource allocation in Hong Kong,China.The maps of the district-level transmission risks clearly demonstrate the irregular and spatiotemporal varying patterns of the risks,making it difcult for the public health authority to foresee the outbreaks and plan the responses accordingly.With the guidance of the inferred transmission risks,the developed prioritization strategy enables the optimal testing resource allocation for integrative case management(including case detection,quarantine,and further treatment),i.e.,with the 300,000 testing capacity per day;it could reduce the infection peak by 87.1% compared with the population-based allocation strategy(case number reduces from 20,860 to 2689)and by 24.2% compared with the case-based strategy(case number reduces from 3547 to 2689),signifcantly alleviating the burden of the healthcare system.Conclusions:Computationally characterizing spatiotemporal transmission patterns allows for the efective risk mapping and resource prioritization;such adaptive strategies are of critical importance in achieving timely outbreak control under insufcient capacity.The proposed method can help guide public-health responses not only to the Omicron outbreaks but also to the potential future outbreaks caused by other new variants.Moreover,the investigation conducted in Hong Kong,China provides useful suggestions on how to achieve efective disease control with insufcient capacity in other highly populated countries and regions.
基金supported by the Major National Science and Technology Project of China(No.2009ZX02205)
文摘Analysis of glass homogeneity using the attaching interferometric data model neglects body distribution.To improve analysis accuracy,we establish the three-dimensional gradient index(GRIN) model of glass index by analyzing fused silica homogeneity distribution in two perpendicular measurement directions.Using the GRIN model,a lithography projection lens with a numerical aperture of 0.75 is analyzed.Root mean square wavefront aberration deteriorates from 0.9 to 9.65 nm and then improves to 5.9 nm after clocking.
基金National Key R&D Program of China under Grant Nos.2023YFA1606400 and 2022YFA1602303National Natural Science Foundation of China under Grants Nos.12335007,12035001,11921006,12347106,12147101,and 12205340+1 种基金Gansu Natural Science Foundation under Grant No.22JR5RA123U.S.Department of Energy(DOE),Office of Science,under SciDAC-5(NUCLEI collaboration)。
文摘Over the last decade,nuclear theory has made dramatic progress in few-body and ab initio many-body calculations.These great advances stem from chiral efective feld theory(xEFT),which provides an efcient expansion and consistent treatment of nuclear forces as inputs of modern many-body calculations,among which the in-medium similarity renormalization group(IMSRG)and its variants play a vital role.On the other hand,signifcant eforts have been made to provide a unifed description of the structure,decay,and reactions of the nuclei as open quantum systems.While a fully comprehensive and microscopic model has yet to be realized,substantial progress over recent decades has enhanced our understanding of open quantum systems around the dripline,which are often characterized by exotic structures and decay modes.To study these interesting phenomena,Gamow coupled-channel(GCC)method,in which the open quantum nature of few-body valence nucleons coupled to a deformed core,has been developed.This review focuses on the developments of the advanced IMSRG and GCC and their applications to nuclear structure and reactions.
基金the Chinese Scholarship Council(Grant No.202206240086)the National Natural Science Foundation of China(Grant No.82170432)programs from Science and Technology Department of Sichuan Province(Grant No.2020YFSY0024).
文摘The incre asing interest in RNA modifications has signifcantly advanced epigenomic and epitranscriptomic technologies.This study focuses on the immuno oncological impact of ALYREF in human cancer through a pan-cancer analysis,enhancing understanding of this gene's role in cancer.We observed differential ALYREF expression between tumor and normal samples,correl ating strongly with prognosis in various cancers,particularly kidney renal papillary cell carcinoma(KIRP)and liver hepatocellular carcinoma(LIHC).ALYREF showed a negative correlation with most tumor-infitrating cells in lung squamous cell carcinoma(LUSC)and lymphoid neoplasm difuse large B-cell lymphoma(DLBC),while positive correlations were noted in IIHC,kidney chromophobe(KICH),mesothelioma(MESO),KIRP,pheochromocytoma and paraganglioma(PARD),and glioma(GBMLGG).Aditionally,ALYREF expression was closely associated with tumor heterogeneity,stemness indices,and a high mutation rate in TP53 across these cancers.In conclusion,ALYREF may serve as an oncogenic biomarker in numerous cancers,meriting further research attention.