期刊文献+
共找到1,146篇文章
< 1 2 58 >
每页显示 20 50 100
A molecular dynamics simulation route towards Eu-doped multi-component transparent spectral conversion glass-ceramics
1
作者 Xiuxia Xu Chenhao Wang +7 位作者 Di Wang Wenyan Zheng Zhiyu Liu Jincheng Du Xusheng Qiao Xianping Fan Zhiyu Wang Guodong Qian 《Journal of Rare Earths》 2025年第1期146-152,I0006,共8页
Eu^(2+)doped fluorosilicate glass-ceramics containing BaF_(2) nanocrystals have high potential as spectral conversion materials for organic solar cells.However,it is difficult to realize the efficient design of BaF_(2... Eu^(2+)doped fluorosilicate glass-ceramics containing BaF_(2) nanocrystals have high potential as spectral conversion materials for organic solar cells.However,it is difficult to realize the efficient design of BaF_(2):Eu^(2+)doped fluorosilicate glass and to vividly observe the glass microstructure in experiment through traditional trial-and-error glass preparation method.BaF_(2):Eu^(2+)doped fluorosilicate glassceramics with high transparency,and high photoluminescence(PL)performance were predicted,designed and prepared via molecular dynamics(MD)simulation method.By MD simulation prediction,self-organized nanocrystallization was realized to inhibit the abnormal growth of nanocrystals due to[AlO_(4)]tetrahedra formed in the fluoride-oxide interface.The introduction of NaF reduces the effective phonon energy of the glass because Na+will prompt Al^(3+)to migrate from the fluoride phase to the silicate phase and interface.The local environment of Eu^(2+)is optimized by predicting the doping concentration of EuF_(3) and 2 mol%EuF3 is the best concentration in this work.Glass-ceramics sample GC2Eu as spectral conversion layer was successfully applied on organic solar cells to obtain more available visible phonons with a high photoelectric conversion efficiency(PCE).This work confirms the guidance of molecular dynamics simulation methods for fluorosilicate glasses design. 展开更多
关键词 Molecular dynamics simulation Fluorosilicateglass Spectral conversion Organic solarcell RAREEARTHS
原文传递
Influence of Pressure on the Co-nonsolvency Effect of Homopolymer in Solutions:A Molecular Dynamics Simulation Study
2
作者 Zhi-Yuan Wang Xing-Ye Li +4 位作者 Zheng Wang Yu-Hua Yin Run Jiang Peng-Fei Zhang Bao-Hui Li 《Chinese Journal of Polymer Science》 2025年第10期1929-1938,共10页
Stimuli-responsive polymers capable of rapidly altering their chain conformation in response to external stimuli exhibit broad applica-tion prospects.Experiments have shown that pressure plays a pivotal role in regula... Stimuli-responsive polymers capable of rapidly altering their chain conformation in response to external stimuli exhibit broad applica-tion prospects.Experiments have shown that pressure plays a pivotal role in regulating the microscopic chain conformation of polymers in mixed solvents,and one notable finding is that increasing the pressure can lead to the vanishing of the co-nonsolvency effect.However,the mecha-nisms underlying this phenomenon remain unclear.In this study,we systematically investigated the influence of pressure on the co-nonsolvency effect of single-chain and multi-chain homopolymers in binary mixed good-solvent systems using molecular dynamics simulations.Our results show that the co-nonsolvency-induced chain conformation transition and aggregation behavior significantly depend on pressure in allsingle-chain and multi-chain systems.In single-chain systems,at low pressures,the polymer chain maintains a collapsed state over a wide range of co-solvent fractions(x-range)owing to the co-nonsolvency effect.As the pressure increases,the x-range of the collapsed state gradually narrows,ac-companied by a progressive expansion of the chain.In multichain systems,polymer chains assemble into approximately spherical aggregates over a broad x-range at low pressures owing to the co-nonsolvency effect.Increasing the pressure reduces the x-range for forming aggregates and leads to the formation of loose aggregates or even to a state of dispersed chains at some x-range.These findings indicate that increasing the pressure can weaken or even offset the co-nonsolvency effect in some x-range,which is in good agreement with the experimental observations.Quantitative analysis of the radial density distributions and radial distribution functions reveals that,with increasing pressure,(1)the densities of both polymers and co-solvent molecules within aggregates decrease,while that of the solvent molecule increases;and(2)the effective interac-tions between the polymer and the co-solvent weaken,whereas those between the polymer and solvent strengthen.This enhances the incorpo-ration of solvent molecules within the chains,thereby weakening or even suppressing the chain aggregation.Our study not only elucidates the regulatory mechanism of pressure on the microscopic chain conformations and aggregation behaviors of polymers,but also may provide theo-retical guidance for designing smart polymericmaterials based on mixed solvents. 展开更多
关键词 Molecular dynamics simulation Mixed solvent Co-nonsolvency PRESSURE Chain conformation
原文传递
DNA-modulated Mo-Zn single-atom nanozymes: Insights from molecular dynamics simulations to smartphone-assisted biosensing
3
作者 Zhimin Song Zhe Tang +4 位作者 Yu Zhang Yanru Zhou Xiaozheng Duan Yan Du Chong-Bo Ma 《Chinese Chemical Letters》 2025年第10期453-458,共6页
Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among oth... Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among others, DNA stands out as an ideal biological regulator. Its inherent programmability and interaction capabilities allow it to significantly modulate nanozyme activity. This study delves into the dynamic interplay between DNA and molybdenum-zinc single-atom nanozymes(Mo-Zn SANs). Using molecular dynamics simulations, we uncover how DNA influences the peroxidase-like activities of Mo-Zn SANs, providing a foundational understanding that broadens the application scope of SANs in biosensing.With these insights as a foundation, we developed and demonstrated a model aptasensor for point-ofcare testing(POCT), utilizing a label-free colorimetric approach that leverages DNA-nanozyme interactions to achieve high-sensitivity detection of lysozyme. Our work elucidates the nuanced control DNA exerts over nanozyme functionality and illustrates the application of this molecular mechanism through a smartphone-assisted biosensing platform. This study not only underscores the practical implications of DNA-regulated Mo-Zn SANs in enhancing biosensing platforms, but also highlights the potential of single-atom nanozyme technology to revolutionize diagnostic tools through its inherent versatility and sensitivity. 展开更多
关键词 Single-atom nanozymes DNA-regulated biosensors Molecular dynamics simulations Colorimetric aptasensing Point-of-care diagnostics
原文传递
Multi-target inhibition property of Persicaria hydropiper phytochemicals against gram-positive and gram-negative bacteria via molecular docking,dynamics simulation,and ADMET analysis
4
作者 Golak Majumdar Shyamapada Mandal 《Digital Chinese Medicine》 2025年第1期76-89,共14页
Objective To evaluate the antibacterial potential of bioactive compounds from Persicaria hydropiper(L.)(P.hydropiper)against bacterial virulence proteins through molecular docking(MD)and experimental validation.Method... Objective To evaluate the antibacterial potential of bioactive compounds from Persicaria hydropiper(L.)(P.hydropiper)against bacterial virulence proteins through molecular docking(MD)and experimental validation.Methods Six bioactive compounds from P.hydropiper were investigated:catechin(CAT1),hyperin(HYP1),ombuin(OMB1),pinosylvin(PSV1),quercetin 3-sulfate(QSF1),and scutellarein(SCR1).Their binding affinities and potential binding pockets were assessed through MD against four bacterial target proteins with Protein Data Bank identifiers(PDB IDs):topoisomerase IV from Escherichia coli(E.coli)(PDB ID:3FV5),Staphylococcus aureus(S.aureus)gyrase ATPase binding domain(PDB ID:3U2K),CviR from Chromobacterium violaceum(C.violaceum)(PDB ID:3QP1),and glycosyl hydrolase from Pseudomonas aeruginosa(P.aeruginosa)(PDB ID:5BX9).Molecular dynamics simulations(MDS)were performed on the most promising compound-protein complexes for 50 nanoseconds(ns).Drug-likeness was evaluated using Lipinski's Rule of Five(RO5),followed by absorption,distribution,metabolism,excretion,and toxicity(ADMET)analysis using SwissADME and pkCSM web servers.Antibacterial activity was evaluated through disc diffusion assays,testing both individual compounds and combinations with conventional antibiotics[cefotaxime(CTX1,30μg/disc),ceftazidime(CAZ1,30μg/disc),and piperacillin(PIP1,100μg/disc)].Results MD revealed strong binding affinity(ranging from-9.3 to-5.9 kcal/mol)for all compounds,with CAT1 showing exceptional binding to 3QP1(-9.3 kcal/mol)and 5BX9(-8.4 kcal/mol).MDS confirmed the stability of CAT1-protein complexes with binding free energies of-84.71 kJ/mol(5BX9-CAT1)and-95.59 kJ/mol(3QP1-CAT1).Five compounds(CAT1,SCR1,PSV1,OMB1,and QSF1)complied with Lipinski's RO5 and showed favorable ADMET profiles.All compounds were non-carcinogenic,with CAT1 classified in the lowest toxicity class(VI).In antibacterial assays,CAT1 demonstrated significant activity against both gram-positive bacteria[Streptococcus pneumoniae(S.pneumoniae),S.aureus,and Bacillus cereus(B.cereus)][zone diameter of inhibition(ZDI):10-22 mm]and gram-negative bacteria[Acinetobacter baumannii(A.baumannii),E.coli,and P.aeruginosa](ZDI:14-27 mm).Synergistic effects were observed when CAT1 was combined with antibiotics and the growth inhibitory indices(GII)was 0.69-1.00.Conclusion P.hydropiper bioactive compounds,particularly CAT1,show promising antibacterial potential through multiple mechanisms,including direct inhibition of bacterial virulence proteins and synergistic activity with conventional antibiotics.The favorable pharmacological properties and low toxicity profiles support their potential development as therapeutic agents against bacterial infections. 展开更多
关键词 Persicaria hydropiper phytochemicals Molecular docking Molecular dynamics simulation Bacterial pathogenicity-related proteins PHARMACOKINETICS
暂未订购
Evaluating kinetic properties of Mg-based alloy melts via deep learning potential driven molecular dynamics simulations
5
作者 Jiang You Cheng Wang +3 位作者 Hong Ju Shao-Yang Hu Yong-Zhen Wang Hui-Yuan Wang 《Journal of Materials Science & Technology》 2025年第35期24-35,共12页
The kinetic properties of Mg alloy melts are crucial for determining the forming quality of castings,as they directly affect crystal nucleation and dendritic growth.However,accurately assessing the kinetic properties ... The kinetic properties of Mg alloy melts are crucial for determining the forming quality of castings,as they directly affect crystal nucleation and dendritic growth.However,accurately assessing the kinetic properties of molten Mg alloys remains challenging due to the difficulties in experimentally character-izing the high-temperature melts.Herein,we propose that molecular dynamics(MD)simulations driven by deep learning based interatomic potentials(DPs),referred to as DPMD,are a promising strategy to tackle this challenge.We develop MgAl-DP,MgSi-DP,MgCa-DP,and MgZn-DP to assess the kinetic prop-erties of Mg-Al,Mg-Si,Mg-Ca,and Mg-Zn alloy melts.The reliability of our DPs is rigorously evaluated by comparing the DPMD results with those from ab initio MD(AIMD)simulations,as well as available ex-perimental results.Our theoretically evaluated viscosity of Mg-Al melts shows excellent agreement with experimental results over a wide temperature range.Additionally,we found that the solute elements Ca and Zn exhibit sluggish kinetics in the studied melts,which supporting the promising glass-forming abil-ity of the Mg-Zn-Ca alloy system.The computational efficiency of DPMD simulations is several orders of magnitude higher than that of AIMD simulations,while maintaining ab initio-level accuracy.This makes DPMD a highly feasible protocol for building a comprehensive and reliable database of kinetic properties of Mg alloy melts. 展开更多
关键词 Magnesium alloys Alloy melts Melt kinetics Molecular dynamics simulations Deep learning potentials
原文传递
Molecular Dynamics Simulation of Bubble Arrangement and Cavitation Number Influence on Collapse Characteristics
6
作者 Shuaijie Jiang Zechen Zhou +3 位作者 XiuliWang WeiXu WenzhuoGuo Qingjiang Xiang 《Fluid Dynamics & Materials Processing》 2025年第3期471-491,共21页
In nature,cavitation bubbles typically appear in clusters,engaging in interactions that create a variety of dynamicmotion patterns.To better understand the behavior ofmultiple bubble collapses and the mechanisms of in... In nature,cavitation bubbles typically appear in clusters,engaging in interactions that create a variety of dynamicmotion patterns.To better understand the behavior ofmultiple bubble collapses and the mechanisms of interbubble interaction,this study employs molecular dynamics simulation combined with a coarse-grained force field.By focusing on collapsemorphology,local density,and pressure,it elucidates how the number and arrangement of bubbles influence the collapse process.The mechanisms behind inter-bubble interactions are also considered.The findings indicate that the collapse speed of unbounded bubbles located in lateral regions is greater than that of the bubbles in the center.Moreover,it is shown that asymmetrical bubble distributions lead to a shorter collapse time overall. 展开更多
关键词 Molecular dynamics simulation coarse-grained force field bubble arrangement multiple bubbles bubble collapse
在线阅读 下载PDF
Plastic deformation mechanism of γ-phase U–Mo alloy studied by molecular dynamics simulations
7
作者 Chang Wang Peng Peng Wen-Sheng Lai 《Chinese Physics B》 2025年第1期468-475,共8页
Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the p... Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the plastic deformation mechanisms of γ-phase U–Mo alloys using molecular dynamics(MD) simulations. In the slip model, the generalized stacking fault energy(GSFE) and the modified Peierls–Nabarro(P–N) model are used to determine the competitive relationships among different slip systems. In the twinning model, the generalized plane fault energy(GPFE) is assessed to evaluate the competition between slip and twinning. The findings reveal that among the three slip systems, the {110}<111>slip system is preferentially activated, while in the {112}<111> system, twinning is favored over slip, as confirmed by MD tensile simulations conducted in various directions. Additionally, the impact of Mo content on deformation behavior is emphasized. Insights are provided for optimizing process conditions to avoid γ → α′′ transitions, thereby maintaining a higher proportion of γ-phase U–Mo alloys for practical applications. 展开更多
关键词 U-Mo alloy molecular dynamics simulation plastic deformation mechanism dislocation slip twin formation
原文传递
Molecular Dynamics Simulations of Micromechanical Behaviours for AlCoCrFeNi_(2.1)High Entropy Alloy during Nanoindentation
8
作者 Ji-Peng Yang Hai-Feng Zhang +1 位作者 Hong-Chao Ji Nan Jia 《Acta Metallurgica Sinica(English Letters)》 2025年第2期218-232,共15页
Eutectic high entropy alloys are noted for their excellent castability and comprehensive mechanical properties.The excellent mechanical properties are closely related to the activation and evolution of deformation mec... Eutectic high entropy alloys are noted for their excellent castability and comprehensive mechanical properties.The excellent mechanical properties are closely related to the activation and evolution of deformation mechanisms at the atomic scale.In this work,AlCoCrFeNi2.1 alloy is taken as the research object.The mechanical behaviors and deformation mechanisms of the FCC and B2 single crystals with different orientations and the FCC/B2 composites with K-S orientation relationship during nanoindentation processes are systematically studied by molecular dynamics simulations.The results show that the mechanical behaviors of FCC single crystals are significantly orientation-dependent,meanwhile,the indentation force of[110]single crystal is the lowest at the elastic-plastic transition point,and that for[100]single crystal is the lowest in plastic deformation stage.Compared with FCC,the stress for B2 single crystals at the elastic-plastic transition point is higher.However,more deformation systems such as stacking faults,twins and dislocation loops are activated in FCC single crystal during the plastic deformation process,resulting in higher indentation force.For composites,the flow stress increases with the increase of B2 phase thickness during the initial stage of deformation.When indenter penetrates heterogeneous interface,the significantly increased deformation system in FCC phase leads to a significant increase in indentation force.The mechanical behaviors and deformation mechanisms depend on the component single crystal.When the thickness of the component layer is less than 15 nm,the heterogeneous interfaces fail to prevent the dislocation slip and improve the indentation force.The results will enrich the plastic deformation mechanisms of multi-principal eutectic alloys and provide guidance for the design of nanocrystalline metallic materials. 展开更多
关键词 High entropy alloy Mechanical behavior Plastic deformation mechanism NANOINDENTATION Molecular dynamics simulation
原文传递
Molecular Dynamics Simulation of the Interaction between R1336mzz(Z)and POE Lubricants
9
作者 Haoyuan Jing Zhongye Wu +1 位作者 Xiaoyang Jiang Qingfen Ma 《Frontiers in Heat and Mass Transfer》 2025年第2期463-478,共16页
In the organic Rankine cycle,the refrigerant inevitably interacts with the lubricating oil.This study investigates the interaction mechanism between the fourth-generation refrigerant R1336mzz(Z)and the polyol ester(PO... In the organic Rankine cycle,the refrigerant inevitably interacts with the lubricating oil.This study investigates the interaction mechanism between the fourth-generation refrigerant R1336mzz(Z)and the polyol ester(POE)which is a representative component of the lubricating oil,using molecular dynamics simulations.The research focuses on pentaerythritol ester(PEC)with medium to long chain lengths,specifically PEC9.Relevant parameters such as solubility parameters,diffusion coefficients,binding energies,and radial distribution functions were calculated to elucidate the interaction dynamics.The variation in solubility parameters suggests that the miscibility of PEC9 and R1336mzz(Z)diminishes as the number of PEC9 chains increases.Additionally,the compatibility between these two components deteriorates with rising temperature,which is accompanied by a reduction in their binding energy.The simulation results presented in this study offer theoretical insights into the behavior of refrigerant R1336mzz(Z)upon contact with lubricating oil during actual operation,as well as implications for the operational efficiency of the equipment. 展开更多
关键词 REFRIGERANT lubricating oil R1336mzz(Z) polyol ester molecular dynamics simulation
在线阅读 下载PDF
Molecular dynamics simulations of collision cascades in polycrystalline tungsten
10
作者 Lixia Liu Mingxuan Jiang +3 位作者 Ning Gao Yangchun Chen Wangyu Hu Hiuqiu Deng 《Chinese Physics B》 2025年第4期468-476,共9页
Using molecular dynamics methods,simulations of collision cascades in polycrystalline tungsten(W)have been conducted in this study,including different primary-knock-on atom(PKA)directions,grain sizes,and PKA energies ... Using molecular dynamics methods,simulations of collision cascades in polycrystalline tungsten(W)have been conducted in this study,including different primary-knock-on atom(PKA)directions,grain sizes,and PKA energies between 1 keV and 150 keV.The results indicate that a smaller grain size leads to more defects forming in grain boundary regions during cascade processes.The impact of high-energy PKA may cause a certain degree of distortion of the grain boundaries,which has a higher probability in systems with smaller grain sizes and becomes more pronounced as the PKA energy increases.The direction of PKA can affect the formation and diffusion pathways of defects.When the PKA direction is perpendicular to the grain boundary,defects preferentially form near the grain boundary regions;by contrast,defects are more inclined to form in the interior of the grains.These results are of great significance for comprehending the changes in the performance of polycrystalline W under the high-energy fusion environments and can provide theoretical guidance for further optimization and application of W-based plasma materials. 展开更多
关键词 collision cascades molecular dynamics simulations TUNGSTEN POLYCRYSTALLINE
原文传递
Mechanisms and interactions in the reduction of Fe_(2)O_(3) by H_(2)/CO mixed gas:Atomic insights from ReaxFF molecular dynamics simulations and experiments
11
作者 Qiang Cheng Alberto NConejo +3 位作者 Jianliang Zhang Daniel Sopu Yaozu Wang Zhengjian Liu 《International Journal of Minerals,Metallurgy and Materials》 2025年第6期1372-1382,共11页
The experiment explored the Fe_(2)O_(3) reduction process with H_(2)/CO mixed gas and confirmed a promoting effect from CO when its volume proportion in mixed gas is 20% at 850℃.The ReaxFF molecular dynamics(MD)simul... The experiment explored the Fe_(2)O_(3) reduction process with H_(2)/CO mixed gas and confirmed a promoting effect from CO when its volume proportion in mixed gas is 20% at 850℃.The ReaxFF molecular dynamics(MD)simulation method was used to observe the reduction process and provide an atomic-level explanation.The accuracy of the parameters used in the simulation was verified by the density functional theory(DFT)calculation.The simulation shows that the initial reduction rate of H_(2) is much faster than that of CO(from 800 to 950℃).As the reduction proceeds,cementite,obtained after CO participates in the reduction at 850℃,will appear on the iron surface.Due to the active properties of C atoms in cementite,they are easy to further react with the O atoms in Fe_(2)O_(3).The generation of internal CO may destroy the dense structure of the surface layer,thereby affecting the overall reduction swelling of Fe_(2)O_(3).However,excess CO is detrimental to the reaction rate,mainly because of the poor thermodynamic conditions of CO in the temperature range and the molecular diffusion capacity is not as good as that of H_(2).Furthermore,the surface structures obtained after H_(2) and CO reduction have been compared,and it was found that the structure obtained by CO reduction has a larger surface area,thus promoting the sub sequent reaction of H_(2). 展开更多
关键词 hydrogen reduction hydrogen/carbon monoxide mixture ReaxFF molecular dynamics simulations reduction swelling atomic mechanisms
在线阅读 下载PDF
Hybrid CO_(2) thermal system for post-steam heavy oil recovery:Insights from microscopic visualization experiments and molecular dynamics simulations
12
作者 Ning Lu Xiaohu Dong +4 位作者 Haitao Wang Huiqing Liu Zhangxin Chen Yu Li Deshang Zeng 《Energy Geoscience》 2025年第2期233-248,共16页
The hybrid CO_(2) thermal technique has achieved considerable success globally in extracting residual heavy oil from reserves following a long-term steam stimulation process.Using microscopic visualization experiments... The hybrid CO_(2) thermal technique has achieved considerable success globally in extracting residual heavy oil from reserves following a long-term steam stimulation process.Using microscopic visualization experiments and molecular dynamics(MD)simulations,this study investigates the microscopic enhanced oil recovery(EOR)mechanisms underlying residual oil removal using hybrid CO_(2) thermal systems.Based on the experimental models for the occurrence of heavy oil,this study evaluates the performance of hybrid CO_(2) thermal systems under various conditions using MD simulations.The results demonstrate that introducing CO_(2) molecules into heavy oil can effectively penetrate and decompose dense aggregates that are originally formed on hydrophobic surfaces.A stable miscible hybrid CO_(2) thermal system,with a high effective distribution ratio of CO_(2),proficiently reduces the interaction energies between heavy oil and rock surfaces,as well as within heavy oil.A visualization analysis of the interactions reveals that strong van der Waals(vdW)attractions occur between CO_(2) and heavy oil molecules,effectively promoting the decomposition and swelling of heavy oil.This unlocks the residual oil on the hydrophobic surfaces.Considering the impacts of temperature and CO_(2) concentration,an optimal gas-to-steam injection ratio(here,the CO_(2):steam ratio)ranging between 1:6 and 1:9 is recommended.This study examines the microscopic mechanisms underlying the hybrid CO_(2) thermal technique at a molecular scale,providing a significant theoretical guide for its expanded application in EOR. 展开更多
关键词 Heavy oil Hybrid CO_(2)thermal system Microscopic visualization experiment Molecular dynamics simulation Microscopic mechanism
在线阅读 下载PDF
Effect of Al_(2)O_(3)/SiO_(2) Ratio on the Structure and Tensile Strength of Glass Fiber by Experiment and Molecular Dynamics Simulation
13
作者 KANG Junfeng XU Zhaozhi +6 位作者 YANG Shengyun KANG Zeyu GAO Wenkai CAO Yi TANG Zhiyao LI Yongyan YUE Yunlong 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1251-1261,共11页
The effects of different Al_(2)O_(3)/SiO_(2)(Al/Si)ratios on the structure and tensile strength of Na_(2)O-CaO-MgO-Al_(2)O_(3)-SiO_(2)glass fiber were investigated by Raman,tensile strength tests and molecular dynamic... The effects of different Al_(2)O_(3)/SiO_(2)(Al/Si)ratios on the structure and tensile strength of Na_(2)O-CaO-MgO-Al_(2)O_(3)-SiO_(2)glass fiber were investigated by Raman,tensile strength tests and molecular dynamics simulation.The results showed that Al^(3+)mainly existed in the form of[AlO_(4)]within the glass network.With the increase of Al/Si ratio,the Si-O-Al linkage gradually became the main connection mode of glass network.The increase of bridging oxygen content and variation of Q^(n) indicated that a higher degree of network polymerization was formed.The tensile strength of the glass fibers obtained through experiments increased from 2653.56 to 2856.83 MPa,which was confirmed by the corresponding molecular dynamics simulation.During the stretching process,the Si-O bonds in the Si-O-Al linkage tended to break regardless of the compositional changes,and the increase of fractured Si-O-Al and Al-O-Al linkage absorbed more energy to resist the destroy. 展开更多
关键词 aluminosilicate glass short-range structure molecular dynamics simulations tensile strength
原文传递
Unraveling the formation and stabilization of vesicle penetration pore by molecular dynamics simulations
14
作者 Zhi Zheng Mingkun Zhang +2 位作者 Qing Yang Mian Long Shouqin Lü 《Acta Mechanica Sinica》 2025年第7期357-376,共20页
The formation of donut-shaped penetration pore upon membrane fusion in a closed lipid membrane system is of biological significance,since such the structures extensively exist in living body with various functions.How... The formation of donut-shaped penetration pore upon membrane fusion in a closed lipid membrane system is of biological significance,since such the structures extensively exist in living body with various functions.However,the related formation dynamics is unclear because of the limitation of experimental techniques.This work developed a new model of intra-vesicular fusion to elaborate the formation and stabilization of penetration pores by employing molecular dynamics simulations,based on simplified spherical lipid vesicle system,and investigated the regulation of membrane lipid composition.Results showed that penetration pore could be successfully formed based on the strategy of membrane fusion.The ease of intra-vesicular fusion and penetration pore formation was closely correlated with the lipid curvature properties,where negative spontaneous curvature of lipids seemed to be unfavorable for intra-vesicle fusion.Furthermore,the inner membrane tension around the pore was much larger than other regions,which governed the penetration pore size and stability.This work provided basic understanding for vesicle penetration pore formation and stabilization mechanisms. 展开更多
关键词 Penetration pore Membrane fusion Membrane tension Molecular dynamics simulation
原文传递
Elastic-plastic behavior of nickel-based single crystal superalloys with γ-γ′phases based on molecular dynamics simulations
15
作者 Jing-Zhao Cao Yun-Guang Zhang +3 位作者 Zhong-Kui Zhang Jiang-Peng Fan Qi Dong Ying-Ying Fang 《Chinese Physics B》 2025年第4期510-521,共12页
The effects of temperature and Re content on the mechanical properties,dislocation morphology,and deformation mechanism of γ-γ′phases nickel-based single crystal superalloys are investigated by using the molecular ... The effects of temperature and Re content on the mechanical properties,dislocation morphology,and deformation mechanism of γ-γ′phases nickel-based single crystal superalloys are investigated by using the molecular dynamics method through the model of γ-γ′phases containing hole defect.The addition of Re makes the dislocation distribution tend towards the γ phase.The higher the Re content,the earlier theγphase yields,while the γ′phase yields later.Dislocation bends under the combined action of the applied force and the resistance of the Re atoms to form a bend point.The Re atoms are located at the bend points and strengthen the alloy by fixing the dislocation and preventing it from cutting the γ′phase.Dislocations nucleate first in the γ phase,causing theγphase to deform plastically before the γ′phase.As the strain increases,the dislocation length first remains unchanged,then increases rapidly,and finally fluctuates and changes.The dislocation lengths in the γ phase are larger than those in the γ′phase at different temperatures.The dislocation length shows a decreasing tendency with the increase of the temperature.Temperature can affect movement of the dislocation,and superalloys have different plastic deformation mechanisms at low,medium and high temperatures. 展开更多
关键词 nickel-based single crystal superalloys elastic-plastic behavior dislocations molecular dynamics simulation
原文传递
Molecular dynamics simulations reveal the activation mechanism of human TMEM63A induced by lysophosphatidylcholine insertion
16
作者 Zain Babar Junaid Wahid +3 位作者 Xiaofei Ji Huilin Zhao Hua Yu Dali Wang 《Chinese Physics B》 2025年第12期559-567,共9页
OSCA/TMEM63 protein families are recognized as typical mechanosensitive(MS)ion channels in both plants and animals.Resolved OSCA and TMEM63 structures have revealed that these channels are forming dimer and monomer,re... OSCA/TMEM63 protein families are recognized as typical mechanosensitive(MS)ion channels in both plants and animals.Resolved OSCA and TMEM63 structures have revealed that these channels are forming dimer and monomer,respectively.Despite the distinguished architectures,OSCA and TMEM63 serve similar functions in multiple physiological processes.Recently,human TMEM63A(hTMEM63A)structure was identified,allowing for investigation into the activation mechanism of hTMEM63A through molecular dynamics(MD)simulations.In this study,we performed multiscale MD simulations toward hTMEM63A,aiming to reveal how lipid binding regulates hTMEM63A activation.Our results identified two regions on the surface of hTMEM63A,exhibiting a preference for lysophosphatidylcholine(LPC)lipids.Further conformation analyses clarified the activation mechanism of hTMEM63A induced by LPC insertion.These simulation results provide detailed insights into the hTMEM63A–lipid interaction and significant conformational changes associated with hTMEM63A gating,thereby shed lights on the MS ion channel activation mechanism driven by lipid plugging. 展开更多
关键词 molecular dynamics simulation membrane proteins conformational changes protein–membrane interactions
原文传递
Experimental and Molecular Dynamics Simulation Study of Chemical Short‑Range Order in CrCoNi Medium‑Entropy Alloy Fabricated Using Laser Powder Bed Fusion
17
作者 Bolun Han Kai Feng +6 位作者 Zhuguo Li Pan Liu Yakai Zhao Junnan Jiang Yiwei Yu Zhiyuan Wang Kaifeng Ji 《Acta Metallurgica Sinica(English Letters)》 2025年第6期961-968,共8页
CrCoNi medium entropy alloy(MEA)fabricated by laser powder bed fusion(LPBF)benefits from its distinctive hierarchical microstructure and has great potential as a structural material.However,while the intriguing chemic... CrCoNi medium entropy alloy(MEA)fabricated by laser powder bed fusion(LPBF)benefits from its distinctive hierarchical microstructure and has great potential as a structural material.However,while the intriguing chemical short-range order(CSRO)widely exists in high/medium entropy alloys,its formation in the LPBF-built samples still lacks enough understanding.In this study,we verified its existence by fine transmission electron microscopy characterizations and utilized hybrid Monte Carlo/molecular dynamics simulations to investigate the features and effects of CSRO in LPBF-built CrCoNi MEA(AM model).Results showed that the CSRO fraction and the stacking fault energy of the AM model lie between those of the well-annealed and random solid solution counterparts.Among these models,the AM model exhibited the best strain hardening ability due to its highest capability to generate and store sessile dislocations.The results agreed well with existing data and provide guidance to the future development of LPBF-built CrCoNi MEA. 展开更多
关键词 Laser powder bed fusion Medium entropy alloy Chemical short-range order Monte Carlo/molecular dynamics simulation
原文传递
Discovery of selective HDAC6 inhibitors driven by artificial intelligence and molecular dynamics simulation approaches 被引量:1
18
作者 Xingang Liu Hao Yang +10 位作者 Xinyu Liu Minjie Mou Jie Liu Wenying Yan Tianle Niu Ziyang Zhang He Shi Xiangdong Su Xuedong Li Yang Zhang Qingzhong Jia 《Journal of Pharmaceutical Analysis》 2025年第8期1860-1872,共13页
Increasing evidence showed that histone deacetylase 6(HDAC6)dysfunction is directly associated with the onset and progression of various diseases,especially cancers,making the development of HDAC6-targeted anti-tumor ... Increasing evidence showed that histone deacetylase 6(HDAC6)dysfunction is directly associated with the onset and progression of various diseases,especially cancers,making the development of HDAC6-targeted anti-tumor agents a research hotspot.In this study,artificial intelligence(AI)technology and molecular simulation strategies were fully integrated to construct an efficient and precise drug screening pipeline,which combined Voting strategy based on compound-protein interaction(CPI)prediction models,cascade molecular docking,and molecular dynamic(MD)simulations.The biological potential of the screened compounds was further evaluated through enzymatic and cellular activity assays.Among the identified compounds,Cmpd.18 exhibited more potent HDAC6 enzyme inhibitory activity(IC_(50)=5.41 nM)than that of tubastatin A(TubA)(IC_(50)=15.11 nM),along with a favorable subtype selectivity profile(selectivity index z 117.23 for HDAC1),which was further verified by the Western blot analysis.Additionally,Cmpd.18 induced G2/M phase arrest and promoted apoptosis in HCT-116 cells,exerting desirable antiproliferative activity(IC_(50)=2.59 mM).Furthermore,based on long-term MD simulation trajectory,the key residues facilitating Cmpd.18's binding were identified by decomposition free energy analysis,thereby elucidating its binding mechanism.Moreover,the representative conformation analysis also indicated that Cmpd.18 could stably bind to the active pocket in an effective conformation,thus demonstrating the potential for in-depth research of the 2-(2-phenoxyethyl)pyridazin-3(2H)-one scaffold. 展开更多
关键词 Artificial intelligence Virtual screening Compound-protein interaction Molecular dynamic simulation Selective HDAC6 inhibitor
暂未订购
Dynamics simulation of tertiary amines adsorbing on kaolinite(001) plane 被引量:2
19
作者 刘长淼 冯安生 +2 位作者 郭珍旭 曹学锋 胡岳华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第8期1874-1879,共6页
The collecting power of tertiary amines(DRN,DEN and DPN) on kaolinite follows the order of DENDPNDRN.After reacting with DRN,DEN and DPN,the surface potentials of kaolinite increase remarkably,and the recruitments c... The collecting power of tertiary amines(DRN,DEN and DPN) on kaolinite follows the order of DENDPNDRN.After reacting with DRN,DEN and DPN,the surface potentials of kaolinite increase remarkably,and the recruitments caused by collectors also follow the order of DENDPNDRN.The results of dynamics simulation show that the geometries of substituent groups bonding to N are deflected and twisted,and some of bond angles are changed when tertiary amines cations adsorb on kaolinite(001) surface.Based on the results of dynamics simulations and quantum chemistry calculations,the electrostatic forces between three tertiary amines cations and 4×4×3(001) plane of kaolinite are 1.38×10?7 N(DRN12H+),1.44×10-6 N(DEN12H+),1.383×10-6 N(DPN12H+),respectively. 展开更多
关键词 tertiary amines KAOLINITE (001) plane dynamics simulation electrostatic force
在线阅读 下载PDF
Molecular dynamics simulation of relationship between local structure and dynamics during glass transition of Mg_7Zn_3 alloy 被引量:2
20
作者 侯兆阳 刘让苏 +2 位作者 徐春龙 帅学敏 舒瑜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1086-1093,共8页
The rapid solidification process of Mg7Zn3 alloy was simulated by the molecular dynamics method. The relationship between the local structure and the dynamics during the liquid-glass transition was deeply investigated... The rapid solidification process of Mg7Zn3 alloy was simulated by the molecular dynamics method. The relationship between the local structure and the dynamics during the liquid-glass transition was deeply investigated. It was found that the Mg-centered FK polyhedron and the Zn-centered icosahedron play a critical role in the formation of Mg7Zn3 metallic glass. The self-diffusion coefficients of Mg and Zn atoms deviate from the Arrhenius law near the melting temperature and then satisfy the power law. According to the time correlation functions of mean-square displacement, incoherent intermediate scattering function and non-Gaussian parameter, it was found that the β-relaxation in Mg7Zn3 supercooled liquid becomes more and more evident with decreasing temperature, and the α-relaxation time rapidly increases in the VFT law. Moreover, the smaller Zn atom has a faster relaxation behavior than the Mg atom. Some local atomic structures with short-range order have lower mobility, and they play a critical role in the appearance of cage effect in theβ-relaxation regime. The dynamics deviates from the Arrhenius law just at the temperature as the number of local atomic structures begins to rapidly increase. The dynamic glass transition temperature (Tc) is close to the glass transition point in structure (TgStr). 展开更多
关键词 Mg7Zn3 alloy glass transition dynamics structural relaxation molecular dynamics simulation
在线阅读 下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部