现有的烟火检测方法主要依赖员工现场巡视,效率低且实时性差,因此,提出一种基于YOLOv5s的复杂场景下的高效烟火检测算法YOLOv5s-MRD(YOLOv5s-MPDIoU-RevCol-Dyhead)。首先,采用MPDIoU(Maximized Position-Dependent Intersection over U...现有的烟火检测方法主要依赖员工现场巡视,效率低且实时性差,因此,提出一种基于YOLOv5s的复杂场景下的高效烟火检测算法YOLOv5s-MRD(YOLOv5s-MPDIoU-RevCol-Dyhead)。首先,采用MPDIoU(Maximized Position-Dependent Intersection over Union)方法改进边框损失函数,以适应重叠或非重叠的边界框回归(BBR),从而提高BBR的准确性和效率;其次,利用可逆柱状结构RevCol(Reversible Column)网络模型思想重构YOLOv5s模型的主干网络,使它具有多柱状网络架构,并在模型的不同层之间加入可逆链接,从而最大限度地保持特征信息以提高网络的特征提取能力;最后,引入Dynamic head检测头,以统一尺度感知、空间感知和任务感知,从而在不额外增加计算开销的条件下显著提高目标检测头的准确性和有效性。实验结果表明:在DFS(Data of Fire and Smoke)数据集上,与原始YOLOv5s算法相比,所提算法的平均精度均值(mAP@0.5)提升了9.3%,预测准确率提升了6.6%,召回率提升了13.8%。可见,所提算法能满足当前烟火检测应用场景的要求。展开更多
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be...It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.展开更多
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de...This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.展开更多
Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effe...Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices.展开更多
The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is great...The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is greater than that under creep conditions,indicating that the dynamic stress field significantly influences the rheological behaviours of sandstone.Following the rheological tests,the number of small pores in the sandstone decreased,while the number of medium-sized pores increased,forming new seepage channels.The high initial rheological stress accelerated fracture compression and the closure of seepage channels,resulting in reduction in the permeability of sandstone.Based on the principles of generalized rheology and the experimental findings,a novel rock rheological constitutive model incorporating both the dynamic stress field and seepage properties has been developed.Numerical simulations of surrounding rock deformation in geotechnical engineering were carried out using a secondary development version of this model,which confirmed the applicability of the generalized rheological numerical simulation method.These results provide theoretical support for the long-term stability evaluation of engineering rock masses and for predicting the deformation of surrounding rock.展开更多
The hot deformation behavior of Pt−10Ir alloy was studied under a wide range of deformation parameters.At a low deformation temperature(950−1150℃),the softening mechanism is primarily dynamic recovery.In addition,dyn...The hot deformation behavior of Pt−10Ir alloy was studied under a wide range of deformation parameters.At a low deformation temperature(950−1150℃),the softening mechanism is primarily dynamic recovery.In addition,dynamic recrystallization by progressive lattice rotation near grain boundaries(DRX by LRGBs)and microshear bands assisted dynamic recrystallization(MSBs assisted DRX)coordinate the deformation.However,it is difficult for the dynamic softening to offset the stain hardening due to a limited amount of DRXed grains.At a high deformation temperature(1250−1350℃),three main DRX mechanisms associated with strain rates occur:DRX by LRGBs,DRX by a homogeneous increase in misorientation(HIM)and geometric DRX(GDRX).With increasing strain,DRX by LRGBs is enhanced gradually under high strain rates;the“pinch-off”effect is enhanced at low strain rates,which was conducive to the formation of a uniform and fine microstructure.展开更多
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s...Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components.展开更多
In this work,fow behavior and dynamic recrystallization(DRX)mechanism of a low carbon martensitic stainless bearing steel,CSS-42L,were investigated using a thermomechanical simulator under the temperature and strain r...In this work,fow behavior and dynamic recrystallization(DRX)mechanism of a low carbon martensitic stainless bearing steel,CSS-42L,were investigated using a thermomechanical simulator under the temperature and strain rate ranges of 900 to 1100℃ and 0.1 to 20 s^(−1),respectively.The Arrhenius-type constitutive equation was established based on the fow stress curves.Moreover,the peak stress decreased with the increase in deformation temperature and the decrease in strain rate.There were two DRX mechanisms during hot deformation of the current studied steel,the main one being discontinuous dynamic recrystallization mechanism,acting through grain boundary bulging and migration,and the auxiliary one being continuous dynamic recrystallization mechanism,working through the rotation of sub-grains.On the basis of microstructural characterizations,power dissipation maps and fow instability maps,the optimized hot deformation parameters for CSS-42L bearing steel were determined as 1050℃/0.1 s^(−1) and 1100℃/1 s^(−1).展开更多
This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary obj...This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments.展开更多
Hot deformation with high strain rate has been paid more attention due to its high efficiency and low cost,however,the strain rate dependent dynamic recrystallization(DRX)and texture evolution in hot deformation proce...Hot deformation with high strain rate has been paid more attention due to its high efficiency and low cost,however,the strain rate dependent dynamic recrystallization(DRX)and texture evolution in hot deformation process,which affect the formability of metals,are lack of study.In this work,the DRX behavior and texture evolution of Mg-8Gd-1Er-0.5Zr alloy hot compressed with strain rates of 0.1 s^(−1),1 s^(−1),10 s^(−1) and 50 s^(−1) are studied,and the corresponding dominant mechanisms for DRX and texture weakening are discussed.Results indicated the DRX fraction was 20%and the whole texture intensity was 16.89 MRD when the strain rate was 0.1 s^(−1),but they were 76%and 6.55 MRD,respectively,when the strain rate increased to 50 s^(−1).The increment of DRX fraction is suggested to result from the reduced DRX critical strain and the increased dislocation density as well as velocity,while the weakened whole texture is attributed to the increased DRX grains.At the low strain rate of 0.1 s^(−1),discontinuous DRX(DDRX)was the dominant,but the whole texture was controlled by the deformed grains with the preferred orientation of{0001}⊥CD,because the number of DDRX grains was limited.At the high strain rate of 50 s^(−1),continuous DRX(CDRX)and twin-induced DRX(TDRX)were promoted,and more DRX grains resulted in orientation randomization.The whole texture was mainly weakened by CDRX and TDRX grains,in which CDRX plays a major role.The results of present work are significant for understanding the hot workability of Mg-RE alloys with a high strain rate.展开更多
In dynamic scenarios,visual simultaneous localization and mapping(SLAM)algorithms often incorrectly incorporate dynamic points during camera pose computation,leading to reduced accuracy and robustness.This paper prese...In dynamic scenarios,visual simultaneous localization and mapping(SLAM)algorithms often incorrectly incorporate dynamic points during camera pose computation,leading to reduced accuracy and robustness.This paper presents a dynamic SLAM algorithm that leverages object detection and regional dynamic probability.Firstly,a parallel thread employs the YOLOX object detectionmodel to gather 2D semantic information and compensate for missed detections.Next,an improved K-means++clustering algorithm clusters bounding box regions,adaptively determining the threshold for extracting dynamic object contours as dynamic points change.This process divides the image into low dynamic,suspicious dynamic,and high dynamic regions.In the tracking thread,the dynamic point removal module assigns dynamic probability weights to the feature points in these regions.Combined with geometric methods,it detects and removes the dynamic points.The final evaluation on the public TUM RGB-D dataset shows that the proposed dynamic SLAM algorithm surpasses most existing SLAM algorithms,providing better pose estimation accuracy and robustness in dynamic environments.展开更多
High thermal conductivity and high strength Mg-1.5Mn-2.5Ce alloy with a tensile yield strength of 387.0 MPa,ultimate tensile strength of 395.8 MPa,and thermal conductivity of 142.1 W/(m·K)was successfully fabrica...High thermal conductivity and high strength Mg-1.5Mn-2.5Ce alloy with a tensile yield strength of 387.0 MPa,ultimate tensile strength of 395.8 MPa,and thermal conductivity of 142.1 W/(m·K)was successfully fabricated via hot extrusion.The effects of La and Ce additions on the microstructure,thermal conductivity,and mechanical properties of the Mg-1.5Mn alloy were investigated.The results indicated that both the as-extruded Mg-1.5Mn-2.5La and Mg-1.5Mn-2.5Ce alloys exhibited a bimodal grain structure,with dynamically precipitated nano-scaleα-Mn phases.In comparison with La,the addition of Ce enhanced the dynamic precipitation more effectively during hot extrusion,while its influence on promoting the dynamic recrystallization was relatively weaker.The high tensile strength obtained in the as-extruded Mg-1.5Mn-2.5RE alloys can be attributed to the combined influence of the bimodal grain structure(with fine dynamic recrystallized(DRXed)grain size and high proportion of un-dynamic recrystallized(unDRXed)grains),dense nano-scale precipitates,and broken Mg12RE phases,while the remarkable thermal conductivity was due to the precipitation of Mn-rich phases from the Mg matrix.展开更多
Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-...Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-mechanical process.The microstructure evolution of Ti-43Al-4Nb-1Mo-0.2B alloy at 1200℃/0.01 s−1 was investigated to clarify the coupling role of dynamic recrystallization(DRX)and phase transformation.The results revealed that the rate of DRX inα2+γlamellar colonies was comparatively slower than that inβo+γmixed structure,instead being accompanied by intense lamellar kinking and rotation.The initiation and development rates of DRX inα2,βo,andγphases decreased sequentially.The asynchronous DRX of the various geometric structures and phase compositions resulted in the un-even deformed microstructure,and the dynamic softening induced by lamellar kinking and rotation was replaced by strengthened DRX as strain increased.Additionally,the blockyα2 phase and the terminals ofα2 lamellae were the preferential DRX sites owing to the abundant activated slip systems.Theα2→βo transformation within lamellar colonies facilitated DRX and fragment ofα2 lamellae,while theα2→γtransformation promoted the decomposition ofα2 lamellae and DRX ofγlamellae.Moreover,the var-iedβo+γmixed structures underwent complicated evolution:(1)Theγ→βo transformation occurred at boundaries of lamellar colonies,followed by simultaneous DRX ofγlamellar terminals and neighboringβo phase;(2)DRX occurred earlier within the band-likeβo phase,with the delayed DRX in enclosedγphase;(3)DRX within theβo synapses and neighboringγphase was accelerated owing to generation of elastic stress field;(4)Dispersedβo particles triggered particle stimulated nucleation(PSN)ofγphase.Eventually,atomic diffusion along crystal defects inβo andγphases caused fracture of band-likeβo phase and formation of massiveβo particles,impeding grain boundary migration and hindering DRXed grain growth ofγphase.展开更多
文摘现有的烟火检测方法主要依赖员工现场巡视,效率低且实时性差,因此,提出一种基于YOLOv5s的复杂场景下的高效烟火检测算法YOLOv5s-MRD(YOLOv5s-MPDIoU-RevCol-Dyhead)。首先,采用MPDIoU(Maximized Position-Dependent Intersection over Union)方法改进边框损失函数,以适应重叠或非重叠的边界框回归(BBR),从而提高BBR的准确性和效率;其次,利用可逆柱状结构RevCol(Reversible Column)网络模型思想重构YOLOv5s模型的主干网络,使它具有多柱状网络架构,并在模型的不同层之间加入可逆链接,从而最大限度地保持特征信息以提高网络的特征提取能力;最后,引入Dynamic head检测头,以统一尺度感知、空间感知和任务感知,从而在不额外增加计算开销的条件下显著提高目标检测头的准确性和有效性。实验结果表明:在DFS(Data of Fire and Smoke)数据集上,与原始YOLOv5s算法相比,所提算法的平均精度均值(mAP@0.5)提升了9.3%,预测准确率提升了6.6%,召回率提升了13.8%。可见,所提算法能满足当前烟火检测应用场景的要求。
文摘It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.
基金supported by Poongsan-KAIST Future Research Center Projectthe fund support provided by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Grant No.2023R1A2C2005661)。
文摘This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.
基金funded by the National Natural Science Foundation of China (No. 52304133)the National Key R&D Program of China (No. 2022YFC3004605)the Department of Science and Technology of Liaoning Province (No. 2023-BS-083)。
文摘Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices.
基金supported and financed by Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology (No.2024yjrc96)Anhui Provincial University Excellent Research and Innovation Team Support Project (No.2022AH010053)+2 种基金National Key Research and Development Program of China (Nos.2023YFC2907602 and 2022YFF1303302)Anhui Provincial Major Science and Technology Project (No.202203a07020011)Open Foundation of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining (No.EC2023020)。
文摘The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is greater than that under creep conditions,indicating that the dynamic stress field significantly influences the rheological behaviours of sandstone.Following the rheological tests,the number of small pores in the sandstone decreased,while the number of medium-sized pores increased,forming new seepage channels.The high initial rheological stress accelerated fracture compression and the closure of seepage channels,resulting in reduction in the permeability of sandstone.Based on the principles of generalized rheology and the experimental findings,a novel rock rheological constitutive model incorporating both the dynamic stress field and seepage properties has been developed.Numerical simulations of surrounding rock deformation in geotechnical engineering were carried out using a secondary development version of this model,which confirmed the applicability of the generalized rheological numerical simulation method.These results provide theoretical support for the long-term stability evaluation of engineering rock masses and for predicting the deformation of surrounding rock.
基金financial supports from the National Natural Science Foundation of China(Nos.52161023,51901204)Science and Technology Project of Yunnan Precious Metal Laboratory,China(No.YPML-2023050208)+1 种基金Yunnan Science and Technology Planning Project,China(Nos.202201AU070010,202301AT070276,202302AB080008,202303AA080001)Postgraduate Research and Innovation Foundation of Yunnan University,China(No.2021Y338).
文摘The hot deformation behavior of Pt−10Ir alloy was studied under a wide range of deformation parameters.At a low deformation temperature(950−1150℃),the softening mechanism is primarily dynamic recovery.In addition,dynamic recrystallization by progressive lattice rotation near grain boundaries(DRX by LRGBs)and microshear bands assisted dynamic recrystallization(MSBs assisted DRX)coordinate the deformation.However,it is difficult for the dynamic softening to offset the stain hardening due to a limited amount of DRXed grains.At a high deformation temperature(1250−1350℃),three main DRX mechanisms associated with strain rates occur:DRX by LRGBs,DRX by a homogeneous increase in misorientation(HIM)and geometric DRX(GDRX).With increasing strain,DRX by LRGBs is enhanced gradually under high strain rates;the“pinch-off”effect is enhanced at low strain rates,which was conducive to the formation of a uniform and fine microstructure.
基金funded by the National Natural Science Foundation of China Youth Fund(Grant No.62304022)Science and Technology on Electromechanical Dynamic Control Laboratory(China,Grant No.6142601012304)the 2022e2024 China Association for Science and Technology Innovation Integration Association Youth Talent Support Project(Grant No.2022QNRC001).
文摘Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components.
基金fnancially supported by the Scientifc Research Project of the Department of Education in Hunan Prov ince,China(Grant No.23B0533).
文摘In this work,fow behavior and dynamic recrystallization(DRX)mechanism of a low carbon martensitic stainless bearing steel,CSS-42L,were investigated using a thermomechanical simulator under the temperature and strain rate ranges of 900 to 1100℃ and 0.1 to 20 s^(−1),respectively.The Arrhenius-type constitutive equation was established based on the fow stress curves.Moreover,the peak stress decreased with the increase in deformation temperature and the decrease in strain rate.There were two DRX mechanisms during hot deformation of the current studied steel,the main one being discontinuous dynamic recrystallization mechanism,acting through grain boundary bulging and migration,and the auxiliary one being continuous dynamic recrystallization mechanism,working through the rotation of sub-grains.On the basis of microstructural characterizations,power dissipation maps and fow instability maps,the optimized hot deformation parameters for CSS-42L bearing steel were determined as 1050℃/0.1 s^(−1) and 1100℃/1 s^(−1).
基金supported by the National Natural Science Foundation of China(Nos.12272104,U22B2013).
文摘This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments.
基金supported by the Nation Key Research and Development Program of China(No.2021YFB3701100).
文摘Hot deformation with high strain rate has been paid more attention due to its high efficiency and low cost,however,the strain rate dependent dynamic recrystallization(DRX)and texture evolution in hot deformation process,which affect the formability of metals,are lack of study.In this work,the DRX behavior and texture evolution of Mg-8Gd-1Er-0.5Zr alloy hot compressed with strain rates of 0.1 s^(−1),1 s^(−1),10 s^(−1) and 50 s^(−1) are studied,and the corresponding dominant mechanisms for DRX and texture weakening are discussed.Results indicated the DRX fraction was 20%and the whole texture intensity was 16.89 MRD when the strain rate was 0.1 s^(−1),but they were 76%and 6.55 MRD,respectively,when the strain rate increased to 50 s^(−1).The increment of DRX fraction is suggested to result from the reduced DRX critical strain and the increased dislocation density as well as velocity,while the weakened whole texture is attributed to the increased DRX grains.At the low strain rate of 0.1 s^(−1),discontinuous DRX(DDRX)was the dominant,but the whole texture was controlled by the deformed grains with the preferred orientation of{0001}⊥CD,because the number of DDRX grains was limited.At the high strain rate of 50 s^(−1),continuous DRX(CDRX)and twin-induced DRX(TDRX)were promoted,and more DRX grains resulted in orientation randomization.The whole texture was mainly weakened by CDRX and TDRX grains,in which CDRX plays a major role.The results of present work are significant for understanding the hot workability of Mg-RE alloys with a high strain rate.
基金the National Natural Science Foundation of China(No.62063006)to the Guangxi Natural Science Foundation under Grant(Nos.2023GXNSFAA026025,AA24010001)+3 种基金to the Innovation Fund of Chinese Universities Industry-University-Research(ID:2023RY018)to the Special Guangxi Industry and Information Technology Department,Textile and Pharmaceutical Division(ID:2021 No.231)to the Special Research Project of Hechi University(ID:2021GCC028)to the Key Laboratory of AI and Information Processing,Education Department of Guangxi Zhuang Autonomous Region(Hechi University),No.2024GXZDSY009。
文摘In dynamic scenarios,visual simultaneous localization and mapping(SLAM)algorithms often incorrectly incorporate dynamic points during camera pose computation,leading to reduced accuracy and robustness.This paper presents a dynamic SLAM algorithm that leverages object detection and regional dynamic probability.Firstly,a parallel thread employs the YOLOX object detectionmodel to gather 2D semantic information and compensate for missed detections.Next,an improved K-means++clustering algorithm clusters bounding box regions,adaptively determining the threshold for extracting dynamic object contours as dynamic points change.This process divides the image into low dynamic,suspicious dynamic,and high dynamic regions.In the tracking thread,the dynamic point removal module assigns dynamic probability weights to the feature points in these regions.Combined with geometric methods,it detects and removes the dynamic points.The final evaluation on the public TUM RGB-D dataset shows that the proposed dynamic SLAM algorithm surpasses most existing SLAM algorithms,providing better pose estimation accuracy and robustness in dynamic environments.
基金supported by National Key Research&Development Program of China(Grant Nos.2021YFB3703300,2021YFE010016 and 2020YFA0405900)National Natural Science Foundation(Grant Nos.52220105003 and 51971075)+2 种基金the Fundamental Research Funds for the Central Universities(Grant No.FRFCU5710000918)Natural Science Foundation of Heilongjiang Province-Outstanding Youth Fund(Grant No.YQ2020E006)JSPS KAKENHI(Grant No.JP21H01669).
文摘High thermal conductivity and high strength Mg-1.5Mn-2.5Ce alloy with a tensile yield strength of 387.0 MPa,ultimate tensile strength of 395.8 MPa,and thermal conductivity of 142.1 W/(m·K)was successfully fabricated via hot extrusion.The effects of La and Ce additions on the microstructure,thermal conductivity,and mechanical properties of the Mg-1.5Mn alloy were investigated.The results indicated that both the as-extruded Mg-1.5Mn-2.5La and Mg-1.5Mn-2.5Ce alloys exhibited a bimodal grain structure,with dynamically precipitated nano-scaleα-Mn phases.In comparison with La,the addition of Ce enhanced the dynamic precipitation more effectively during hot extrusion,while its influence on promoting the dynamic recrystallization was relatively weaker.The high tensile strength obtained in the as-extruded Mg-1.5Mn-2.5RE alloys can be attributed to the combined influence of the bimodal grain structure(with fine dynamic recrystallized(DRXed)grain size and high proportion of un-dynamic recrystallized(unDRXed)grains),dense nano-scale precipitates,and broken Mg12RE phases,while the remarkable thermal conductivity was due to the precipitation of Mn-rich phases from the Mg matrix.
基金financially supported by the National Key Re-search and Development Program of China(No.2021YFB3702604)the National Natural Science Foundation of China(No.52174377)+1 种基金the Chongqing Natural Science Foundation Project(No.CSTB2023NSCQ-MSX0824)This work was also supported by the Shaanxi Materials Analysis&Research Center and the Analytical&Testing Center of NPU.
文摘Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-mechanical process.The microstructure evolution of Ti-43Al-4Nb-1Mo-0.2B alloy at 1200℃/0.01 s−1 was investigated to clarify the coupling role of dynamic recrystallization(DRX)and phase transformation.The results revealed that the rate of DRX inα2+γlamellar colonies was comparatively slower than that inβo+γmixed structure,instead being accompanied by intense lamellar kinking and rotation.The initiation and development rates of DRX inα2,βo,andγphases decreased sequentially.The asynchronous DRX of the various geometric structures and phase compositions resulted in the un-even deformed microstructure,and the dynamic softening induced by lamellar kinking and rotation was replaced by strengthened DRX as strain increased.Additionally,the blockyα2 phase and the terminals ofα2 lamellae were the preferential DRX sites owing to the abundant activated slip systems.Theα2→βo transformation within lamellar colonies facilitated DRX and fragment ofα2 lamellae,while theα2→γtransformation promoted the decomposition ofα2 lamellae and DRX ofγlamellae.Moreover,the var-iedβo+γmixed structures underwent complicated evolution:(1)Theγ→βo transformation occurred at boundaries of lamellar colonies,followed by simultaneous DRX ofγlamellar terminals and neighboringβo phase;(2)DRX occurred earlier within the band-likeβo phase,with the delayed DRX in enclosedγphase;(3)DRX within theβo synapses and neighboringγphase was accelerated owing to generation of elastic stress field;(4)Dispersedβo particles triggered particle stimulated nucleation(PSN)ofγphase.Eventually,atomic diffusion along crystal defects inβo andγphases caused fracture of band-likeβo phase and formation of massiveβo particles,impeding grain boundary migration and hindering DRXed grain growth ofγphase.