期刊文献+
共找到180篇文章
< 1 2 9 >
每页显示 20 50 100
Mechanical Behavior of Concrete Lintel-column Joint in Chinese Traditional Style Buildings Under Dynamic Cyclic Loading
1
作者 LIU Haipeng DU Luyi +1 位作者 LI Xiang DONG Jinshuang 《International Journal of Plant Engineering and Management》 2025年第3期129-145,共17页
In order to research the concrete archaized buildings with lintel-column joint,2 specimens were tested under dynamic experiment.The failure characteristics,skeleton curves,mechanical behavior such as the load-displace... In order to research the concrete archaized buildings with lintel-column joint,2 specimens were tested under dynamic experiment.The failure characteristics,skeleton curves,mechanical behavior such as the load-displacement hysteretic loops,load carrying capacity,degradation of strength and stiffness,ductility and energy dissipation of the joints were analyzed.The results indicate that comparies with the lintel-column joints,the loading capacity and energy dissipation of the concrete archaized buildings with dual lintel-column joints are higher,and the hysteretic loops is in plump-shape.However,the displacement ductility coefficient is less than that of lintel-column joints.Both of them of the regularity of rigidity degeneration are basically the same.Generally,the joints have the good energy dissipation capacity.And the concrete archaized buildings with lintel-column joints exhibit excellent seismic behavior. 展开更多
关键词 chinese traditional style buildings dual-lintel-column joint dynamic cyclic loading mechanical behavior
在线阅读 下载PDF
Effect of dynamic loading orientation on fracture properties of surrounding rocks in twin tunnels
2
作者 Ze Deng Zheming Zhu +3 位作者 Lei Zhou Leijun Ma Jianwei Huang Yao Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期393-409,共17页
For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of ... For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of dynamic loading orientation on the stability of the twin-tunnel,a split Hopkinson pressure bar(SHPB)apparatus was used to conduct a dynamic test on the twin-tunnel specimens.The two tunnels were rotated around the specimen’s center to consider the effect of dynamic loading orientation.LS-DYNA software was used for numerical simulation to reveal the failure properties and stress wave propagation law of the twin-tunnel specimens.The findings indicate that,for a twin-tunnel exposed to a dynamic load from different orientations,the crack initiation position appears most often at the tunnel corner,tunnel spandrel,and tunnel floor.As the impact direction is created by a certain angle(30°,45°,60°,120°,135°,and 150°),the fractures are produced in the middle of the line between the left tunnel corner and the right tunnel spandrel.As the impact loading angle(a)is 90°,the tunnel sustains minimal damage,and only tensile fractures form in the surrounding rocks.The orientation of the impact load could change the stress distribution in the twin-tunnel,and major fractures are more likely to form in areas where the tensile stress is concentrated. 展开更多
关键词 Twin-tunnel Dynamic load Split Hopkinson pressure bar(SHPB) Fracture mode Stress distribution Displacement field distribution
在线阅读 下载PDF
Dynamically loading IFC models on a web browser based on spatial semantic partitioning
3
作者 Hong-Lei Lu Jia-Xing Wu +1 位作者 Yu-Shen Liu Wan-Qi Wang 《Visual Computing for Industry,Biomedicine,and Art》 2019年第1期26-37,共12页
Industry foundation classes(IFC)is an open and neutral data format specification for building information modeling(BIM)that plays a crucial role in facilitating interoperability.With increases in web-based BIM applica... Industry foundation classes(IFC)is an open and neutral data format specification for building information modeling(BIM)that plays a crucial role in facilitating interoperability.With increases in web-based BIM applications,there is an urgent need for fast loading large IFC models on a web browser.However,the task of fully loading large IFC models typically consumes a large amount of memory of a web browser or even crashes the browser,and this significantly limits further BIM applications.In order to address the issue,a method is proposed for dynamically loading IFC models based on spatial semantic partitioning(SSP).First,the spatial semantic structure of an input IFC model is partitioned via the extraction of story information and establishing a component space index table on the server.Subsequently,based on user interaction,only the model data that a user is interested in is transmitted,loaded,and displayed on the client.The presented method is implemented via Web Graphics Library,and this enables large IFC models to be fast loaded on the web browser without requiring any plug-ins.When compared with conventional methods that load all IFC model data for display purposes,the proposed method significantly reduces memory consumption in a web browser,thereby allowing the loading of large IFC models.When compared with the existing method of spatial partitioning for 3D data,the proposed SSP entirely uses semantic information in the IFC file itself,and thereby provides a better interactive experience for users. 展开更多
关键词 Building information modelling Industry foundation classes IFC models dynamically loading online
在线阅读 下载PDF
Experimental Study on Damage Properties of Rocks Under Dynamic Loading 被引量:1
4
作者 杨军 高文学 金乾坤 《Journal of Beijing Institute of Technology》 EI CAS 2000年第3期243-248,共6页
The damage properties of two types of rocks under dynamic loading are studied. The shock induced experiments are done using planar impact technique on the one? stage light gas gun, and the ultrasonic tests on the da... The damage properties of two types of rocks under dynamic loading are studied. The shock induced experiments are done using planar impact technique on the one? stage light gas gun, and the ultrasonic tests on the damaged rocks have been made by use of the ultrasonic pulse? transmission method. The shock induced damage of rock is related to the shock speed and the attenuation coefficient of sonic wave, and the latter reflects the damage degree in rock fairly well. The attenuation coefficient α can be used as main damage parameter for constructing damage model of rock under dynamic loading. 展开更多
关键词 ROCK dynamic loading damage evolution attenuation coefficient
在线阅读 下载PDF
Reflective cracking viscoelastic response of asphalt concrete under dynamic vehicle loading
5
作者 赵岩荆 倪富健 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期391-394,共4页
In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is describe... In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is described by a prony series which is calculated through nonlinear fitting to the creep test data obtained in the laboratory. Based on the viscoelastic theory, the time-temperature equivalence principle, fracture mechanics and the dynamic finite element method, both the Jintegral and the mix-mode stress intensity factor are utilized as fracture evaluation parameters, and a half-sine dynamic loading is used to simulate the vehicle loading. Finally, the mechanical response of the pavement reflective cracking is analyzed under different vehicle speeds, different environmental conditions and various damping factors. The results indicate that increasing either the vehicle speed or the structure damping factor decreases the maximum values of fracture parameters, while the structure temperature has little effect on the fracture parameters. Due to the fact that the vehicle speed can be enhanced by improving the road traffic conditions, and the pavement damping factor can become greater by modifying the components of materials, the development of reflective cracking can be delayed and the asphalt pavement service life can be effectively extended through both of these ways. 展开更多
关键词 asphalt pavement VISCOELASTIC finite element method reflective cracking dynamic vehicle loading
在线阅读 下载PDF
Cumulative damage characteristics of fully grouted GFRP bolts in rock under blasting dynamic loads
6
作者 WANG Wenjie SONG Jiale +2 位作者 LIU Chao YU Longzhe KABILA Kevin 《Journal of Mountain Science》 2025年第5期1871-1887,共17页
In the civil and mining industries,bolts are critical components of support systems,playing a vital role in ensuring their stability.Glass fibre reinforced polymer(GFRP)bolts are widely used because they are corrosion... In the civil and mining industries,bolts are critical components of support systems,playing a vital role in ensuring their stability.Glass fibre reinforced polymer(GFRP)bolts are widely used because they are corrosion-resistant and cost-effective.However,the damage mechanisms of GFRP bolts under blasting dynamic loads are still unclear,especially compared to metal bolts.This study investigates the cumulative damage of fully grouted GFRP bolts under blasting dynamic loads.The maximum axial stress at the tails of the bolts is defined as the damage variable,based on the failure characteristics of GFRP bolts.By combining this with Miner's cumulative damage theory,a comprehensive theoretical and numerical model is established to calculate cumulative damage.Field data collected from the Jinchuan No.3 Mining Area,including GFRP bolts parameters and blasting vibration data are used for further analysis of cumulative damage in fully grouted GFRP bolts.Results indicate that with an increasing number of blasts,axial stress increases in all parts of GFRP bolts.The tail exhibits the most significant rise,with stress extending deeper into the anchorage zone.Cumulative damage follows an exponential trend with the number of blasts,although the incremental damage per blast decelerates over time.Higher dynamic load intensities accelerate damage accumulation,leading to an exponential decline in the maximum loading cycles before failure.Additionally,stronger surrounding rock and grout mitigate damage accumulation,with the effect of surrounding rock strength being more pronounced than that of grout.In contrast,the maximum axial stress of metal bolts increases quickly to a certain point and then stabilizes.This shows a clear difference between GFRP and metal bolts.This study presents a new cumulative damage theory that underpins the design of GFRP bolt support systems under blasting conditions,identifies key damage factors,and suggests mitigation measures to enhance system stability. 展开更多
关键词 Blasting dynamic load Fully grouted GFRP bolt Cumulative damage Axial stress
原文传递
A Structural Dynamic Response Reconstruction Method for Continuous System Based on Kalman Filter
7
作者 LI Hongqiu JIANG Jinhui MOHAMED M Shadi 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第2期250-260,共11页
The structural dynamic response reconstruction technology can extract unmeasured information from limited measured data,significantly impacting vibration control,load identification,parameter identification,fault diag... The structural dynamic response reconstruction technology can extract unmeasured information from limited measured data,significantly impacting vibration control,load identification,parameter identification,fault diagnosis,and related fields.This paper proposes a dynamic response reconstruction method based on the Kalman filter,which simultaneously identifies external excitation and reconstructs dynamic responses at unmeasured positions.The weighted least squares method determines the load weighting matrix for excitation identification,while the minimum variance unbiased estimation determines the Kalman filter gain.The excitation prediction Kalman filter is constructed through time,excitation,and measurement updates.Subsequently,the response at the target point is reconstructed using the state vector,observation matrix,and excitation influence matrix obtained through the excitation prediction Kalman filter algorithm.An algorithm for reconstructing responses in continuous system using the excitation prediction Kalman filtering algorithm in modal space is derived.The proposed structural dynamic response reconstruction method evaluates the response reconstruction and the load identification performance under various load types and errors through simulation examples.Results demonstrate the accurate excitation identification under different load conditions and simultaneous reconstruction of target point responses,verifying the feasibility and reliability of the proposed method. 展开更多
关键词 dynamic load identification structural response reconstruction excitation identification Kalman filter continuous system
在线阅读 下载PDF
Vibration characteristics of ballastless track and its effect on wheel-rail broadband dynamic interaction
8
作者 Chaozhi MA Liang GAO +3 位作者 Pu WANG Bolun AN Peng ZHOU Mahantesh M NADAKATTI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第6期585-604,共20页
The wheel-rail dynamic load(WRL)and its vibration energy transfer(VET)are foundational for studying ballastless track dynamics in high-speed railways.In this study,the higher-order modal parameters of track beds with ... The wheel-rail dynamic load(WRL)and its vibration energy transfer(VET)are foundational for studying ballastless track dynamics in high-speed railways.In this study,the higher-order modal parameters of track beds with different isolating layers were identified experimentally and a vehicle-track coupled dynamic model considering track bed broadband vibrations(TBBVs)was established.The WRL and its VET were investigated,and the contribution law as well as the influence mechanism of TBBVs on them was determined.The results showed the WRL and track bed vibration energy exhibited significant resonances,with more prominent high-frequency resonance peaks in the track bed vibration energy.TBBVs had a significant effect on low-frequency WRLs,and markedly influenced the VET across various frequency bands.Intense low-frequency and weak high-frequency intermodulation effects between the wheel-rail and track beds were observed.The effect of track bed vibrations can be disregarded when focusing on high-frequency WRLs above 200 Hz.Variations in the isolating layer stiffness have more significant effects on the track bed vibration energy than the WRL.Rational stiffness of the isolating layer should be selected to avoid mode-coupling resonance from track beds to the wheel-rail subsystem. 展开更多
关键词 Ballastless track Higher-order modal testing Wheel-rail dynamic load(WRL) Vibration energy transfer (VET) Intermodulation effect Rational stiffness
原文传递
Cyclic shear responses of rough-walled rock joints subjected to dynamic normal loads
9
作者 Qiang Zhu Qian Yin +1 位作者 Zhigang Tao Manchao He 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3289-3297,共9页
In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads... In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads to assess the impact of shear frequency(f_(h))and shear displacement amplitude(u_(d))on the frictional properties of the joint.The results reveal that within a single shearing cycle,the normal displacement negatively correlates with the dynamic normal force.As the shear cycle number increases,the joint surface undergoes progressive wear,resulting in an exponential decrease in the peak normal displacement.In the cyclic shearing procedure,the forward peak values of shear force and friction coefficient display larger fluctuations at either lower or higher shear frequencies.However,under moderate shear frequency conditions,the changes in the shear strength of the joint surface are smaller,and the degree of degradation post-shearing is relatively limited.As the shear displacement amplitude increases,the range of normal deformation within the joint widens.Furthermore,after shearing,the corresponding joint roughness coefficient trend shows a gradual decrease with an increasing shear displacement amplitude,while varying with the shearing frequency in a pattern that initially rises and then falls,with a turning point at 0.05 Hz.The findings of this research contribute to a profound comprehension of the cyclic frictional properties of rock joints under dynamic disturbances. 展开更多
关键词 Dynamic normal load Dynamic shear load Rough joints Friction mechanisms
在线阅读 下载PDF
Shear mechanical responses and debonding failure mechanisms of bolt-resin-rock anchoring system under dynamic normal load boundary
10
作者 Xinxin Nie Qian Yin +5 位作者 Zhigang Tao Manchao He Gang Wang Wenhua Zha Zhaobo Li Yajun Ren 《International Journal of Mining Science and Technology》 2025年第9期1603-1625,共23页
Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to th... Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to the concealment nature of interfacial interactions.This study establishes an equivalent shear model for a bolt-resin-rock anchoring system and conducts direct shear tests under dynamic normal load(DNL)boundary from both laboratory experiments and discrete element method(DEM)simulations.The research investigates the influence of normal dynamic load amplitude(An)and rock type on shear strength parameters,elucidating the evolutionary characteristics and underlying mechanisms of shear load and normal displacement fluctuations induced by cyclic normal loading,with maximum shear load decreasing by 36.81%to 46.94%as An increases from 10%to 70%when rock type varies from coal to limestone.Through analysis of strain field evolution,the critical impact of rock type on localization of shear failure surface is revealed,with systematic summarization of differentiated wear characteristics,failure modes,and key controlling factors associated with shear failure surface.Mesoscopic investigations enabled by DEM simulations uncover the nonuniform distribution of contact force chains within the material matrix and across the anisotropic interfaces under various DNL boundaries,clarify rock type dependent crack propagation pathways,and quantitatively assess the damage extent of shear failure surface,with the anisotropic interface damage factor increasing from 34.9%to 56.6%as An rises from 10%to 70%,and decreasing from 49.6%to 23.4%as rock type varies from coal to limestone. 展开更多
关键词 Anchoring structure Dynamic normal load boundary Shear mechanical responses Debonding failure Discrete element method
在线阅读 下载PDF
True triaxial modeling test of high-sidewall underground caverns subjected to dynamic disturbances
11
作者 Chuanqing Zhang Jinping Ye +3 位作者 Ning Liu Qiming Xie Mingming Hu Lingyu Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2109-2132,共24页
Seismicity resulting from the near-or in-field fault activation significantly affects the stability of large-scale underground caverns that are operating under high-stress conditions.A comprehensive scientific assessm... Seismicity resulting from the near-or in-field fault activation significantly affects the stability of large-scale underground caverns that are operating under high-stress conditions.A comprehensive scientific assessment of the operational safety of such caverns requires an in-depth understanding of the response characteristics of the rock mass subjected to dynamic disturbances.To address this issue,we conducted true triaxial modeling tests and dynamic numerical simulations on large underground caverns to investigate the impact of static stress levels,dynamic load parameters,and input directions on the response characteristics of the surrounding rock mass.The findings reveal that:(1)When subjected to identical incident stress waves and static loads,the surrounding rock mass exhibits the greatest stress response during horizontal incidence.When the incident direction is fixed,the mechanical response is more pronounced at the cavern wall parallel to the direction of dynamic loading.(2)A high initial static stress level specifically enhances the impact of dynamic loading.(3)The response of the surrounding rock mass is directly linked to the amplitude of the incident stress wave.High amplitude results in tensile damage in regions experiencing tensile stress concentration under static loading and shear damage in regions experiencing compressive stress concentration.These results have significant implications for the evaluation and prevention of dynamic disasters in the surrounding rock of underground caverns experiencing dynamic disturbances. 展开更多
关键词 High-sidewall underground cavern Modeling test Coupling effect of dynamic and static loads Incident wave Response characteristics Risk coefficient
在线阅读 下载PDF
Shear mechanical properties of loaded rock under drilling and dynamic load and its influence on the plastic zone of roadway
12
作者 Yujiang Zhang Bingyuan Cui +4 位作者 Guorui Feng Chunwang Zhang Yuxia Guo Shuai Zhang Zhengjun Zhang 《International Journal of Mining Science and Technology》 2025年第7期1073-1091,共19页
Borehole pressure relief helps prevent rock bursts.However,this may change the physical and mechan-ical properties of the surrounding rock,affect the variation of the plastic zone of the roadway,and lead to the failur... Borehole pressure relief helps prevent rock bursts.However,this may change the physical and mechan-ical properties of the surrounding rock,affect the variation of the plastic zone of the roadway,and lead to the failure of roadway support,thus threatening the safety of the roadway.In this paper,the variable angle shear test of drilled specimens under the action of static and dynamic loads is used to study the evolution of mechanical parameters of the specimens and their influence on the plastic zone of the sur-rounding rock.The shear strength decreases linearly with the increase of drilling diameter.With the increase of pre-static load level and dynamic load amplitude,the cohesion first increases and then decreases,and the internal friction angle decreases.Moreover,the shear failure surface changes from rough to smooth.The reasons include that the static load enhances the tooth cutting effect and the repeated friction of cracks caused by the dynamic load.Borehole pressure relief leads to an increase in the radius of the plastic zone of the surrounding rock following a quadratic function.The research results of this paper provide a theoretical basis for designing drilling unloading parameters and supporting parameters for rock burst roadways. 展开更多
关键词 Borehole pressure relief Dynamic and static combined loading Shear mechanical properties Failure characteristics Plastic zone of roadway
在线阅读 下载PDF
NMR-based damage characterisation of backfill material in host rock under dynamic loading 被引量:23
13
作者 Binglei Li Jiquan Lan +2 位作者 Guangyao Si Guopeng Lin Liuqing Hu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期329-335,共7页
It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution o... It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution of backfilled stopes is critical to maintain the long-term stope stability and ensure safe mining activities. This paper aims to study the damage evolution of the backfill material and its host rock behaviour under three-dimensional(3D) dynamic loading. Using a true-triaxial testing machine, multiple samples of backfill material enclosed by country rock were fabricated and tested under various dynamic loadings with different true-triaxial confining stress conditions. In addition, the nuclear magnetic resonance(NMR) measurement was conducted on the samples before and after exerting static and dynamic loading to obtain their porosity distribution changes. The experiment results suggested that with the increase of the dynamic loading, the porosity of the backfill sample goes through a two-stage process,which shows a slightly linear decrease and then followed by an exponential increase. The research findings can help understand the damage mechanism and fracture development of backfilled stopes and its host rock in deep underground mines, which are constantly subject to the combination of 3D static confining stress and dynamic loading. 展开更多
关键词 Dynamic loading Backfill-country rock system True triaxial test Coupled static and dynamic loads Nuclear magnetic resonance(NMR) Damage evolution
在线阅读 下载PDF
Numerical simulation research on response characteristics of surrounding rock for deep super-large section chamber under dynamic and static combined loading condition 被引量:17
14
作者 FAN De-yuan LIU Xue-sheng +3 位作者 TAN Yun-liang SONG Shi-lin NING Jian-guo MA Qing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3544-3566,共23页
The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper us... The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper used the dynamic module of FLAC3D to study the response characteristics of deep super-large section chamber under dynamic and static combined loading condition.Results showed that under the static loading condition,the maximum vertical stress,deformation and failure range are large,where the stress concentration coefficient is 1.64.The maximum roof-to-floor and two-sides deformations are 54.6 mm and 53.1 mm,respectively.Then,under the dynamic and static combined loading condition:(1)The influence of dynamic load frequency on the two-sides is more obvious;(2)The dynamic load amplitude has the greatest influence on the stress concentration degree,and the plastic failure tends to develop to the deeper;(3)With the dynamic load source distance increase,the response of surrounding rock is gradually attenuated.On this basis,empirical equations for each dynamic load conditions were obtained by using regression analysis method,and all correlation coefficients are greater than 0.99.This research provided reference for the supporting design of deep super-large section chamber under same or similar conditions. 展开更多
关键词 deep mining super-larger section chamber static load dynamic load frequency dynamic load amplitude dynamic load source distance
在线阅读 下载PDF
Failure characteristics of high stress rock induced by impact disturbance under confining pressure unloading 被引量:18
15
作者 YIN Zhi-qiang LI Xi-bing +2 位作者 JIN Jie-fang HE Xian-qun DU Kun 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期175-184,共10页
The failure characteristics under coupled static and dynamic loading were investigated by the improved split Hopkinson pressure bar (SHPB) with axial pre-pressure and confining pressure. The results show that the st... The failure characteristics under coupled static and dynamic loading were investigated by the improved split Hopkinson pressure bar (SHPB) with axial pre-pressure and confining pressure. The results show that the stress—strain curve of the rock under static-dynamic coupled loading is a typical class I curve when the dynamic load is comparatively high; With the decrease of the dynamic load, the stress—strain curve transforms to a typical class II curve. The dynamic failure process was recorded by high-speed photography. Analyses of fracture surface morphology show that the failure modes of specimens are tensile failure or combined shear failure when the impact load energy is low, but the failure modes of specimens become tensile failure when the impact load energy is high. The results of fractal dimension show that the elastic potential energy release leads to increase in the degree of crushing of samples when the energy of impact load is low under coupled static and dynamic loads with high stress. 展开更多
关键词 high stress coupled static and dynamic loading impact disturbance high-speed photography
在线阅读 下载PDF
Spalling fracture mechanism of granite subjected to dynamic tensile loading 被引量:8
16
作者 Lin-qi HUANG Jun WANG +1 位作者 Aliakbar MOMENI Shao-feng WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第7期2116-2127,共12页
Rocks are likely to undergo spalling failure under dynamic loading.The fracture development and rock failure behaviours were investigated during dynamic tensile loading.Tests were conducted with a split-Hopkinson pres... Rocks are likely to undergo spalling failure under dynamic loading.The fracture development and rock failure behaviours were investigated during dynamic tensile loading.Tests were conducted with a split-Hopkinson pressure bar(SHPB)in four different impact loading conditions.Thin sections near failure surfaces were also made to evaluate the growth patterns of fractures observed by polarizing microscope.Scanning electron microscopy(SEM)was used to observe mineral grains on failure surfaces and to evaluate their response to loading and failure.The results indicate that the number of spalling cracks increases with increase in peak impact loads and that quartz sustains abundant intergranular fracturing.Cleavage planes and their direction relative to loading play a vital role in rock strength and fracturing.Separation along cleavage planes perpendicular to loading without the movement of micaceous minerals parallel to loading appears to be unique to the rock spalling process. 展开更多
关键词 microscopic observation dynamic loading spalling failure mineral properties intercrystalline fracture
在线阅读 下载PDF
Experimental Study of Pore Pressure and Deformation of Suction Bucket Foundations Under Horizontal Dynamic Loading 被引量:6
17
作者 鲁晓兵 王淑云 +2 位作者 张建红 孙国亮 时忠民 《China Ocean Engineering》 SCIE EI 2005年第4期671-680,共10页
Centrifuge experiments are carried out to investigate the responses of suction bucket foundations under horizontal dynamic loading. The effects of loading amplitude, the size of the bucket and the structural weight on... Centrifuge experiments are carried out to investigate the responses of suction bucket foundations under horizontal dynamic loading. The effects of loading amplitude, the size of the bucket and the structural weight on the dynamic responses are investigated. It is shown that, when the loading amplitude is over a critical value, the sand at the upper part around the bucket softens or even liquefies. The liquefaction index (excess pore pressure divided by initial effective stress. In this paper, the developmental degree of excess pore pressure is described by liquefaction index) decreases from the upper part to the lower part of the sand foundation in the vertical direction and decreases from near to far away from the bucket's side wall in the horizontal direction, large settlements of the bucket and the sand around the bucket are induced by the horizontal dynamic loading. The dynamic responses of the bucket of a smaller height (when the diameter is the same) are heavier. A cyclic crack some distance near the bucket occurs in the sand. 展开更多
关键词 centrifuge experiments suction bucket horizontal dynamic loading
在线阅读 下载PDF
Mesoscopic Modeling Approach and Application for Steel Fiber Reinforced Concrete under Dynamic Loading:A Review 被引量:4
18
作者 Jinhua Zhang Zhangyu Wu +2 位作者 Hongfa Yu Haiyan Ma Bo Da 《Engineering》 SCIE EI CAS 2022年第9期220-238,共19页
Steel fiber reinforced concrete(SFRC)has drawn extensive attention in recent years for its superior mechanical response to dynamic and impact loadings.Based on the existing test results,the highstrength steel fibers e... Steel fiber reinforced concrete(SFRC)has drawn extensive attention in recent years for its superior mechanical response to dynamic and impact loadings.Based on the existing test results,the highstrength steel fibers embedded in a concrete matrix usually play a strong bridging effect to enhance the bonding force between fiber and the matrix,and directly contribute to the improvement of the post-cracking behavior and residual strength of SFRC.To gain a better understanding of the action behavior of steel fibers in matrix and further capture the failure mechanism of SFRC under dynamic loads,the mesoscopic modeling approach that assumes SFRC to be composed of different mesoscale phases(i.e.,steel fibers,coarse aggregates,mortar matrix,and interfacial transition zone(ITZ))has been widely employed to simulate the dynamic responses of SFRC material and structural members.This paper presents a comprehensive review of the state-of-the-art mesoscopic models and simulations for SFRC under dynamic loading.Generation approaches for the SFRC mesoscale model in the simulation works,including steel fiber,coarse aggregate,and the ITZ between them,are reviewed and compared systematically.The material models for different phases and the interaction relationship between fiber and concrete matrix are summarized comprehensively.Additionally,some example applications for SFRC under dynamic loads(i.e.,compression,tension,and contact blast)simulated using the general mesoscale models are given.Finally,some critical analysis on the current shortcomings of the mesoscale modeling of SFRC is highlighted,which is of great significance for the future investigation and development of SFRC. 展开更多
关键词 Steel fiber reinforced concrete Mesoscale modeling Dynamic loading Materials model Interfacial characteristic
在线阅读 下载PDF
An automatic loading system for rock core testing with an industrial CT scanner 被引量:3
19
作者 Zhao Hong Zhao Yixin 《Petroleum Science》 SCIE CAS CSCD 2011年第4期490-493,共4页
A new type of a loading and measuring system was developed for testing failure and deformation of rock core samples with an industrial CT (ICT) scanner.The loading and measuring system consisted of a loading system ... A new type of a loading and measuring system was developed for testing failure and deformation of rock core samples with an industrial CT (ICT) scanner.The loading and measuring system consisted of a loading system and a computer control system.The maximum servo-controlled force was 2 tonnes.The new system was a high-stiffness system with a small size.During ICT tests,rock core samples could be easily loaded in the axial direction.So the initiation,propagation,and coalescence of cracks in core samples were observed on ICT images. 展开更多
关键词 Industrial CT dynamic loading automatic loading system rock core crack propagation
原文传递
THREE-DIMENSIONAL ELLIPTIC CRACK UNDER IMPACT LOADING 被引量:4
20
作者 Sun Zhufeng Wu Xiangfa Fan Tianyou 《Acta Mechanica Solida Sinica》 SCIE EI 2001年第4期312-316,共5页
The dynamic stress intensity factor of a three-dimensionalelliptic crack under impact loading is determined with the finiteelement method. The computation results can take into account theinfluence of time and the rat... The dynamic stress intensity factor of a three-dimensionalelliptic crack under impact loading is determined with the finiteelement method. The computation results can take into account theinfluence of time and the ratio of the wave speeds on the stressintensity factor. The present method is suitable not only forthree-dimensional dynamic crack, but also for three-dimensionaldynamic contact. 展开更多
关键词 dynamic loading three-dimensional elliptic crack finite element dynamicstress intensity factor
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部