Grating fringe projection 3D measurement techniques are extensively applied in various fields.However,in high dynamic range scenarios with significant surface reflectivity variations,uneven greyscale distribution may ...Grating fringe projection 3D measurement techniques are extensively applied in various fields.However,in high dynamic range scenarios with significant surface reflectivity variations,uneven greyscale distribution may lead to phase errors and poor reconstruction results.To address this problem,an adaptive fringe projection method is introduced.The method involves projecting two sets of dark and light fringes onto the object,enabling the full-field projection intensity map to be generated adaptively based on greyscale analysis.First,dark fringes are projected onto the object to extend exposure time as long as possible without causing overexposure in the image.Subsequently,bright fringes are projected under the same exposure settings to detect overexposed pixels,and the greyscale distribution of these overexposed points from the previous dark fringe projection is analyzed to calculate the corresponding projection intensities.Finally,absolute phase information from orthogonal fringes is used for coordinate matching,enabling the generation of adaptive projection fringe patterns.Experiments on various high dynamic range objects show that compared to conventional fringe projection binocular reconstruction method,the proposed algorithm achieves complete reconstruction of high dynamic range surfaces and shows robust performance against phase calculation errors caused by overexposure and low modulation.展开更多
The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,re...The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,resulting in point cloud loss or reduced accuracy.To address this issue,unlike the pixel modulation method of projectors,we utilize the characteristics of color projectors where the intensity of the three-channel LED can be controlled independently.We propose a method for separating the projector's three-channel light intensity,combined with a color camera,to achieve single exposure and multi-intensity image acquisition.Further,the crosstalk coefficient is applied to predict the three-channel reflectance of the measured object.By integrating clustering and channel mapping,we establish a pixel-level mapping model between the projector's three-channel current and the camera's three-channel image intensity,which realizes the optimal projection current prediction and the high dynamic range(HDR)image acquisition.The proposed method allows for high-precision three-dimensional(3D)data acquisition of HDR scenes with a single exposure.The effectiveness of this method has been validated through experiments with standard planes and standard steps,showing a significant reduction in mean absolute error(44.6%)compared to existing singleexposure HDR methods.Additionally,the number of images required for acquisition is significantly reduced(by 70.8%)compared to multi-exposure fusion methods.This proposed method has great potential in various FPP-related fields.展开更多
Construction project construction stage requires effective change visa management and dynamic cost control.This paper defines both,presents related theories,and details challenges in traditional methods.It then propos...Construction project construction stage requires effective change visa management and dynamic cost control.This paper defines both,presents related theories,and details challenges in traditional methods.It then proposes an integrated model with system architecture,functional modules,and practical strategies like BIM integrated workflows.A case study validates the effectiveness,and future research on AI enhanced change prediction and blockchain based audit trails is suggested.展开更多
The research shows that projection pursuit cluster (PPC) model is able to form a suitable index for overcom-ing the difficulties in comprehensive evaluation, which can be used to analyze complex multivariate prob-lems...The research shows that projection pursuit cluster (PPC) model is able to form a suitable index for overcom-ing the difficulties in comprehensive evaluation, which can be used to analyze complex multivariate prob-lems. The PPC model is widely used in multifactor cluster and evaluation analysis, but there are a few prob-lems needed to be solved in practice, such as cutoff radius parameter calibration. In this study, a new model-projection pursuit dynamic cluster (PPDC) model-based on projection pursuit principle is developed and used in water resources carrying capacity evaluation in China for the first time. In the PPDC model, there are two improvements compared with the PPC model, 1) a new projection index is constructed based on dynamic cluster principle, which avoids the problem of parameter calibration in the PPC model success-fully;2) the cluster results can be outputted directly according to the PPDC model, but the cluster results can be got based on the scatter points of projected characteristic values or the re-analysis for projected character-istic values in the PPC model. The results show that the PPDC model is a very effective and powerful tool in multifactor data exploratory analysis. It is a new method for water resources carrying capacity evaluation. The PPDC model and its application to water resources carrying capacity evaluation are introduced in detail in this paper.展开更多
This study introduces the design details of a tool to create interactive projection-mapping content in a convenient manner.For the proposed tool design,a homography-based camera–projector calibration method was appli...This study introduces the design details of a tool to create interactive projection-mapping content in a convenient manner.For the proposed tool design,a homography-based camera–projector calibration method was applied with the use of red–green–blue-depth images from a Kinect V2 sensor that did not require accurate camera calibration prerequisites.In addition,the proposed tool simultaneously achieved static projection mapping that projected the image content onto a fixed object,and dynamic projection mapping that projected the image content onto a user’s body,by tracing the moving user.To verify the effectiveness of the proposed content-creation tool,users with no programming capabilities were employed to create contents that were projected onto various objects in fixed positions and a user’s body in various poses,thereby analyzing the tool’s completeness.Moreover,the projection accuracy was analyzed at different depth positions,and the projection-mapping accuracy was verified with the use of the proposed method.展开更多
As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decompos...As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decomposition of the input space by DiPLS,there are false alarms in the actual industrial process during fault detection.To address the above problems,a dynamic modeling method based on autoregressive-dynamic inner total PLS(AR-DiTPLS)is proposed.The method first uses the regression relation matrix to decompose the input space orthogonally,which reduces useless information for the predic-tion output in the quality-related dynamic subspace.Then,a vector autoregressive model(VAR)is constructed for the predic-tion score to separate dynamic information and static informa-tion.Based on the VAR model,appropriate statistical indicators are further constructed for online monitoring,which reduces the occurrence of false alarms.The effectiveness of the method is verified by a Tennessee-Eastman industrial simulation process and a three-phase flow system.展开更多
Sustainable performance is expected to become a major factor when examining the feasibility of a construction project in terms of its life cycle performance. The study on which this paper is based developed a simulati...Sustainable performance is expected to become a major factor when examining the feasibility of a construction project in terms of its life cycle performance. The study on which this paper is based developed a simulation model, using system dy- namics methodology, to assess the sustainable performance of projects. Three major factors are used to examine project sus- tainable performance (PSP): the sustainability of economic development (E), the sustainability of social development (S), and the sustainability of environmental development (En). Sustainable development ability (SDA) was used as a prototype to evaluate the degree of sustainable performance. The simulation software ‘ithink’ was used to help with the application of the model to a real life case. This paper explains and demonstrates the procedures used to develop the model and finally offers an approach for assessing the feasibility of a construction project in terms of its sustainable performance.展开更多
This study established a 3D finite element model for 15# hydropower house of the Three Gorges Project (TGP) and performed a nonlinear dynamic analysis under pressure fluctuation. In this numerical model, the stiffness...This study established a 3D finite element model for 15# hydropower house of the Three Gorges Project (TGP) and performed a nonlinear dynamic analysis under pressure fluctuation. In this numerical model, the stiffness degradation in tension for concrete was considered on the basis of the continuum isotropic damage theory. Natural vibration frequencies of the damaged and undamaged structures were compared after static water pressure was applied. Then a study was further conducted on forced vibration of the powerhouse with pre-existing damages under pressure fluctuation that acts on the flow passage; displacement, velocity and acceleration of the important structural members were afterwards presented and checked. Numerical results show that tensile damages in concrete surrounding the spiral case only exert significant impact upon the dynamic characteristics of substructure but show little effect on the superstructure. Nevertheless vibrations of the powerhouse are still under the recommended vibration limits.展开更多
As part of the global effort to plant billion trees,an afforestation project is launched in Pakistan in Khyber Pakhtunkhwa(KP)province to conserve existing forests and to increase area under forest cover.The present s...As part of the global effort to plant billion trees,an afforestation project is launched in Pakistan in Khyber Pakhtunkhwa(KP)province to conserve existing forests and to increase area under forest cover.The present study is designed to build a Systems'model by incorporating major activities of the Billion Tree Tsunami Afforestation Project(BTTAP)with special focus on afforestation activities to estimate the growth in forest area of KP.Availability of complete dataset was a challenge.To fix the model,the raw data taken from the project office has been utilized.Planning Commission Form 1-Phase I&II helped us with additional information.We relied on the data available for one and half period of the project as rest of the data is subject to the completion of the project.Our results show that the project target to enhance area under forest differs from the target to afforest area under the project.The system dynamics'model projection shows that the forest area of KP would be 23.59 million hectares at the end of the BTTA project,thus having an increase of 3.29%instead of 2%that has been initially proposed.However,the results show that the progress to meet the target in some afforestation classes is slow as compared to other categories.Farm forestry,plantation on communal lands and owners'plantation need special focus of the authority.Deforestation would affect 0.02 million hectares area of the project.The model under study may be used as a reference model that can be replicated to other areas where billion tree campaigns are going on.展开更多
Based on the stability theory of the fractional order system, the dynamic behaviours of a new fractional order system are investigated theoretically. The lowest order we found to have chaos in the new three-dimensiona...Based on the stability theory of the fractional order system, the dynamic behaviours of a new fractional order system are investigated theoretically. The lowest order we found to have chaos in the new three-dimensional system is 2.46, and the period routes to chaos in the new fractional order system are also found. The effectiveness of our analysis results is further verified by numerical simulations and positive largest Lyapunov exponent. Furthermore, a nonlinear feedback controller is designed to achieve the generalized projective synchronization of the fractional order chaotic system, and its validity is proved by Laplace transformation theory.展开更多
Time-delay Takagi-Sugeno fuzzy drive-response dynamical networks (TD-TSFDRDNs) are defined by extending the drive-response dynamical networks.Based on the LaSalle invariant principle,a simple and systematic adaptive c...Time-delay Takagi-Sugeno fuzzy drive-response dynamical networks (TD-TSFDRDNs) are defined by extending the drive-response dynamical networks.Based on the LaSalle invariant principle,a simple and systematic adaptive control scheme is proposed to synchronize the TD-TSFDRDNs with a desired scalar factor.A sufficient condition for the generalized projective synchronization in TD-TSFDRDNs is derived.Moreover,numerical simulations are provided to verify the correctness and effectiveness of the scheme.展开更多
A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces:(i) the group's cohesive force which tends to restore t...A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces:(i) the group's cohesive force which tends to restore the opinion back towards the initial status because of its company culture;and(ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness.Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes,i.e.,a deadlock regime,a convergence regime,and a bifurcation regime in opinion dynamics.The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to.In the case of a three-group project with a symmetric social network,both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord,instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay's result(Physica A 378(2007) p.125 Fig.5),project organization(PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations,which urges that apart from divergence in participants' interests,nonlinear interaction can also make conflict inevitable in the PO.The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO.It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO.展开更多
The current socialist economic construction speed is very fast, and urbanization construction has made some progress. The number and scale of construction projects are also continuing to climb, which makes the competi...The current socialist economic construction speed is very fast, and urbanization construction has made some progress. The number and scale of construction projects are also continuing to climb, which makes the competitive environment of the construction market more brutal, and the challenges facing construction enterprises are more severe. Construction project cost, as the core key to improve the economic income of enterprises, the relevant personnel need to pay great attention to it. Only by improving the overall quality of the dynamic management and control of the construction project cost, can the vital interests of the enterprise be effectively guaranteed and the core competitiveness of the enterprise be further improved. In view of this, this paper will take the common problems in the dynamic management and control of the construction project cost as the entry point to analyze and explore the feasible cost dynamic control measures.展开更多
The investment decision making of Project Gang, the projects that are associated with one another on economy and technique, is studied. In order to find out the best Scheme that can make the maximum profit, a dynami...The investment decision making of Project Gang, the projects that are associated with one another on economy and technique, is studied. In order to find out the best Scheme that can make the maximum profit, a dynamic programming algorithm on the investment decision making of Project Gang is brought forward, and this algorithm can find out the best Scheme of distributing the m resources to the n Items in the time of O(m 2 n).展开更多
With the development of graphic processing unit(GPU)power,it is now possible to implement geometric correction and edge blending functions on a single computer.However,the processing resources consumed by the geometri...With the development of graphic processing unit(GPU)power,it is now possible to implement geometric correction and edge blending functions on a single computer.However,the processing resources consumed by the geometric correction and edge blending phases still burden the system and slow down the main application considerably.A new platform independent scheme is proposed,minimizing the negative influence on performance.In this scheme,parameters for geometric correction and edge blending are firstly defined in an interactive way and recorded as a 32-bit high dynamic range(HDR) image,which is then used by high level shading language(HLSL) codes embedded in the main application as a lookup table,greatly reducing the computational complexity and enhancing flexibility.展开更多
We calculate current correlation functions (CCFs) of dissipative particle dy- namics (DPD) and compare them with results of molecular dynamics (MD) and solutions of linearized hydrodynamic equations. In particul...We calculate current correlation functions (CCFs) of dissipative particle dy- namics (DPD) and compare them with results of molecular dynamics (MD) and solutions of linearized hydrodynamic equations. In particular, we consider three versions of DPD, the empirical/classical DPD, coarse-grained (CG) DPD with radial-direction interactions only and full (radial, transversal, and rotational) interactions between particles. To fa- cilitate quantitative discussions, we consider specifically a star-polymer melt system at a moderate density. For bonded molecules, it is straightforward to define the CG variables and to further derive CG force fields for DPD within the framework of the Mori-Zwanzig formalism. For both transversal and longitudinal current correlation functions (TCCFs and LCCFs), we observe that results of MD, DPD, and hydrodynamic solutions agree with each other at the continuum limit. Below the continuum limit to certain length scales, results of MD deviate significantly from hydrodynamic solutions, whereas results of both empirical and CG DPD resemble those of MD. This indicates that the DPD method with Markovian force laws possibly has a larger applicability than the continuum description of a Newtonian fluid. This is worth being explored further to represent gen- eralized hydrodynamics.展开更多
From viewpoint of nonlinear dynamics, the model reduction and its influence on the long-term behaviours of a class of nonlinear dissipative autonomous dynamical system with higher dimension are investigated theoretica...From viewpoint of nonlinear dynamics, the model reduction and its influence on the long-term behaviours of a class of nonlinear dissipative autonomous dynamical system with higher dimension are investigated theoretically under some assumptions. The system is analyzed in the state space with an introduction of a distance definition which can be used to describe the distance between the full system and the reduced system, and the solution of the full system is then projected onto the complete space spanned by the eigenvectors of the linear operator of the governing equations. As a result, the influence of mode series truncation on the long-term behaviours and the error estimate are derived, showing that the error is dependent on the first products of frequencies and damping ratios in the subspace spanned by the eigenvectors with higher modal damping. Furthermore, the fundamental understanding for the topological change of the solution due to the application of different model reduction is interpreted in a mathematically precise way, using the qualitative theory of nonlinear dynamics.展开更多
A new pressure Poisson equation method with viscous terms is established on staggered grids. The derivations show that the newly established pressure equation has the identical equation form in the projection method. ...A new pressure Poisson equation method with viscous terms is established on staggered grids. The derivations show that the newly established pressure equation has the identical equation form in the projection method. The results show that the two methods have the same velocity and pressure values except slight differences in the CPU time.展开更多
The solution of the dynamic problem of multibody systems subject to rheonomic and nonholonomic constraints is achieved by applying singular value decomposition of the constraint matrix and projections of the dynamic e...The solution of the dynamic problem of multibody systems subject to rheonomic and nonholonomic constraints is achieved by applying singular value decomposition of the constraint matrix and projections of the dynamic equations of the systems along the feasible and unfeasible directions of the constraints. Formula to solve the constraint reaction forces and a method to avoid the violation of the constraints are also given.The solution does not rely on coordinates used to describe the systems and is computational efficitive example is finally presnted.展开更多
This paper presents a disturbance rejection scheme for walking robots under unknown external forces and moments. The disturbance rejection strategy, which combines the inverse dynamics control with the acceleration pr...This paper presents a disturbance rejection scheme for walking robots under unknown external forces and moments. The disturbance rejection strategy, which combines the inverse dynamics control with the acceleration projection onto the ZMP (zero moment point)-plane, can ensure the overall dynamic stability of the robot during tracking the pre-computed trajectories. Under normal conditions, i.e., the system is dynamically balanced, a primary inverse dynamics control is utilized. In the case that the system becomes unbalanced due to external disturbances, the acceleration projection control (APC) loop, will be activated to keep the dynamic stability of the walking robot through modifying the input torques. The preliminary experimental results on a robot leg demonstrate that the proposed method can actually make the robot keep a stable motion under unknown external perturbations.展开更多
基金supported by the Science and Technology Program Project of Tianjin(No.24ZXZSSS00300).
文摘Grating fringe projection 3D measurement techniques are extensively applied in various fields.However,in high dynamic range scenarios with significant surface reflectivity variations,uneven greyscale distribution may lead to phase errors and poor reconstruction results.To address this problem,an adaptive fringe projection method is introduced.The method involves projecting two sets of dark and light fringes onto the object,enabling the full-field projection intensity map to be generated adaptively based on greyscale analysis.First,dark fringes are projected onto the object to extend exposure time as long as possible without causing overexposure in the image.Subsequently,bright fringes are projected under the same exposure settings to detect overexposed pixels,and the greyscale distribution of these overexposed points from the previous dark fringe projection is analyzed to calculate the corresponding projection intensities.Finally,absolute phase information from orthogonal fringes is used for coordinate matching,enabling the generation of adaptive projection fringe patterns.Experiments on various high dynamic range objects show that compared to conventional fringe projection binocular reconstruction method,the proposed algorithm achieves complete reconstruction of high dynamic range surfaces and shows robust performance against phase calculation errors caused by overexposure and low modulation.
文摘The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,resulting in point cloud loss or reduced accuracy.To address this issue,unlike the pixel modulation method of projectors,we utilize the characteristics of color projectors where the intensity of the three-channel LED can be controlled independently.We propose a method for separating the projector's three-channel light intensity,combined with a color camera,to achieve single exposure and multi-intensity image acquisition.Further,the crosstalk coefficient is applied to predict the three-channel reflectance of the measured object.By integrating clustering and channel mapping,we establish a pixel-level mapping model between the projector's three-channel current and the camera's three-channel image intensity,which realizes the optimal projection current prediction and the high dynamic range(HDR)image acquisition.The proposed method allows for high-precision three-dimensional(3D)data acquisition of HDR scenes with a single exposure.The effectiveness of this method has been validated through experiments with standard planes and standard steps,showing a significant reduction in mean absolute error(44.6%)compared to existing singleexposure HDR methods.Additionally,the number of images required for acquisition is significantly reduced(by 70.8%)compared to multi-exposure fusion methods.This proposed method has great potential in various FPP-related fields.
文摘Construction project construction stage requires effective change visa management and dynamic cost control.This paper defines both,presents related theories,and details challenges in traditional methods.It then proposes an integrated model with system architecture,functional modules,and practical strategies like BIM integrated workflows.A case study validates the effectiveness,and future research on AI enhanced change prediction and blockchain based audit trails is suggested.
文摘The research shows that projection pursuit cluster (PPC) model is able to form a suitable index for overcom-ing the difficulties in comprehensive evaluation, which can be used to analyze complex multivariate prob-lems. The PPC model is widely used in multifactor cluster and evaluation analysis, but there are a few prob-lems needed to be solved in practice, such as cutoff radius parameter calibration. In this study, a new model-projection pursuit dynamic cluster (PPDC) model-based on projection pursuit principle is developed and used in water resources carrying capacity evaluation in China for the first time. In the PPDC model, there are two improvements compared with the PPC model, 1) a new projection index is constructed based on dynamic cluster principle, which avoids the problem of parameter calibration in the PPC model success-fully;2) the cluster results can be outputted directly according to the PPDC model, but the cluster results can be got based on the scatter points of projected characteristic values or the re-analysis for projected character-istic values in the PPC model. The results show that the PPDC model is a very effective and powerful tool in multifactor data exploratory analysis. It is a new method for water resources carrying capacity evaluation. The PPDC model and its application to water resources carrying capacity evaluation are introduced in detail in this paper.
基金the Basic Science Research Program through a National Research Foundation of Korea(NRF)grant funded by the Ministry of Education(NRF-2017R1D1A1B03035718)was partially supported by another National Research Foundation of Korea(NRF)grant funded by the Korean government(MIST)(NRF-2019R1F1A1062752).
文摘This study introduces the design details of a tool to create interactive projection-mapping content in a convenient manner.For the proposed tool design,a homography-based camera–projector calibration method was applied with the use of red–green–blue-depth images from a Kinect V2 sensor that did not require accurate camera calibration prerequisites.In addition,the proposed tool simultaneously achieved static projection mapping that projected the image content onto a fixed object,and dynamic projection mapping that projected the image content onto a user’s body,by tracing the moving user.To verify the effectiveness of the proposed content-creation tool,users with no programming capabilities were employed to create contents that were projected onto various objects in fixed positions and a user’s body in various poses,thereby analyzing the tool’s completeness.Moreover,the projection accuracy was analyzed at different depth positions,and the projection-mapping accuracy was verified with the use of the proposed method.
基金supported by the National Natural Science Foundation of China(62273354,61673387,61833016).
文摘As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decomposition of the input space by DiPLS,there are false alarms in the actual industrial process during fault detection.To address the above problems,a dynamic modeling method based on autoregressive-dynamic inner total PLS(AR-DiTPLS)is proposed.The method first uses the regression relation matrix to decompose the input space orthogonally,which reduces useless information for the predic-tion output in the quality-related dynamic subspace.Then,a vector autoregressive model(VAR)is constructed for the predic-tion score to separate dynamic information and static informa-tion.Based on the VAR model,appropriate statistical indicators are further constructed for online monitoring,which reduces the occurrence of false alarms.The effectiveness of the method is verified by a Tennessee-Eastman industrial simulation process and a three-phase flow system.
基金Project supported by the Research Grant Council of Hong Kong,China
文摘Sustainable performance is expected to become a major factor when examining the feasibility of a construction project in terms of its life cycle performance. The study on which this paper is based developed a simulation model, using system dy- namics methodology, to assess the sustainable performance of projects. Three major factors are used to examine project sus- tainable performance (PSP): the sustainability of economic development (E), the sustainability of social development (S), and the sustainability of environmental development (En). Sustainable development ability (SDA) was used as a prototype to evaluate the degree of sustainable performance. The simulation software ‘ithink’ was used to help with the application of the model to a real life case. This paper explains and demonstrates the procedures used to develop the model and finally offers an approach for assessing the feasibility of a construction project in terms of its sustainable performance.
基金Project (No. 50809013) supported by the National Natural Science Foundation of China
文摘This study established a 3D finite element model for 15# hydropower house of the Three Gorges Project (TGP) and performed a nonlinear dynamic analysis under pressure fluctuation. In this numerical model, the stiffness degradation in tension for concrete was considered on the basis of the continuum isotropic damage theory. Natural vibration frequencies of the damaged and undamaged structures were compared after static water pressure was applied. Then a study was further conducted on forced vibration of the powerhouse with pre-existing damages under pressure fluctuation that acts on the flow passage; displacement, velocity and acceleration of the important structural members were afterwards presented and checked. Numerical results show that tensile damages in concrete surrounding the spiral case only exert significant impact upon the dynamic characteristics of substructure but show little effect on the superstructure. Nevertheless vibrations of the powerhouse are still under the recommended vibration limits.
文摘As part of the global effort to plant billion trees,an afforestation project is launched in Pakistan in Khyber Pakhtunkhwa(KP)province to conserve existing forests and to increase area under forest cover.The present study is designed to build a Systems'model by incorporating major activities of the Billion Tree Tsunami Afforestation Project(BTTAP)with special focus on afforestation activities to estimate the growth in forest area of KP.Availability of complete dataset was a challenge.To fix the model,the raw data taken from the project office has been utilized.Planning Commission Form 1-Phase I&II helped us with additional information.We relied on the data available for one and half period of the project as rest of the data is subject to the completion of the project.Our results show that the project target to enhance area under forest differs from the target to afforest area under the project.The system dynamics'model projection shows that the forest area of KP would be 23.59 million hectares at the end of the BTTA project,thus having an increase of 3.29%instead of 2%that has been initially proposed.However,the results show that the progress to meet the target in some afforestation classes is slow as compared to other categories.Farm forestry,plantation on communal lands and owners'plantation need special focus of the authority.Deforestation would affect 0.02 million hectares area of the project.The model under study may be used as a reference model that can be replicated to other areas where billion tree campaigns are going on.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60573172 and 60973152)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014)the Natural Science Foundation of Liaoning Province,China (Grant No. 20082165)
文摘Based on the stability theory of the fractional order system, the dynamic behaviours of a new fractional order system are investigated theoretically. The lowest order we found to have chaos in the new three-dimensional system is 2.46, and the period routes to chaos in the new fractional order system are also found. The effectiveness of our analysis results is further verified by numerical simulations and positive largest Lyapunov exponent. Furthermore, a nonlinear feedback controller is designed to achieve the generalized projective synchronization of the fractional order chaotic system, and its validity is proved by Laplace transformation theory.
基金Supported by the National Natural Science Foundation of China(No 61074129).
文摘Time-delay Takagi-Sugeno fuzzy drive-response dynamical networks (TD-TSFDRDNs) are defined by extending the drive-response dynamical networks.Based on the LaSalle invariant principle,a simple and systematic adaptive control scheme is proposed to synchronize the TD-TSFDRDNs with a desired scalar factor.A sufficient condition for the generalized projective synchronization in TD-TSFDRDNs is derived.Moreover,numerical simulations are provided to verify the correctness and effectiveness of the scheme.
基金Project supported by the National Natural Science Foundation of China (Grant No. 70831002) Humanity and Social Science Youth Foundation of Ministry of Education of China (Grant No. 12YJCZH017)
文摘A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces:(i) the group's cohesive force which tends to restore the opinion back towards the initial status because of its company culture;and(ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness.Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes,i.e.,a deadlock regime,a convergence regime,and a bifurcation regime in opinion dynamics.The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to.In the case of a three-group project with a symmetric social network,both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord,instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay's result(Physica A 378(2007) p.125 Fig.5),project organization(PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations,which urges that apart from divergence in participants' interests,nonlinear interaction can also make conflict inevitable in the PO.The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO.It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO.
文摘The current socialist economic construction speed is very fast, and urbanization construction has made some progress. The number and scale of construction projects are also continuing to climb, which makes the competitive environment of the construction market more brutal, and the challenges facing construction enterprises are more severe. Construction project cost, as the core key to improve the economic income of enterprises, the relevant personnel need to pay great attention to it. Only by improving the overall quality of the dynamic management and control of the construction project cost, can the vital interests of the enterprise be effectively guaranteed and the core competitiveness of the enterprise be further improved. In view of this, this paper will take the common problems in the dynamic management and control of the construction project cost as the entry point to analyze and explore the feasible cost dynamic control measures.
文摘The investment decision making of Project Gang, the projects that are associated with one another on economy and technique, is studied. In order to find out the best Scheme that can make the maximum profit, a dynamic programming algorithm on the investment decision making of Project Gang is brought forward, and this algorithm can find out the best Scheme of distributing the m resources to the n Items in the time of O(m 2 n).
文摘With the development of graphic processing unit(GPU)power,it is now possible to implement geometric correction and edge blending functions on a single computer.However,the processing resources consumed by the geometric correction and edge blending phases still burden the system and slow down the main application considerably.A new platform independent scheme is proposed,minimizing the negative influence on performance.In this scheme,parameters for geometric correction and edge blending are firstly defined in an interactive way and recorded as a 32-bit high dynamic range(HDR) image,which is then used by high level shading language(HLSL) codes embedded in the main application as a lookup table,greatly reducing the computational complexity and enhancing flexibility.
基金funding support of the U.S.Army Research Laboratory with Cooperative Agreement No.W911NF-12-2-0023
文摘We calculate current correlation functions (CCFs) of dissipative particle dy- namics (DPD) and compare them with results of molecular dynamics (MD) and solutions of linearized hydrodynamic equations. In particular, we consider three versions of DPD, the empirical/classical DPD, coarse-grained (CG) DPD with radial-direction interactions only and full (radial, transversal, and rotational) interactions between particles. To fa- cilitate quantitative discussions, we consider specifically a star-polymer melt system at a moderate density. For bonded molecules, it is straightforward to define the CG variables and to further derive CG force fields for DPD within the framework of the Mori-Zwanzig formalism. For both transversal and longitudinal current correlation functions (TCCFs and LCCFs), we observe that results of MD, DPD, and hydrodynamic solutions agree with each other at the continuum limit. Below the continuum limit to certain length scales, results of MD deviate significantly from hydrodynamic solutions, whereas results of both empirical and CG DPD resemble those of MD. This indicates that the DPD method with Markovian force laws possibly has a larger applicability than the continuum description of a Newtonian fluid. This is worth being explored further to represent gen- eralized hydrodynamics.
文摘From viewpoint of nonlinear dynamics, the model reduction and its influence on the long-term behaviours of a class of nonlinear dissipative autonomous dynamical system with higher dimension are investigated theoretically under some assumptions. The system is analyzed in the state space with an introduction of a distance definition which can be used to describe the distance between the full system and the reduced system, and the solution of the full system is then projected onto the complete space spanned by the eigenvectors of the linear operator of the governing equations. As a result, the influence of mode series truncation on the long-term behaviours and the error estimate are derived, showing that the error is dependent on the first products of frequencies and damping ratios in the subspace spanned by the eigenvectors with higher modal damping. Furthermore, the fundamental understanding for the topological change of the solution due to the application of different model reduction is interpreted in a mathematically precise way, using the qualitative theory of nonlinear dynamics.
基金Project supported by the National Natural Science Foundation of China (No. 50876114)
文摘A new pressure Poisson equation method with viscous terms is established on staggered grids. The derivations show that the newly established pressure equation has the identical equation form in the projection method. The results show that the two methods have the same velocity and pressure values except slight differences in the CPU time.
文摘The solution of the dynamic problem of multibody systems subject to rheonomic and nonholonomic constraints is achieved by applying singular value decomposition of the constraint matrix and projections of the dynamic equations of the systems along the feasible and unfeasible directions of the constraints. Formula to solve the constraint reaction forces and a method to avoid the violation of the constraints are also given.The solution does not rely on coordinates used to describe the systems and is computational efficitive example is finally presnted.
文摘This paper presents a disturbance rejection scheme for walking robots under unknown external forces and moments. The disturbance rejection strategy, which combines the inverse dynamics control with the acceleration projection onto the ZMP (zero moment point)-plane, can ensure the overall dynamic stability of the robot during tracking the pre-computed trajectories. Under normal conditions, i.e., the system is dynamically balanced, a primary inverse dynamics control is utilized. In the case that the system becomes unbalanced due to external disturbances, the acceleration projection control (APC) loop, will be activated to keep the dynamic stability of the walking robot through modifying the input torques. The preliminary experimental results on a robot leg demonstrate that the proposed method can actually make the robot keep a stable motion under unknown external perturbations.