In this paper, thermoelastic problem of onedimensional copper rod under thermal shock is simulated using molecular dynamics method by adopting embedded atom method potential. The rod is on axis x, the left outermost s...In this paper, thermoelastic problem of onedimensional copper rod under thermal shock is simulated using molecular dynamics method by adopting embedded atom method potential. The rod is on axis x, the left outermost surface of which is traction free and the right outermost surface is fixed. Free boundary condition is imposed on the outermost surfaces in direction y and z. The left and right ends of the rod are subjected to hot and cold baths, respectively. Temperature, displacement and stress distributions are obtained along the rod at different moments, which are shown to be limited in the mobile region, indicating that the heat propagation speed is limited rather than infinite. This is consistent with the prediction given by generalized thermoelastic theory. From simulation results we find that the speed of heat conduction is the same as the speed of thermal stress wave. In the present paper, the simulations are conducted using the large-scale atomic/molecular massively parallel simulator and completed visualization software.展开更多
Through a great deal calculation, the design and simulation analysis of stator parametric and rotor electromagnetic system of 1000MW turbo-generator are performed by using Ansoft Maxwell Rmxprt12.1 software. Besides. ...Through a great deal calculation, the design and simulation analysis of stator parametric and rotor electromagnetic system of 1000MW turbo-generator are performed by using Ansoft Maxwell Rmxprt12.1 software. Besides. the basic parameters of the generator, the geometry dimensions of the stator and rotor, type and sizes of the slots, coils and windings parameters and the way of windings connection are determined. The finite element model of electromagnetic systems of generator stator and rotor was constructed by Ansoft Maxwe112D3D 12.1, and the transient electromagnetic characteristics of generator was analyzed and simulated. The 3D geometric models of turbo-generator were established respectively by using PROE software, and the dynamic finite element model of generator structure was built by ANSYS workbench 11.0. In addition, the dynamic characteristics of stator iron core, stator frame were calculated respectively. The simulation calculation has shown that the structural parameters, material parameters, and the electromagnetic characteristics parameters for large turbogenerator that are put forward by this paper should be optimal. and the design plan and method suggested by this paper should be feasible. The paper provides an effective solution for the development of larger turbo-generator than 1000 MW.展开更多
In this paper we present a software package based on modern information technologies that allows rapid analysis and visualization of the properties of complex plasmas.The properties of plasma are simulated by two mean...In this paper we present a software package based on modern information technologies that allows rapid analysis and visualization of the properties of complex plasmas.The properties of plasma are simulated by two means.First of all,we have applied the molecular dynamics simulation method which numerically solves the equations of motions for plasma particles.Secondly,we calculate microscopic properties of plasma by using the Boltzmann equation with additional relations,initial and boundary conditions.展开更多
Laser cooling of Li-like C^3+and O^4+relativistic heavy ion beams is planned at the experimental Cooler Storage Ring(CSRe). Recently, a preparatory experiment to test important prerequisites for laser cooling of r...Laser cooling of Li-like C^3+and O^4+relativistic heavy ion beams is planned at the experimental Cooler Storage Ring(CSRe). Recently, a preparatory experiment to test important prerequisites for laser cooling of relativistic^12C^3+ion beams using a pulsed laser system has been performed at the CSRe. Unfortunately, the interaction between the ions and the pulsed laser cannot be detected. In order to study the laser cooling process and find the optimized parameters for future laser cooling experiments, a multi-particle tracking method has been developed to simulate the detailed longitudinal dynamics of laser-cooled ion beams at the CSRe. Simulations of laser cooling of the^12C^3+ion beams by scanning the frequency of the RF-buncher or continuous wave(CW) laser wavelength have been performed. The simulation results indicate that ion beams with a large momentum spread could be laser-cooled by the combination of only one CW laser and the RF-buncher, and show the requirements of a successful laser cooling experiment. The optimized parameters for scanning the RF-buncher frequency or laser frequency have been obtained.Furthermore, the heating effects have been estimated for laser cooling at the CSRe. The Schottky noise spectra of longitudinally modulated and laser-cooled ion beams have been simulated to fully explain and anticipate the experimental results. The combination of Schottky spectra from the highly sensitive resonant Schottky pick-up and the simulation methods developed in this paper will be helpful to investigate the longitudinal dynamics of RF-bunched and ultra-cold ion beams in the upcoming laser cooling experiments at the CSRe.展开更多
This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian...This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian-Lagrangian description of particulate flows, where the particles behave as the catalysts or the reactant materials. For the strong interaction between the transport phenomena (i.e., momentum, heat and mass transfer) and the chemical reactions at the particle scale, a cross-scale modeling approach, i.e., CFD-DEM or CFD-DPM, is established for describing a wide variety of complex reacting flows in multiphase reactors, Representative processes, including fluid catalytic cracking (FCC), catalytic conversion of syngas to methane, and coal pyrolysis to acetylene in thermal plasma, are chosen as case studies to demonstrate the unique advantages of the theoretical scheme based on the integrated particle-scale information with clear physical meanings, This type of modeling approach provides a solid basis for understanding the multiphase reacting flow problems in general.展开更多
Experiments carried out using a lung model with a single horizontal bifurcation under different steady inhalation conditions explored the orientation of depositing carbon fibers, and particle deposition frac- tions. T...Experiments carried out using a lung model with a single horizontal bifurcation under different steady inhalation conditions explored the orientation of depositing carbon fibers, and particle deposition frac- tions. The orientations of deposited fibers were obtained from micrographs. Specifically, the effects of the sedimentation parameter (γ), fiber length, and flow rate on orientations were analyzed. Our results indicate that gravitational effect on deposition cannot be neglected for 0.0228 〈 γ 〈 0.247. The absolute orientation angle of depositing fibers decreased linearly with increasing y for values 0.0228 〈 γ 〈 0.15. Correspondence between Stokes numbers and y suggests these characteristics can be used to estimate fiber deposition in the lower airways. Computer simulations with sphere-equivalent diameter models for the fibers explored deposition efficiency vs. Stokes number. Using the volume-equivalent diameter model, our experimental data for the horizontal bifurcation were replicated. Results for particle deposition using a lung model with a vertical bifurcation indicate that body position also affects deposition.展开更多
基金supported by the National Natural Science Foundation of China (10872158)
文摘In this paper, thermoelastic problem of onedimensional copper rod under thermal shock is simulated using molecular dynamics method by adopting embedded atom method potential. The rod is on axis x, the left outermost surface of which is traction free and the right outermost surface is fixed. Free boundary condition is imposed on the outermost surfaces in direction y and z. The left and right ends of the rod are subjected to hot and cold baths, respectively. Temperature, displacement and stress distributions are obtained along the rod at different moments, which are shown to be limited in the mobile region, indicating that the heat propagation speed is limited rather than infinite. This is consistent with the prediction given by generalized thermoelastic theory. From simulation results we find that the speed of heat conduction is the same as the speed of thermal stress wave. In the present paper, the simulations are conducted using the large-scale atomic/molecular massively parallel simulator and completed visualization software.
文摘Through a great deal calculation, the design and simulation analysis of stator parametric and rotor electromagnetic system of 1000MW turbo-generator are performed by using Ansoft Maxwell Rmxprt12.1 software. Besides. the basic parameters of the generator, the geometry dimensions of the stator and rotor, type and sizes of the slots, coils and windings parameters and the way of windings connection are determined. The finite element model of electromagnetic systems of generator stator and rotor was constructed by Ansoft Maxwe112D3D 12.1, and the transient electromagnetic characteristics of generator was analyzed and simulated. The 3D geometric models of turbo-generator were established respectively by using PROE software, and the dynamic finite element model of generator structure was built by ANSYS workbench 11.0. In addition, the dynamic characteristics of stator iron core, stator frame were calculated respectively. The simulation calculation has shown that the structural parameters, material parameters, and the electromagnetic characteristics parameters for large turbogenerator that are put forward by this paper should be optimal. and the design plan and method suggested by this paper should be feasible. The paper provides an effective solution for the development of larger turbo-generator than 1000 MW.
基金supported by the Ministry of Education and Science of the Republic of Kazakhstan under grants 1415/GF(IPS-21),1102/GF(ITT-5).
文摘In this paper we present a software package based on modern information technologies that allows rapid analysis and visualization of the properties of complex plasmas.The properties of plasma are simulated by two means.First of all,we have applied the molecular dynamics simulation method which numerically solves the equations of motions for plasma particles.Secondly,we calculate microscopic properties of plasma by using the Boltzmann equation with additional relations,initial and boundary conditions.
基金Supported by National Natural Science Foundation of China(11405237,11504388)
文摘Laser cooling of Li-like C^3+and O^4+relativistic heavy ion beams is planned at the experimental Cooler Storage Ring(CSRe). Recently, a preparatory experiment to test important prerequisites for laser cooling of relativistic^12C^3+ion beams using a pulsed laser system has been performed at the CSRe. Unfortunately, the interaction between the ions and the pulsed laser cannot be detected. In order to study the laser cooling process and find the optimized parameters for future laser cooling experiments, a multi-particle tracking method has been developed to simulate the detailed longitudinal dynamics of laser-cooled ion beams at the CSRe. Simulations of laser cooling of the^12C^3+ion beams by scanning the frequency of the RF-buncher or continuous wave(CW) laser wavelength have been performed. The simulation results indicate that ion beams with a large momentum spread could be laser-cooled by the combination of only one CW laser and the RF-buncher, and show the requirements of a successful laser cooling experiment. The optimized parameters for scanning the RF-buncher frequency or laser frequency have been obtained.Furthermore, the heating effects have been estimated for laser cooling at the CSRe. The Schottky noise spectra of longitudinally modulated and laser-cooled ion beams have been simulated to fully explain and anticipate the experimental results. The combination of Schottky spectra from the highly sensitive resonant Schottky pick-up and the simulation methods developed in this paper will be helpful to investigate the longitudinal dynamics of RF-bunched and ultra-cold ion beams in the upcoming laser cooling experiments at the CSRe.
基金support of the National Natural Science Foundation of China(NSFC) under grants Nos.20976091 and 20806045the Key Project of National High-tech R&D Program under grant No.2009AA044701the Program for New Century Excellent Talents in universities(NCET)
文摘This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian-Lagrangian description of particulate flows, where the particles behave as the catalysts or the reactant materials. For the strong interaction between the transport phenomena (i.e., momentum, heat and mass transfer) and the chemical reactions at the particle scale, a cross-scale modeling approach, i.e., CFD-DEM or CFD-DPM, is established for describing a wide variety of complex reacting flows in multiphase reactors, Representative processes, including fluid catalytic cracking (FCC), catalytic conversion of syngas to methane, and coal pyrolysis to acetylene in thermal plasma, are chosen as case studies to demonstrate the unique advantages of the theoretical scheme based on the integrated particle-scale information with clear physical meanings, This type of modeling approach provides a solid basis for understanding the multiphase reacting flow problems in general.
基金We acknowledge the financial support of the Foundation for the National Natural Science Foundation of China (No. 51176035), and Author of National Excellent Doctoral Dissertation of China (No. 201040). In addition, financial support was provided to Xiaole Chen under the Research and Innovation Project for College Gradua- tes of Jiangsu Province (CXZZ12_0099), the Fundamental Research Funds for the Central Universities, China Scholarship Council (No. 201306090085), and Scientific Research Foundation of Graduate School of Southeast University (No. YBJJ1209). The experience gained by Xiaole Chen as a CSC-supported Visiting Student in the Computational Multi-Physics Lab (MAE Dept., NC State University, Raleigh, USA) is also acknowledged. Table 3, Figs. 5 and 7 were provided by Josin Tom, based on his spring 2015 course-project report for MAE558. Professor Goodarz Ahmadi at Clarkson Univer- sity (Clarkson, USA) provided advice for our experimental set-up, and Professor Yong Lu at Southeast University provided guidance in programming the image-processing method.
文摘Experiments carried out using a lung model with a single horizontal bifurcation under different steady inhalation conditions explored the orientation of depositing carbon fibers, and particle deposition frac- tions. The orientations of deposited fibers were obtained from micrographs. Specifically, the effects of the sedimentation parameter (γ), fiber length, and flow rate on orientations were analyzed. Our results indicate that gravitational effect on deposition cannot be neglected for 0.0228 〈 γ 〈 0.247. The absolute orientation angle of depositing fibers decreased linearly with increasing y for values 0.0228 〈 γ 〈 0.15. Correspondence between Stokes numbers and y suggests these characteristics can be used to estimate fiber deposition in the lower airways. Computer simulations with sphere-equivalent diameter models for the fibers explored deposition efficiency vs. Stokes number. Using the volume-equivalent diameter model, our experimental data for the horizontal bifurcation were replicated. Results for particle deposition using a lung model with a vertical bifurcation indicate that body position also affects deposition.