Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s...Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components.展开更多
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ...The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity.展开更多
This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi...This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi-scale encoding significantly enhances the model’s ability to capture both fine-grained and global features,while the dynamic loss function adapts during training to optimize classification accuracy and retrieval performance.Our approach was evaluated on the ISIC-2018 and ChestX-ray14 datasets,yielding notable improvements.Specifically,on the ISIC-2018 dataset,our method achieves an F1-Score improvement of+4.84% compared to the standard ViT,with a precision increase of+5.46% for melanoma(MEL).On the ChestX-ray14 dataset,the method delivers an F1-Score improvement of 5.3%over the conventional ViT,with precision gains of+5.0% for pneumonia(PNEU)and+5.4%for fibrosis(FIB).Experimental results demonstrate that our approach outperforms traditional CNN-based models and existing ViT variants,particularly in retrieving relevant medical cases and enhancing diagnostic accuracy.These findings highlight the potential of the proposedmethod for large-scalemedical image analysis,offering improved tools for clinical decision-making through superior classification and case comparison.展开更多
This paper focuses on the problem of traffic flow forecasting,with the aim of forecasting future traffic conditions based on historical traffic data.This problem is typically tackled by utilizing spatio-temporal graph...This paper focuses on the problem of traffic flow forecasting,with the aim of forecasting future traffic conditions based on historical traffic data.This problem is typically tackled by utilizing spatio-temporal graph neural networks to model the intricate spatio-temporal correlations among traffic data.Although these methods have achieved performance improvements,they often suffer from the following limitations:These methods face challenges in modeling high-order correlations between nodes.These methods overlook the interactions between nodes at different scales.To tackle these issues,in this paper,we propose a novel model named multi-scale dynamic hypergraph convolutional network(MSDHGCN)for traffic flow forecasting.Our MSDHGCN can effectively model the dynamic higher-order relationships between nodes at multiple time scales,thereby enhancing the capability for traffic forecasting.Experiments on two real-world datasets demonstrate the effectiveness of the proposed method.展开更多
Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction.We present a hybrid framework that integrates machine learning(ML)and fractional-order dynamics to predict tumor growth acros...Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction.We present a hybrid framework that integrates machine learning(ML)and fractional-order dynamics to predict tumor growth across diagnostic and temporal scales.On the Wisconsin Diagnostic Breast Cancer dataset,seven ML algorithms were evaluated,with deep neural networks(DNNs)achieving the highest accuracy(97.72%).Key morphological features(area,radius,texture,and concavity)were identified as top malignancy predictors,aligning with clinical intuition.Beyond static classification,we developed a fractional-order dynamical model using Caputo derivatives to capture memory-driven tumor progression.The model revealed clinically interpretable patterns:lower fractional orders correlated with prolonged aggressive growth,while higher orders indicated rapid stabilization,mimicking indolent subtypes.Theoretical analyses were rigorously proven,and numerical simulations closely fit clinical data.The framework’s clinical utility is demonstrated through an interactive graphics user interface(GUI)that integrates real-time risk assessment with growth trajectory simulations.展开更多
Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-pla...Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-platform PFC-FDEM coupling methodology that bridges microscopic thermal damage mechanisms with macroscopic dynamic fracture responses.The breakthrough coupling framework introduces:(1)bidirectional information transfer protocols enabling seamless integration between PFC’s particle-scale thermal damage characterization and FDEM’s continuum-scale fracture propagation,(2)multi-physics mapping algorithms that preserve crack network geometric invariants during scale transitions,and(3)cross-platform cohesive zone implementations for accurate SHTB dynamic loading simulation.The coupled approach reveals distinct three-stage crack evolution characteristics with temperature-dependent density following an exponential model.High-temperature exposure significantly reduces dynamic strength ratio(60%at 800℃)and diminishes strain-rate sensitivity,with dynamic increase factor decreasing from 1.0 to 2.2(25℃)to 1.0-1.3(800℃).Critically,the coupling methodology captures fundamental energy redistribution mechanisms:thermal crack networks alter elastic energy proportion from 75%to 35%while increasing fracture energy from 5%to 30%.Numerical predictions demonstrate excellent experimental agreement(±8%peak stress-strain errors),validating the PFC-FDEM coupling accuracy.This integrated framework provides essential computational tools for predicting complex thermal-mechanical rock behavior in underground engineering applications.展开更多
Lost circulation critically jeopardizes drilling safety and efficiency,and remains an unresolved challenge in oil and gas engineering.In this paper,by utilizing the self-developed dynamic plugging apparatus and synthe...Lost circulation critically jeopardizes drilling safety and efficiency,and remains an unresolved challenge in oil and gas engineering.In this paper,by utilizing the self-developed dynamic plugging apparatus and synthetic cores containing large-scale fractures,experimental research on the circulation plugging of different materials was conducted.Based on the D90 rule and fracture mechanical aperture model,we analyze the location of plugging layer under dynamic plugging mechanism.By setting different parameters of fracture width and injection pressure,the laws of cyclic plugging time,pressure bearing capacity and plugging layers formation were investigated.The results show that the comprehensive analysis of particle size and fracture aperture provides an accurate judgment of the entrance-plugging phenomenon.The bridging of solid materials in the leakage channel is a gradual process,and the formation of a stable plug requires 2–3 plug-leakage cycles.The first and second cyclic plugging time was positively correlated with the fracture width.Different scales of fractures were successfully plugged with the bearing pressure greater than 6 MPa,but there were significant differences in the composition of the plugging layer.The experimental results can effectively prove that the utilized plugging agent is effective and provides an effective reference for dynamic plugging operation.展开更多
Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static ...Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static experiments were conducted to systematically investigate the mechanical response of metal-wrapped microporous materials under impact loading that spanned 10~6 orders of magnitude.By combining a high-precision numerical model with a spatial contact point search algorithm,the spatio–temporal contact characteristics of the complex network structure in FMP-MR were systematically analyzed.Furthermore,the mapping mechanism from turn topology and mesoscopic friction behavior to macroscopic mechanical properties was comprehensively explored.The results showed that compared with quasi-static loading,FMP-MR under high-speed impact exhibited higher energy absorption efficiency due to high-strain-rate inertia effect.Therefore,the peak stress increased by 141%,and the maximum energy dissipation increased by 300%.Consequently,the theory of dynamic friction locking effect was innovatively proposed.The theory explains that the close synergistic effect of sliding friction and plastic dissipation promoted by the stable interturn-locked embedded structure is the essential reason for the excellent dynamic mechanical properties of FMP-MR under dynamic loading conditions.Briefly,based on the in-depth investigation of the mechanical response and energy dissipation mechanism of FMP-MR under impact loads,this study provides a solid theoretical basis for further expanding the application range of FMP-MR and optimizing its performance.展开更多
Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approach...Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments.展开更多
Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectra...Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability.展开更多
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an...Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.展开更多
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ...With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.展开更多
THE mechanical response and deformation mechanisms of pure nickel under nanoindentation were systematically investigated using molecular dynamics(MD)simulations,with a particular focus on the novel interplay between c...THE mechanical response and deformation mechanisms of pure nickel under nanoindentation were systematically investigated using molecular dynamics(MD)simulations,with a particular focus on the novel interplay between crystallographic orientation,grain boundary(GB)proximity,and pore characteristics(size/location).This study compares single-crystal nickel models along[100],[110],and[111]orientations with equiaxed polycrystalline models containing 0,1,and 2.5 nm pores in surface and subsurface configurations.Our results reveal that crystallographic anisotropy manifests as a 24.4%higher elastic modulus and 22.2%greater hardness in[111]-oriented single crystals compared to[100].Pore-GB synergistic effects are found to dominate the deformation behavior:2.5 nm subsurface pores reduce hardness by 25.2%through stress concentration and dislocation annihilation at GBs,whereas surface pores enable mechanical recovery via accelerated dislocation generation post-collapse.Additionally,size-dependent deformation regimes were identified,with 1 nm pores inducing negligible perturbation due to rapid atomic rearrangement,in contrast with persistent softening in 2.5 nm pores.These findings establish atomic-scale design principles for defect engineering in nickel-based aerospace components,demonstrating how crystallographic orientation,pore configuration,and GB interactions collectively govern nanoindentation behavior.展开更多
Organic electrochemical transistor(OECT)devices demonstrate great promising potential for reservoir computing(RC)systems,but their lack of tunable dynamic characteristics limits their application in multi-temporal sca...Organic electrochemical transistor(OECT)devices demonstrate great promising potential for reservoir computing(RC)systems,but their lack of tunable dynamic characteristics limits their application in multi-temporal scale tasks.In this study,we report an OECT-based neuromorphic device with tunable relaxation time(τ)by introducing an additional vertical back-gate electrode into a planar structure.The dual-gate design enablesτreconfiguration from 93 to 541 ms.The tunable relaxation behaviors can be attributed to the combined effects of planar-gate induced electrochemical doping and back-gateinduced electrostatic coupling,as verified by electrochemical impedance spectroscopy analysis.Furthermore,we used theτ-tunable OECT devices as physical reservoirs in the RC system for intelligent driving trajectory prediction,achieving a significant improvement in prediction accuracy from below 69%to 99%.The results demonstrate that theτ-tunable OECT shows a promising candidate for multi-temporal scale neuromorphic computing applications.展开更多
Photo-assisted lithium–sulfur batteries(PALSBs)offer an eco-friendly solution to address the issue of sluggish reaction kinetics of conventional LSBs.However,designing an efficient photoelectrode for practical implem...Photo-assisted lithium–sulfur batteries(PALSBs)offer an eco-friendly solution to address the issue of sluggish reaction kinetics of conventional LSBs.However,designing an efficient photoelectrode for practical implementation remains a significant challenge.Herein,we construct a free-standing polymer–inorganic hybrid photoelectrode with a direct Z-scheme heterostructure to develop high-efficiency PALSBs.Specifically,polypyrrole(PPy)is in situ vapor-phase polymerized on the surface of N-doped TiO_(2) nanorods supported on carbon cloth(N-TiO_(2)/CC),thereby forming a well-defined p–n heterojunction.This architecture efficiently facilitates the carrier separation of photo-generated electron–hole pairs and significantly enhances carrier transport by creating a built-in electric field.Thus,the PPy@N-TiO_(2)/CC can simultaneously act as a photocatalyst and an electrocatalyst to accelerate the reduction and evolution of sulfur,enabling ultrafast sulfur redox dynamics,as convincingly validated by both theoretical simulations and experimental results.Consequently,the PPy@N-TiO_(2)/CC PALSB achieves a high discharge capacity of 1653 mAh g−1,reaching 98.7%of the theoretical value.Furthermore,5 h of photo-charging without external voltage enables the PALSB to deliver a discharge capacity of 333 mAh g−1,achieving dual-mode energy harvesting capabilities.This work successfully integrates solar energy conversion and storage within a rechargeable battery system,providing a promising strategy for sustainable energy storage technologies.展开更多
Conductive elastomers combining micromechanical sensitivity,lightweight adaptability,and environmental sustainability are critically needed for advanced flexible electronics requiring precise responsiveness and long-t...Conductive elastomers combining micromechanical sensitivity,lightweight adaptability,and environmental sustainability are critically needed for advanced flexible electronics requiring precise responsiveness and long-term wearability;however,the integration of these properties remains a significant challenge.Here,we present a biomass-derived conductive elastomer featuring a rationally engineered dynamic crosslinked network integrated with a tunable microporous architecture.This structural design imparts pronounced micromechanical sensitivity,an ultralow density(~0.25 g cm^(−3)),and superior mechanical compliance for adaptive deformation.Moreover,the unique micro-spring effect derived from the porous architecture ensures exceptional stretchability(>500%elongation at break)and superior resilience,delivering immediate and stable electrical response under both subtle(<1%)and large(>200%)mechanical stimuli.Intrinsic dynamic interactions endow the elastomer with efficient room temperature self-healing and complete recyclability without compromising performance.First-principles simulations clarify the mechanisms behind micropore formation and the resulting functionality.Beyond its facile and mild fabrication process,this work establishes a scalable route toward high-performance,sustainable conductive elastomers tailored for next-generation soft electronics.展开更多
Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve thro...Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve throughout the disease course.This review examined 95 studies(2000-2025)from PubMed,Web of Science,and CNKI databases including longitudinal cohorts,randomized controlled trials,and mixed-methods research,to characterize the complex interplay between biological,psychological,and social factors affecting RA patients’mental health.Findings revealed three distinct vulnerability trajectories(45%persistently low,30%fluctuating improvement,25%persistently high)and four adaptation stages,with critical intervention periods occurring 3-6 months postdiagnosis and during disease flares.Multiple factors significantly influence psychological outcomes,including gender(females showing 1.8-fold increased risk),age(younger patients experiencing 42%higher vulnerability),pain intensity,inflammatory markers,and neuroendocrine dysregulation(48%showing cortisol rhythm disruption).Early psychological intervention(within 3 months of diagnosis)demonstrated robust benefits,reducing depression incidence by 42%with effects persisting 24-36 months,while different modalities showed complementary advantages:Cognitive behavioral therapy for depression(Cohen’s d=0.68),mindfulness for pain acceptance(38%improvement),and peer support for meaning reconstruction(25.6%increase).These findings underscore the importance of integrating routine psychological assessment into standard RA care,developing stage-appropriate interventions,and advancing research toward personalized biopsychosocial approaches that address the dynamic psychological dimensions of the disease.展开更多
Pulsed dynamic electrolysis(PDE),driven by renewable energy,has emerged as an innovative electrocatalytic conversion method,demonstrating significant potential in addressing global energy challenges and promoting sust...Pulsed dynamic electrolysis(PDE),driven by renewable energy,has emerged as an innovative electrocatalytic conversion method,demonstrating significant potential in addressing global energy challenges and promoting sustainable development.Despite significant progress in various electrochemical systems,the regulatory mechanisms of PDE in energy and mass transfer and the lifespan extension of electrolysis systems,particularly in water electrolysis(WE)for hydrogen production,remain insufficiently explored.Therefore,there is an urgent need for a deeper understanding of the unique contributions of PDE in mass transfer enhancement,microenvironment regulation,and hydrogen production optimization,aiming to achieve low-energy consumption,high catalytic activity,and long-term stability in the generation of target products.Here,this review critically examines the microenvironmental effects of PDE on energy and mass transfer,the electrode degradation mechanisms in the lifespan extension of electrolysis systems,and the key factors in enhancing WE for hydrogen production,providing a comprehensive summary of current research progress.The review focuses on the complex regulatory mechanisms of frequency,duty cycle,amplitude,and other factors in hydrogen evolution reaction(HER)performance within PDE strategies,revealing the interrelationships among them.Finally,the potential future directions and challenges for transitioning from laboratory studies to industrial applications are proposed.展开更多
The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environmen...The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environment and con-tribute to global climate change.However,there remain considerable research gaps in the accurate measurement of NCGs emissions from agricultural fields,hindering the development of effective emission reduction strategies.We improved an open-top dynamic chambers(OTDCs)system and evaluated the performance by comparing the measured and given fluxes of the NCGs.The results showed that the measured fluxes of NO,N_(2)O and NH_(3)were 1%,2%and 7%lower than the given fluxes,respectively.For the determination of NH_(3) concentration,we employed a stripping coil-ion chromatograph(SC-IC)analytical technique,which demonstrated an absorption efficiency for atmospheric NH_(3) exceeding 96.1%across sampling durations of 6 to 60 min.In the summer maize season,we utilized the OTDCs system to measure the exchange fluxes of NO,NH_(3),and N_(2)O from the soil in the North China Plain.Substantial emissions of NO,NH_(3) and N_(2)O were recorded following fertilization,with peaks of 107,309,1239 ng N/(m^(2)·s),respectively.Notably,significant NCGs emissions were observed following sus-tained heavy rainfall one month after fertilization,particularly with NH_(3) peak being 4.5 times higher than that observed immediately after fertilization.Our results demonstrate that the OTDCs system accurately reflects the emission characteristics of soil NCGs and meets the requirements for long-term and continuous flux observation.展开更多
基金funded by the National Natural Science Foundation of China Youth Fund(Grant No.62304022)Science and Technology on Electromechanical Dynamic Control Laboratory(China,Grant No.6142601012304)the 2022e2024 China Association for Science and Technology Innovation Integration Association Youth Talent Support Project(Grant No.2022QNRC001).
文摘Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components.
基金Funded by the National Natural Science Foundation of China Academy of Engineering Physics and Jointly Setup"NSAF"Joint Fund(No.U1430119)。
文摘The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity.
基金funded by the Deanship of Research and Graduate Studies at King Khalid University through small group research under grant number RGP1/278/45.
文摘This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi-scale encoding significantly enhances the model’s ability to capture both fine-grained and global features,while the dynamic loss function adapts during training to optimize classification accuracy and retrieval performance.Our approach was evaluated on the ISIC-2018 and ChestX-ray14 datasets,yielding notable improvements.Specifically,on the ISIC-2018 dataset,our method achieves an F1-Score improvement of+4.84% compared to the standard ViT,with a precision increase of+5.46% for melanoma(MEL).On the ChestX-ray14 dataset,the method delivers an F1-Score improvement of 5.3%over the conventional ViT,with precision gains of+5.0% for pneumonia(PNEU)and+5.4%for fibrosis(FIB).Experimental results demonstrate that our approach outperforms traditional CNN-based models and existing ViT variants,particularly in retrieving relevant medical cases and enhancing diagnostic accuracy.These findings highlight the potential of the proposedmethod for large-scalemedical image analysis,offering improved tools for clinical decision-making through superior classification and case comparison.
基金the National Key Research and Development Program of China(No.2021ZD0112400)。
文摘This paper focuses on the problem of traffic flow forecasting,with the aim of forecasting future traffic conditions based on historical traffic data.This problem is typically tackled by utilizing spatio-temporal graph neural networks to model the intricate spatio-temporal correlations among traffic data.Although these methods have achieved performance improvements,they often suffer from the following limitations:These methods face challenges in modeling high-order correlations between nodes.These methods overlook the interactions between nodes at different scales.To tackle these issues,in this paper,we propose a novel model named multi-scale dynamic hypergraph convolutional network(MSDHGCN)for traffic flow forecasting.Our MSDHGCN can effectively model the dynamic higher-order relationships between nodes at multiple time scales,thereby enhancing the capability for traffic forecasting.Experiments on two real-world datasets demonstrate the effectiveness of the proposed method.
文摘Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction.We present a hybrid framework that integrates machine learning(ML)and fractional-order dynamics to predict tumor growth across diagnostic and temporal scales.On the Wisconsin Diagnostic Breast Cancer dataset,seven ML algorithms were evaluated,with deep neural networks(DNNs)achieving the highest accuracy(97.72%).Key morphological features(area,radius,texture,and concavity)were identified as top malignancy predictors,aligning with clinical intuition.Beyond static classification,we developed a fractional-order dynamical model using Caputo derivatives to capture memory-driven tumor progression.The model revealed clinically interpretable patterns:lower fractional orders correlated with prolonged aggressive growth,while higher orders indicated rapid stabilization,mimicking indolent subtypes.Theoretical analyses were rigorously proven,and numerical simulations closely fit clinical data.The framework’s clinical utility is demonstrated through an interactive graphics user interface(GUI)that integrates real-time risk assessment with growth trajectory simulations.
基金supported by the National Natural Science Foundations of China(Nos.12272411 and 42007259)the State Key Laboratory for GeoMechanics and Deep Underground Engineering,the China University of Mining&Technology(No.SKLGDUEK2207)the Department of Science and Technology of Shaanxi Province(Nos.2022KXJ-107 and 2022JC-LHJJ-16).
文摘Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-platform PFC-FDEM coupling methodology that bridges microscopic thermal damage mechanisms with macroscopic dynamic fracture responses.The breakthrough coupling framework introduces:(1)bidirectional information transfer protocols enabling seamless integration between PFC’s particle-scale thermal damage characterization and FDEM’s continuum-scale fracture propagation,(2)multi-physics mapping algorithms that preserve crack network geometric invariants during scale transitions,and(3)cross-platform cohesive zone implementations for accurate SHTB dynamic loading simulation.The coupled approach reveals distinct three-stage crack evolution characteristics with temperature-dependent density following an exponential model.High-temperature exposure significantly reduces dynamic strength ratio(60%at 800℃)and diminishes strain-rate sensitivity,with dynamic increase factor decreasing from 1.0 to 2.2(25℃)to 1.0-1.3(800℃).Critically,the coupling methodology captures fundamental energy redistribution mechanisms:thermal crack networks alter elastic energy proportion from 75%to 35%while increasing fracture energy from 5%to 30%.Numerical predictions demonstrate excellent experimental agreement(±8%peak stress-strain errors),validating the PFC-FDEM coupling accuracy.This integrated framework provides essential computational tools for predicting complex thermal-mechanical rock behavior in underground engineering applications.
基金financially supported by National Natural Science Foundation of China(No.52422402)。
文摘Lost circulation critically jeopardizes drilling safety and efficiency,and remains an unresolved challenge in oil and gas engineering.In this paper,by utilizing the self-developed dynamic plugging apparatus and synthetic cores containing large-scale fractures,experimental research on the circulation plugging of different materials was conducted.Based on the D90 rule and fracture mechanical aperture model,we analyze the location of plugging layer under dynamic plugging mechanism.By setting different parameters of fracture width and injection pressure,the laws of cyclic plugging time,pressure bearing capacity and plugging layers formation were investigated.The results show that the comprehensive analysis of particle size and fracture aperture provides an accurate judgment of the entrance-plugging phenomenon.The bridging of solid materials in the leakage channel is a gradual process,and the formation of a stable plug requires 2–3 plug-leakage cycles.The first and second cyclic plugging time was positively correlated with the fracture width.Different scales of fractures were successfully plugged with the bearing pressure greater than 6 MPa,but there were significant differences in the composition of the plugging layer.The experimental results can effectively prove that the utilized plugging agent is effective and provides an effective reference for dynamic plugging operation.
基金National Natural Science Foundation of China-NSAF(Grant No.U2330202)the National Natural Science Foundation of China(Grant Nos.52175162 and 51805086)+1 种基金Fujian Provincial Technological Innovation Key Research and Industrialization Projects(Grant Nos.2023XQ005 and 2024XQ010)The National Independent Innovation Demonstration Platform Project of Fujian Province(2024QZFX07)。
文摘Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static experiments were conducted to systematically investigate the mechanical response of metal-wrapped microporous materials under impact loading that spanned 10~6 orders of magnitude.By combining a high-precision numerical model with a spatial contact point search algorithm,the spatio–temporal contact characteristics of the complex network structure in FMP-MR were systematically analyzed.Furthermore,the mapping mechanism from turn topology and mesoscopic friction behavior to macroscopic mechanical properties was comprehensively explored.The results showed that compared with quasi-static loading,FMP-MR under high-speed impact exhibited higher energy absorption efficiency due to high-strain-rate inertia effect.Therefore,the peak stress increased by 141%,and the maximum energy dissipation increased by 300%.Consequently,the theory of dynamic friction locking effect was innovatively proposed.The theory explains that the close synergistic effect of sliding friction and plastic dissipation promoted by the stable interturn-locked embedded structure is the essential reason for the excellent dynamic mechanical properties of FMP-MR under dynamic loading conditions.Briefly,based on the in-depth investigation of the mechanical response and energy dissipation mechanism of FMP-MR under impact loads,this study provides a solid theoretical basis for further expanding the application range of FMP-MR and optimizing its performance.
基金funded by the National Natural Science Foundation of China,grant numbers 52374156 and 62476005。
文摘Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments.
基金supported by the Henan Province Key R&D Project under Grant 241111210400the Henan Provincial Science and Technology Research Project under Grants 252102211047,252102211062,252102211055 and 232102210069+2 种基金the Jiangsu Provincial Scheme Double Initiative Plan JSS-CBS20230474,the XJTLU RDF-21-02-008the Science and Technology Innovation Project of Zhengzhou University of Light Industry under Grant 23XNKJTD0205the Higher Education Teaching Reform Research and Practice Project of Henan Province under Grant 2024SJGLX0126。
文摘Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability.
基金the National Key Research and Development Program of China(Grant No.2022YFF0711400)which provided valuable financial support and resources for my research and made it possible for me to deeply explore the unknown mysteries in the field of lunar geologythe National Space Science Data Center Youth Open Project(Grant No.NSSDC2302001),which has not only facilitated the smooth progress of my research,but has also built a platform for me to communicate and cooperate with experts in the field.
文摘Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.
文摘With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.
基金The National Natural Science Foundation of China(Grant No.12462006)Beijing Institute of Structure and Environment Engineering Joint Innovation Fund(No.BQJJ202414).
文摘THE mechanical response and deformation mechanisms of pure nickel under nanoindentation were systematically investigated using molecular dynamics(MD)simulations,with a particular focus on the novel interplay between crystallographic orientation,grain boundary(GB)proximity,and pore characteristics(size/location).This study compares single-crystal nickel models along[100],[110],and[111]orientations with equiaxed polycrystalline models containing 0,1,and 2.5 nm pores in surface and subsurface configurations.Our results reveal that crystallographic anisotropy manifests as a 24.4%higher elastic modulus and 22.2%greater hardness in[111]-oriented single crystals compared to[100].Pore-GB synergistic effects are found to dominate the deformation behavior:2.5 nm subsurface pores reduce hardness by 25.2%through stress concentration and dislocation annihilation at GBs,whereas surface pores enable mechanical recovery via accelerated dislocation generation post-collapse.Additionally,size-dependent deformation regimes were identified,with 1 nm pores inducing negligible perturbation due to rapid atomic rearrangement,in contrast with persistent softening in 2.5 nm pores.These findings establish atomic-scale design principles for defect engineering in nickel-based aerospace components,demonstrating how crystallographic orientation,pore configuration,and GB interactions collectively govern nanoindentation behavior.
基金supported by the National Key Research and Development Program of China under Grant 2022YFB3608300in part by the National Nature Science Foundation of China(NSFC)under Grants 62404050,U2341218,62574056,62204052。
文摘Organic electrochemical transistor(OECT)devices demonstrate great promising potential for reservoir computing(RC)systems,but their lack of tunable dynamic characteristics limits their application in multi-temporal scale tasks.In this study,we report an OECT-based neuromorphic device with tunable relaxation time(τ)by introducing an additional vertical back-gate electrode into a planar structure.The dual-gate design enablesτreconfiguration from 93 to 541 ms.The tunable relaxation behaviors can be attributed to the combined effects of planar-gate induced electrochemical doping and back-gateinduced electrostatic coupling,as verified by electrochemical impedance spectroscopy analysis.Furthermore,we used theτ-tunable OECT devices as physical reservoirs in the RC system for intelligent driving trajectory prediction,achieving a significant improvement in prediction accuracy from below 69%to 99%.The results demonstrate that theτ-tunable OECT shows a promising candidate for multi-temporal scale neuromorphic computing applications.
基金financial support from the National Natural Science Foundation of China(22109127)the Chinese Postdoctoral Science Foundation(2021M702666),+1 种基金he Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(Grant No.2023-TS-02)financial support from the Youth Project of"Shaanxi High-level Talents Introduction Plan"and the Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education)are also sincerely appreciated.
文摘Photo-assisted lithium–sulfur batteries(PALSBs)offer an eco-friendly solution to address the issue of sluggish reaction kinetics of conventional LSBs.However,designing an efficient photoelectrode for practical implementation remains a significant challenge.Herein,we construct a free-standing polymer–inorganic hybrid photoelectrode with a direct Z-scheme heterostructure to develop high-efficiency PALSBs.Specifically,polypyrrole(PPy)is in situ vapor-phase polymerized on the surface of N-doped TiO_(2) nanorods supported on carbon cloth(N-TiO_(2)/CC),thereby forming a well-defined p–n heterojunction.This architecture efficiently facilitates the carrier separation of photo-generated electron–hole pairs and significantly enhances carrier transport by creating a built-in electric field.Thus,the PPy@N-TiO_(2)/CC can simultaneously act as a photocatalyst and an electrocatalyst to accelerate the reduction and evolution of sulfur,enabling ultrafast sulfur redox dynamics,as convincingly validated by both theoretical simulations and experimental results.Consequently,the PPy@N-TiO_(2)/CC PALSB achieves a high discharge capacity of 1653 mAh g−1,reaching 98.7%of the theoretical value.Furthermore,5 h of photo-charging without external voltage enables the PALSB to deliver a discharge capacity of 333 mAh g−1,achieving dual-mode energy harvesting capabilities.This work successfully integrates solar energy conversion and storage within a rechargeable battery system,providing a promising strategy for sustainable energy storage technologies.
基金supported by National Natural Science Foundation of China(No.52103044)Double First-Class Initiative University of Science and Technology of China(KY2400000037)the Young Talent Programme(GG2400007009).
文摘Conductive elastomers combining micromechanical sensitivity,lightweight adaptability,and environmental sustainability are critically needed for advanced flexible electronics requiring precise responsiveness and long-term wearability;however,the integration of these properties remains a significant challenge.Here,we present a biomass-derived conductive elastomer featuring a rationally engineered dynamic crosslinked network integrated with a tunable microporous architecture.This structural design imparts pronounced micromechanical sensitivity,an ultralow density(~0.25 g cm^(−3)),and superior mechanical compliance for adaptive deformation.Moreover,the unique micro-spring effect derived from the porous architecture ensures exceptional stretchability(>500%elongation at break)and superior resilience,delivering immediate and stable electrical response under both subtle(<1%)and large(>200%)mechanical stimuli.Intrinsic dynamic interactions endow the elastomer with efficient room temperature self-healing and complete recyclability without compromising performance.First-principles simulations clarify the mechanisms behind micropore formation and the resulting functionality.Beyond its facile and mild fabrication process,this work establishes a scalable route toward high-performance,sustainable conductive elastomers tailored for next-generation soft electronics.
基金Supported by Chongqing Health Commission and Chongqing Science and Technology Bureau,No.2023MSXM182。
文摘Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve throughout the disease course.This review examined 95 studies(2000-2025)from PubMed,Web of Science,and CNKI databases including longitudinal cohorts,randomized controlled trials,and mixed-methods research,to characterize the complex interplay between biological,psychological,and social factors affecting RA patients’mental health.Findings revealed three distinct vulnerability trajectories(45%persistently low,30%fluctuating improvement,25%persistently high)and four adaptation stages,with critical intervention periods occurring 3-6 months postdiagnosis and during disease flares.Multiple factors significantly influence psychological outcomes,including gender(females showing 1.8-fold increased risk),age(younger patients experiencing 42%higher vulnerability),pain intensity,inflammatory markers,and neuroendocrine dysregulation(48%showing cortisol rhythm disruption).Early psychological intervention(within 3 months of diagnosis)demonstrated robust benefits,reducing depression incidence by 42%with effects persisting 24-36 months,while different modalities showed complementary advantages:Cognitive behavioral therapy for depression(Cohen’s d=0.68),mindfulness for pain acceptance(38%improvement),and peer support for meaning reconstruction(25.6%increase).These findings underscore the importance of integrating routine psychological assessment into standard RA care,developing stage-appropriate interventions,and advancing research toward personalized biopsychosocial approaches that address the dynamic psychological dimensions of the disease.
基金financially supported by the Key Research and Development Program of Heilongjiang Province(No.2024ZXJ03C06)National Natural Science Foundation of China(No.52476192,No.52106237)+1 种基金Natural Science Foundation of Heilongjiang Province(No.YQ2022E027)Technology Project of China Datang Technology Innovation Co.,Ltd(No.DTKC-2024-20610).
文摘Pulsed dynamic electrolysis(PDE),driven by renewable energy,has emerged as an innovative electrocatalytic conversion method,demonstrating significant potential in addressing global energy challenges and promoting sustainable development.Despite significant progress in various electrochemical systems,the regulatory mechanisms of PDE in energy and mass transfer and the lifespan extension of electrolysis systems,particularly in water electrolysis(WE)for hydrogen production,remain insufficiently explored.Therefore,there is an urgent need for a deeper understanding of the unique contributions of PDE in mass transfer enhancement,microenvironment regulation,and hydrogen production optimization,aiming to achieve low-energy consumption,high catalytic activity,and long-term stability in the generation of target products.Here,this review critically examines the microenvironmental effects of PDE on energy and mass transfer,the electrode degradation mechanisms in the lifespan extension of electrolysis systems,and the key factors in enhancing WE for hydrogen production,providing a comprehensive summary of current research progress.The review focuses on the complex regulatory mechanisms of frequency,duty cycle,amplitude,and other factors in hydrogen evolution reaction(HER)performance within PDE strategies,revealing the interrelationships among them.Finally,the potential future directions and challenges for transitioning from laboratory studies to industrial applications are proposed.
基金supported by the National Key Research and Develop-ment Program(No.2022YFC3701103)the National Natural Science Foundation of China(Nos.42130714 and 41931287).
文摘The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environment and con-tribute to global climate change.However,there remain considerable research gaps in the accurate measurement of NCGs emissions from agricultural fields,hindering the development of effective emission reduction strategies.We improved an open-top dynamic chambers(OTDCs)system and evaluated the performance by comparing the measured and given fluxes of the NCGs.The results showed that the measured fluxes of NO,N_(2)O and NH_(3)were 1%,2%and 7%lower than the given fluxes,respectively.For the determination of NH_(3) concentration,we employed a stripping coil-ion chromatograph(SC-IC)analytical technique,which demonstrated an absorption efficiency for atmospheric NH_(3) exceeding 96.1%across sampling durations of 6 to 60 min.In the summer maize season,we utilized the OTDCs system to measure the exchange fluxes of NO,NH_(3),and N_(2)O from the soil in the North China Plain.Substantial emissions of NO,NH_(3) and N_(2)O were recorded following fertilization,with peaks of 107,309,1239 ng N/(m^(2)·s),respectively.Notably,significant NCGs emissions were observed following sus-tained heavy rainfall one month after fertilization,particularly with NH_(3) peak being 4.5 times higher than that observed immediately after fertilization.Our results demonstrate that the OTDCs system accurately reflects the emission characteristics of soil NCGs and meets the requirements for long-term and continuous flux observation.