Gas hydrate(hereinafter,"hydrate"for short)in the marine environment mostly lies in weakly consolidated sediments,so its undisturbed coring is difficult and costly.In view of this,it is necessary to understa...Gas hydrate(hereinafter,"hydrate"for short)in the marine environment mostly lies in weakly consolidated sediments,so its undisturbed coring is difficult and costly.In view of this,it is necessary to understand the relationship between acoustic properties and elastic mechanical properties of hydrates through laboratory experiments.In this paper,samples of hydrate sediments were prepared indoors.Then,petrophysical experiments were carried out on these samples to measure the electric parameters and acoustic parameters of hydrate sediments.Finally,according to the theory of elasticity,the dynamic elastic mechanical parameters under three axial compressions,three particle sizes and three shale contents were calculated to analyze their effects on the dynamic elastic mechanical parameters of hydrate sediments under different conditions.And the following research results were obtained.First,when the hydrate saturation is in a certain range,it is in a proportional relationship with the elastic parameters of sediments.Second,when the hydrate saturation is constant,the dynamic Young's modulus of hydrate sediments increases,but the Poisson's ratio has little to do with the axial compression as particle sizes(0.125-1.180 mm)and axial compression increase and shale content decreases.Third,a model of the relationship between the elastic parameters and the shale content and axial compression is established.In conclusion,the dynamic elastic mechanical indexes of gas hydrate obtained from the acoustic logging methodology will solve the above difficulties and the research results provide a reference for calculating the mechanical properties of hydrate sediments by use of logging data.展开更多
To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to...To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of-1 ℃ to -5 ℃. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ul- trasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or com- pressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength.展开更多
基金supported by the National Key R&D Program of China“New technology for solid fluidization testing of marine gas hydrate”(No.:2016YFC0304008).
文摘Gas hydrate(hereinafter,"hydrate"for short)in the marine environment mostly lies in weakly consolidated sediments,so its undisturbed coring is difficult and costly.In view of this,it is necessary to understand the relationship between acoustic properties and elastic mechanical properties of hydrates through laboratory experiments.In this paper,samples of hydrate sediments were prepared indoors.Then,petrophysical experiments were carried out on these samples to measure the electric parameters and acoustic parameters of hydrate sediments.Finally,according to the theory of elasticity,the dynamic elastic mechanical parameters under three axial compressions,three particle sizes and three shale contents were calculated to analyze their effects on the dynamic elastic mechanical parameters of hydrate sediments under different conditions.And the following research results were obtained.First,when the hydrate saturation is in a certain range,it is in a proportional relationship with the elastic parameters of sediments.Second,when the hydrate saturation is constant,the dynamic Young's modulus of hydrate sediments increases,but the Poisson's ratio has little to do with the axial compression as particle sizes(0.125-1.180 mm)and axial compression increase and shale content decreases.Third,a model of the relationship between the elastic parameters and the shale content and axial compression is established.In conclusion,the dynamic elastic mechanical indexes of gas hydrate obtained from the acoustic logging methodology will solve the above difficulties and the research results provide a reference for calculating the mechanical properties of hydrate sediments by use of logging data.
基金supported by the National Natural Science Foundation of China (No.41271080 and No.41230630)the Western Project Program of the Chinese Academy of Sciences(KZCX2-XB3-19)the open fund of Qinghai Research and Observation Base, Key Laboratory of Highway Construction and Maintenance Technology in Permafrost Region Ministry of Transport, PRC (2012-12-4)
文摘To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of-1 ℃ to -5 ℃. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ul- trasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or com- pressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength.