With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction pro...With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction process is inevitably accompanied by earth and rock blasting.To improve the quality and safety of the project,this paper addresses the problems of land and rock blasting faced in the construction of mountain road projects,taking the research of rock dynamic mechanics test as the starting point,and using a combination of theoretical analysis and experimental research methods.The specific research content includes the following parts:dynamic impact compression test(SHPB),dynamic splitting tensile test,and stress-strain curve analysis of the test results,which provides the theoretical basis and numerical parameters for the numerical simulation of future engineering blasting.展开更多
This study systematically investigated the coupling effects of confiningpressure and strain rate on the dynamic strength of granite through dynamic triaxial compression tests.A dynamic strength criterion was developed...This study systematically investigated the coupling effects of confiningpressure and strain rate on the dynamic strength of granite through dynamic triaxial compression tests.A dynamic strength criterion was developed to incorporate these coupling effects for further analysis.Moreover,the research thoroughly revealed the underlying mechanism by which these coupling effects influencethe rock strength.The results revealed that both confiningpressure and strain rate significantly enhanced the dynamic strength of rock;however,a mutual inhibition effect emerged under their coupling.Specifically,as the confiningpressure increased,the strengthening effect of strain rate gradually diminished.Conversely,increasing the strain rate weakened the strengthening effect of confiningpressure.The proposed strength criterion successfully predicted rock strength under various confiningpressures(0-225 MPa)and strain rates(10^(-6)-600 s^(-1)).It achieved an average prediction error of only 8.3%,which represents a 65%improvement in accuracy compared to models that consider confiningpressure and strain rate effects independently.At the micro-mechanism level,increasing confiningpressure and strain rate promoted crack propagation in a transgranular(TG)mode,thereby enhancing the overall rock strength.However,under the coupling effects,the interference and interaction of TG cracks weakened the overall strengthening effect.This indicated that the competitive interaction between confiningpressure and strain rate during crack propagation constitutes the intrinsic mechanism underlying their mutual inhibitory effect on rock strength.This study provides a more accurate theoretical basis for understanding the dynamic responses of rocks and contributes valuable insights for disaster prevention and control in deep rock engineering projects.展开更多
The Al3Ti compound has potential application in the high temperature structure materials due to its low density,high strength and stiffness.The mechanical behaviors of the material under different loading rates were s...The Al3Ti compound has potential application in the high temperature structure materials due to its low density,high strength and stiffness.The mechanical behaviors of the material under different loading rates were studied using compression tests.The results indicate that Al3Ti is a typical brittle material and its compressive strength is dependent on the strain rate.Therefore,a series of rate-dependent constitutive equations are needed to describe its mechanical behaviors accurately.However,it is still short of professional research on the material model for Al3Ti.In this study,the mate rial model was developed on the basis of JH-2 constitutive equations using the experimental data.The model was then applied in simulating the impact process of Ti/Al3Ti metal-intermetallic laminate composites so as to validate the established model.Good agreement between simulation and experiment results shows the constitutive model predict the material responses under high rate and large deformation accurately.This work provides more support for the theoretical and numerical research on the intermetallic.展开更多
文摘With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction process is inevitably accompanied by earth and rock blasting.To improve the quality and safety of the project,this paper addresses the problems of land and rock blasting faced in the construction of mountain road projects,taking the research of rock dynamic mechanics test as the starting point,and using a combination of theoretical analysis and experimental research methods.The specific research content includes the following parts:dynamic impact compression test(SHPB),dynamic splitting tensile test,and stress-strain curve analysis of the test results,which provides the theoretical basis and numerical parameters for the numerical simulation of future engineering blasting.
基金financiallysupported by the National Natural Science Foundation of China(Grant No.42577209)the Natural Science Foundation of Jiangsu Province(Grant No.BK20241489)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.SKLGME023009).
文摘This study systematically investigated the coupling effects of confiningpressure and strain rate on the dynamic strength of granite through dynamic triaxial compression tests.A dynamic strength criterion was developed to incorporate these coupling effects for further analysis.Moreover,the research thoroughly revealed the underlying mechanism by which these coupling effects influencethe rock strength.The results revealed that both confiningpressure and strain rate significantly enhanced the dynamic strength of rock;however,a mutual inhibition effect emerged under their coupling.Specifically,as the confiningpressure increased,the strengthening effect of strain rate gradually diminished.Conversely,increasing the strain rate weakened the strengthening effect of confiningpressure.The proposed strength criterion successfully predicted rock strength under various confiningpressures(0-225 MPa)and strain rates(10^(-6)-600 s^(-1)).It achieved an average prediction error of only 8.3%,which represents a 65%improvement in accuracy compared to models that consider confiningpressure and strain rate effects independently.At the micro-mechanism level,increasing confiningpressure and strain rate promoted crack propagation in a transgranular(TG)mode,thereby enhancing the overall rock strength.However,under the coupling effects,the interference and interaction of TG cracks weakened the overall strengthening effect.This indicated that the competitive interaction between confiningpressure and strain rate during crack propagation constitutes the intrinsic mechanism underlying their mutual inhibitory effect on rock strength.This study provides a more accurate theoretical basis for understanding the dynamic responses of rocks and contributes valuable insights for disaster prevention and control in deep rock engineering projects.
基金The authors gratefully acknowledge the financial support from National Natural Science Foundation of China(No.11602230)the Program for Innovative Research Team in Science and Technology in the University of Henan Province(No.18IRTSTHN015)Key Scientific Projects of University in Henan Province(20B430021).
文摘The Al3Ti compound has potential application in the high temperature structure materials due to its low density,high strength and stiffness.The mechanical behaviors of the material under different loading rates were studied using compression tests.The results indicate that Al3Ti is a typical brittle material and its compressive strength is dependent on the strain rate.Therefore,a series of rate-dependent constitutive equations are needed to describe its mechanical behaviors accurately.However,it is still short of professional research on the material model for Al3Ti.In this study,the mate rial model was developed on the basis of JH-2 constitutive equations using the experimental data.The model was then applied in simulating the impact process of Ti/Al3Ti metal-intermetallic laminate composites so as to validate the established model.Good agreement between simulation and experiment results shows the constitutive model predict the material responses under high rate and large deformation accurately.This work provides more support for the theoretical and numerical research on the intermetallic.