Synergistically and simultaneously enhancing strength and ductility has been a major challenge for the development and applications of titanium matrix composites.Herein,a new design methodology for Ti_(2)Cu/Ti_(6)Al4V...Synergistically and simultaneously enhancing strength and ductility has been a major challenge for the development and applications of titanium matrix composites.Herein,a new design methodology for Ti_(2)Cu/Ti_(6)Al4V composites with superior strength and ductility is reported.展开更多
In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh enviro...In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh environment leads to significant variations in the shape and size of the defects.To address this challenge,we propose the multivariate time series segmentation network(MSSN),which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates.To tackle the classification difficulty caused by structural signal variance,MSSN employs logarithmic normalization to adjust instance distributions.Furthermore,it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences.Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95%localization and demonstrates the capture capability on the synthetic dataset.In a nuclear plant's heat transfer tube dataset,it captures 90%of defect instances with75%middle localization F1 score.展开更多
The integration of Global Navigation Satellite System(GNSS)technology into railway train control systems is a crucial step toward achieving the vision of a digital railway.Traditional train control systems undergo ext...The integration of Global Navigation Satellite System(GNSS)technology into railway train control systems is a crucial step toward achieving the vision of a digital railway.Traditional train control systems undergo extensive in-house tests and prolonged field tests for certification and approval before operational deployment,leading to high costs,delays,and operational disruptions.This paper introduces a GNSS-based train control localization framework which eliminates the need for on-site testing by leveraging train movement dynamics and 3D environment modeling to create a zero on-site testing platform.The proposed framework simulates train movement and the surrounding 3D environment using collected railway line location data and environmental attributes to generate realistic multipath signals and obscuration effects.This approach enables comprehensive laboratory-based case studies for train localization,reducing the huge amount test of needed for physical field trials.The framework is established in house,using the data collected at the Test Base of China Academy of Railway Sciences(Circular Railway).Results from the open area and cutting environment tests demonstrate high localization accuracy repeatability within the simulated environment,validating the feasibility and effectiveness of zero on-site testing for GNSS-based train control systems.This research highlights the potential of GNSS simulation platforms in enhancing cost efficiency,operational safety,and accuracy for future digital railways.展开更多
Lightweight high/medium-entropy alloys(H/MEAs)possess attractive properties such as high strength-to-weight ratios,however,their limited room-temperature tensile ductility hinders their widespread engi-neering impleme...Lightweight high/medium-entropy alloys(H/MEAs)possess attractive properties such as high strength-to-weight ratios,however,their limited room-temperature tensile ductility hinders their widespread engi-neering implementation,for instance in aerospace structural components.This work achieved a transfor-mative improvement of room-temperature tensile ductility in Ti-V-Zr-Nb MEAs with densities of 5.4-6.5 g/cm3,via ingenious composition modulation.Through the systematic co-adjustment of Ti and V contents,an intrinsic ductility mechanism was unveiled,manifested by a transition from predominant intergranular brittle fracture to pervasive ductile dimpled rupture.Notably,the modulated deformation mechanisms evolved from solitary slip toward collaborative multiple slip modes,without significantly compromising strength.Compared to equimolar Ti-V-Zr-Nb,a(Ti1.5V)3ZrNb composition demonstrated an impressive 360%improvement in elongation while sustaining a high yield strength of around 800 MPa.Increasing Ti and V not only purified the grain boundaries by reducing detrimental phases,but also tai-lored the deformation dislocation configurations.These insights expanded the applicability of lightweight HEAs to areas demanding combined high strength and ductility.展开更多
1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-...1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-sized particles(5-50μm)to fabricate coatings[1-3].CS has been extensively used in a variety of coating applications,such as aerospace,automotive,energy,medical,marine,and others,to provide protection against high temperatures,corrosion,erosion,oxidation,and chemicals[4,5].Nowadays,the technical interest in CS is twofold:(i)as a repair process for damaged components,and(ii)as a solid-state additive manufacturing process.Compared to other fusion-based additive manufacturing(AM)technologies,Cold Spray Additive Manufacturing(CSAM)is a new member of the AM family that can enable the fabrication of deposits without undergoing melting.The chemical composition has been largely preserved from the powder to the deposit due to the minimal oxidation.The significant advantages of CSAM over other additive manufacturing processes include a high production rate,unlimited deposition size,high flexibility,and suitability for repairing damaged parts.展开更多
A newly developed P-doped CrCoNi medium-entropy alloy(MEA)provides both higher yield strength and larger uniform elongation than the conventional CrCoNi MEA,even superior tensile ductility to the other-element-doped C...A newly developed P-doped CrCoNi medium-entropy alloy(MEA)provides both higher yield strength and larger uniform elongation than the conventional CrCoNi MEA,even superior tensile ductility to the other-element-doped CrCoNi MEAs at similar yield strength levels.P segregation at grain boundaries(GBs)and dissolution inside grain interiors,together with the related lower stacking fault energy(SFE)are found in the P-doped CrCoNi MEA.Higher hetero-deformation-induced(HDI)hardening rate is observed in the P-doped CrCoNi MEA due to the grain-to-grain plastic deformation and the dynamic structural refinement by high-density stacking fault-walls(SFWs).The enhanced yield strength in the P-doped CoCrNi MEA can be attributed to the strong substitutional solid-solution strengthening by severer lattice distortion and the GB strengthening by phosphorus segregation at GBs.During the tensile deformation,the multiple SFW frames inundated with massive multi-orientational tiny planar stacking faults(SFs)between them,rather than deformation twins,are observed to induce dynamic structural refinement for forming par-allelepiped domains in the P-doped CoCrNi MEA,due to the lower SFE and even lower atomically-local SFE.These nano-sized domains with domain boundary spacing at tens of nanometers can block disloca-tion movement for strengthening on one hand,and can accumulate defects in the interiors of domains for exceptionally high hardening rate on the other hand.展开更多
The growing demand for material properties in challenging environments has led to a surge of interest in rapid composition design. Given the great potential composition space, the field of high/medium entropy alloys (...The growing demand for material properties in challenging environments has led to a surge of interest in rapid composition design. Given the great potential composition space, the field of high/medium entropy alloys (H/MEAs) still lacks effective atomic-scale composition design and screening schemes, which hinders the accurate prediction of desired composition and properties. This study proposes a novel approach for rapidly designing the composition of materials with the aim of overcoming the trade-off between strength and ductility in metal matrix composites. The effect of chemical composition on stacking fault energy (SFE), shear modulus, and phase stability was investigated through the use of molecular dynamics (MD) and thermodynamic calculation software. The alloy's low SFE, highest shear modulus, and stable face-centered cubic (FCC) phase have been identified as three standard physical quantities for rapid screening to characterize the deformation mechanism, ultimate tensile strength, phase stability, and ductility of the alloy. The calculation results indicate that the optimal composition space is expected to fall within the ranges of 17 %–34 % Ni, 33 %–50 % Co, and 25 %–33 % Mn. The comparison of stress-strain curves for various predicted components using simulated and experimental results serves to reinforce the efficacy of the method. This indicates that the screening criteria offer a necessary design concept, deviating from traditional strategies and providing crucial guidance for the rapid development and application of MEAs.展开更多
The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analys...The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analysis of bridge inspection materials,the principle of ultrasonic non-destructive testing technology and its adaptability to bridge engineering are elaborated.Subsequently,starting from the preparation work before inspection until damage assessment,the entire process of ultrasonic non-destructive testing is studied,and finally,a technical system of ultrasonic non-destructive testing for bridge engineering that runs through the entire process is formed.It is hoped that this article can provide technical reference value for relevant units in China,and promote the high-quality development of China’s bridge engineering from a macro perspective.展开更多
With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist i...With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist in the field testing methodologies for wave energy converters(WECs).In this paper,a numerical wave field of the Dawanshan Island Sea Area in Zhuhai City is constructed based on the MIKE21 SW wave model and by using an NCEP wind field driving model.In conjunction with the IEC-62600-100 standard,by taking site testing of the“Wanshan”wave energy converter on which a sea trial has been conducted in Dawanshan Island of Zhuhai city as an example,research on-site testing method for a wave energy converter has been carried out.The wave measurement position for the“Wanshan”converter was determined by combining statistically analyzed field data with a validated numerical wave model.By comparing a valid wave height at the position where a wave rider is located with a valid wave height at the position where the“Wanshan”wave energy converter is situated,the correlation coefficient between simulation and observed data reached 0.90,with a root-mean-square error of 0.19.The representativeness of wave measurement data during site testing is verified and can be used as a basis for calculating the input energy of the“Wanshan”wave energy converter.展开更多
To study the seismic performance of double-skin steelconcrete composite box( DSCB) piers, a total of 11 DSCB pier specimens were tested under bidirectional cyclic loading. The effects of the loading pattern, the ste...To study the seismic performance of double-skin steelconcrete composite box( DSCB) piers, a total of 11 DSCB pier specimens were tested under bidirectional cyclic loading. The effects of the loading pattern, the steel plate thickness, the axial load ratio, the slenderness ratio and the aspect ratio were taken into consideration. The damage evolution process and failure modes of the tested specimens are presented in detail. Test results are also discussed in terms of the hysteretic curve, skeleton curve, ductility and energy dissipation capacity of DSCB pier specimens. It can be concluded that the hysteretic performance of DSCB piers in one direction is affected and weakened by the cyclic loading in the other direction. DSCB piers under bidirectional cyclic loading exhibit good performance in terms of load carrying capacity, ductility, and energy dissipation capacity. Overall, DSCB piers can meet the basic aseismic requirements. The research results can be taken as a reference for using DSCB piers as high piers in bridges in strong earthquakeprone areas.展开更多
Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the su...Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring.展开更多
Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by...Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.展开更多
Strain rate is a critical factor influencing the mechanical response of hexagonal close-packed titanium under cryogenic conditions.In this study,uniaxial tensile tests were performed on commercially pure titanium at 7...Strain rate is a critical factor influencing the mechanical response of hexagonal close-packed titanium under cryogenic conditions.In this study,uniaxial tensile tests were performed on commercially pure titanium at 77 K over a broad strain rate range from 0.001 to 1 s^(-1).A critical strain rate of approximately 0.5 s^(-1)was identified,above which ductility exhibits a pronounced reduction,whereas below this threshold,ductility remains relatively stable.Through comprehensive analyses of strain evolution,deformed microstructure,and fracture morphology,this behavior is attributed to severe localized adiabatic heating resulting from inhomogeneous deformation,rather than conventional twin or shear mechanisms.展开更多
A novel triplex heat treatment was designed to simultaneously improve the high-temperature strength and ductility of titanium matrix composites(TMCs)by modulating the microstructure and(TiB+TiC)reinforcements and prom...A novel triplex heat treatment was designed to simultaneously improve the high-temperature strength and ductility of titanium matrix composites(TMCs)by modulating the microstructure and(TiB+TiC)reinforcements and promoting the precipitation of(Ti,Zr)_(6)Si_(3) silicides and theα2 phase.展开更多
Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant...Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant on traditional laptops and computers, which, while portable, lack true ultra-portability. This paper explores the potential impact of developing a dedicated, ultra-portable, low-cost device for on-the-go penetration testing. Such a device could replicate the core functionalities of advanced penetration testing tools, including those found in Kali Linux, within a compact form factor that fits easily into a pocket. By offering the convenience and portability akin to a smartphone, this innovative device could redefine the way penetration testers operate, enabling them to carry essential tools wherever they go and ensuring they are always prepared to conduct security assessments efficiently. This approach aims to revolutionize penetration testing by merging high functionality with unparalleled portability.展开更多
In this research,a high ductility Mg-Gd-Mn magnesium alloy was designed and developed,with an elongation capability surpassing 50%.To gain insights into the underlying mechanism behind the high ductility of the Mg-2Gd...In this research,a high ductility Mg-Gd-Mn magnesium alloy was designed and developed,with an elongation capability surpassing 50%.To gain insights into the underlying mechanism behind the high ductility of the Mg-2Gd-0.5Mn alloy,quasi-in-situ electron backscattered diffraction and two-beam diffraction were conducted.The results reveal that the Mg-Gd-Mn alloy exhibits a distinct rare-earth texture,and the activation of non-basal slip systems is evident from the clear observation of non-basal slip traces during the later stages of deformation.However,the primary deformation mechanisms in Mg-Gd-Mn alloy remain basalslip and{10–12}tensile twinning,and the remarkable ductility observed in Mg-Gd-Mn alloys can be attributed to the softening of non-basal slip modes,which leads to a coordinated deformation between various modes of deformation.To further validate this conclusion,an analysis was conducted using a visco-plastic self-consistent(VPSC)model to investigate the relative activity of basal and non-basal slip in Mg-Gd-Mn alloys.The obtained results align well with experimental observations,providing additional support for the hypothesis.展开更多
Grain boundary hardening is an important mechanism for improving the strength and ductility of metal materials.However,the industrial fabrication of fine-grained FeCrAl alloys was limited by the interaction between th...Grain boundary hardening is an important mechanism for improving the strength and ductility of metal materials.However,the industrial fabrication of fine-grained FeCrAl alloys was limited by the interaction between the recrystallization and precipitation.Here,we report the facile mass production of fine-grained FeCrAl alloys by Si alloying and manipulation of the recrystallization process through introducing heterogeneous Si-rich Laves precipitates.The pre-precipitation of heterogeneous Laves phase not only promotes subsequent recrystallization grain nucleation by the PSN(Particles simultaneous nucleation)and SIBM(Strain-induced grain boundary migration)mechanisms,but also provides resistance to grain growth by the Zener pinning mechanism.Moreover,continuous grain refinement can be achieved by intensifying the heterogeneous Laves precipitates through decreasing their formation energy.This approach enables the preparation of a fully recrystallized fine-grain structure with a grain size of 4.6μm without the introduction of segregated boundaries.Consequently,an unprecedented synergy enhancement of strength(σ_(y)=625 MPa,σ_(uts)=867 MPa,)and ductility(ε_(u)=13.8%)is achieved in the fine-grain structured FeCrAl alloys compared with the coarse grain counterpart.The experimental results prove that the proposed strategy is appropriate for developing high strength and ductility FeCrAl alloys,and further boosting its potential applications as accident-tolerant-fuel cladding in nuclear reactors.In addition,this grainrefinement strategy should be extendable to other alloy systems,where there is a significant difference between precipitation and recrystallization temperatures.展开更多
Metastable β titanium alloy is an ideal material for lightweight and high strength due to its excellent comprehensive mechanical properties.However,overcoming the trade-off relation between strength and ductility rem...Metastable β titanium alloy is an ideal material for lightweight and high strength due to its excellent comprehensive mechanical properties.However,overcoming the trade-off relation between strength and ductility remains a significant challenge.In this study,the mechanical properties of Ti-38644 alloy were optimized by introducing a heterogeneous bi-grain bi-lamella(BG-BL)structure through a well-designed combination of rolling,drawing and heat treatment.The results demonstrate that the present BG-BL Ti-38644 alloy shows a tensile strength of~1500 MPa and a total elongation of 18%.In particular,the high strength-elongation combination of the BG-BL Ti-38644 alloy breakthroughs the trade-off relation in all the titanium alloys available.The recrystallized grains with low dislocation enhance the ductility of the Ti-38644 alloy,while the highly distorted elongated grains mainly contribute to the high strength.The present study provides a new principle for designing Ti alloys with superior strength and ductility.展开更多
Composition design is one of the signifcant methods to break the trade-of relation between strength and ductility of medium-/high-entropy alloys(M/HEAs).Herein,we introduced three fundamental principles for the compos...Composition design is one of the signifcant methods to break the trade-of relation between strength and ductility of medium-/high-entropy alloys(M/HEAs).Herein,we introduced three fundamental principles for the composition design:high elastic modulus,low stacking-fault energy(SFE),and appropriate phase stability.Subsequently,based on the three principles of component design and the frst-principles calculation results,we designed and investigated a non-equiatomic Ni28 MEA with a single-phase and uniform microstructure.The Ni28 MEA has great mechanical properties with yield strength of 329.5 MPa,tensile strength of 829.4 MPa,and uniform elongation of 56.9%at ambient temperature,respectively.The high ductility of Ni28 MEA may be attributed to the dynamically refned microstructure composed of hexagonal close-packed(HCP)lamellas and stacking faults(SFs),which provide extremely high work-hardening ability.This work demonstrates the feasibility of the three principles for composition design and can be extended to more M/HEAs in the future.展开更多
Some metamorphic relations (MR) are not good at detecting faults in metamorphic testing. In this paper, the method of making compositional MR (CMR) based on the speculative law of proposition logic is presented. T...Some metamorphic relations (MR) are not good at detecting faults in metamorphic testing. In this paper, the method of making compositional MR (CMR) based on the speculative law of proposition logic is presented. This method constructs new MRs by composing existing MRs in a pairwise way. Because CMR contains all the advantages of the MRs that form it, its fault detection performance is wonderful. On the other hand, the number of relations will decrease greatly after composing, so a program can be tested with much fewer test cases when CMRs are used. In order to research the characteristics of a CMR, two case studies are analyzed. The experimental results show that the CMR's performance is mostly determined by the central MRs forming it and the sequence of composition. Testing efficiency is improved greatly when CMRs are used.展开更多
基金supported by the National Natural Science Foundation of China(NSFC,No.52271138)the Key Research and Development Projects of Shaanxi Province(Nos.2023-YBGY-433 and 2024GX-YBXM-356)+1 种基金Xi'an Talent Program Young Innovative Talents(No.XAYC 2023030)the Science and Technology Development Plan Project of Shaanxi Province(No.S2024-JC-QN-2642).
文摘Synergistically and simultaneously enhancing strength and ductility has been a major challenge for the development and applications of titanium matrix composites.Herein,a new design methodology for Ti_(2)Cu/Ti_(6)Al4V composites with superior strength and ductility is reported.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2024ZD0608100)the National Natural Science Foundation of China(62332017,U22A2022)
文摘In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh environment leads to significant variations in the shape and size of the defects.To address this challenge,we propose the multivariate time series segmentation network(MSSN),which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates.To tackle the classification difficulty caused by structural signal variance,MSSN employs logarithmic normalization to adjust instance distributions.Furthermore,it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences.Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95%localization and demonstrates the capture capability on the synthetic dataset.In a nuclear plant's heat transfer tube dataset,it captures 90%of defect instances with75%middle localization F1 score.
基金supported by the National Natural Science Foundation of China(62027809,U2268206,T2222015,U2468202).
文摘The integration of Global Navigation Satellite System(GNSS)technology into railway train control systems is a crucial step toward achieving the vision of a digital railway.Traditional train control systems undergo extensive in-house tests and prolonged field tests for certification and approval before operational deployment,leading to high costs,delays,and operational disruptions.This paper introduces a GNSS-based train control localization framework which eliminates the need for on-site testing by leveraging train movement dynamics and 3D environment modeling to create a zero on-site testing platform.The proposed framework simulates train movement and the surrounding 3D environment using collected railway line location data and environmental attributes to generate realistic multipath signals and obscuration effects.This approach enables comprehensive laboratory-based case studies for train localization,reducing the huge amount test of needed for physical field trials.The framework is established in house,using the data collected at the Test Base of China Academy of Railway Sciences(Circular Railway).Results from the open area and cutting environment tests demonstrate high localization accuracy repeatability within the simulated environment,validating the feasibility and effectiveness of zero on-site testing for GNSS-based train control systems.This research highlights the potential of GNSS simulation platforms in enhancing cost efficiency,operational safety,and accuracy for future digital railways.
基金supported by the National Natural Science Foundation of China(Nos.51925103,52271149,52171159)the Innovation Program of Shanghai Municipal Education Commission(No.2021-01-07-00-09-E00114)+5 种基金the Natural Science Foundation of Shanghai(22ZR1422500)the Innovation Program of Shanghai Science and Technology(No.23520760700)the Aviation Foundation(No.2023Z0530S6004)the Fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP202221)the financial support from Program 173(No.2020-JCIQ-ZD-186-01)the Space Utilization System of China Manned Space Engineering(No.KJZ-YY-NCL08).
文摘Lightweight high/medium-entropy alloys(H/MEAs)possess attractive properties such as high strength-to-weight ratios,however,their limited room-temperature tensile ductility hinders their widespread engi-neering implementation,for instance in aerospace structural components.This work achieved a transfor-mative improvement of room-temperature tensile ductility in Ti-V-Zr-Nb MEAs with densities of 5.4-6.5 g/cm3,via ingenious composition modulation.Through the systematic co-adjustment of Ti and V contents,an intrinsic ductility mechanism was unveiled,manifested by a transition from predominant intergranular brittle fracture to pervasive ductile dimpled rupture.Notably,the modulated deformation mechanisms evolved from solitary slip toward collaborative multiple slip modes,without significantly compromising strength.Compared to equimolar Ti-V-Zr-Nb,a(Ti1.5V)3ZrNb composition demonstrated an impressive 360%improvement in elongation while sustaining a high yield strength of around 800 MPa.Increasing Ti and V not only purified the grain boundaries by reducing detrimental phases,but also tai-lored the deformation dislocation configurations.These insights expanded the applicability of lightweight HEAs to areas demanding combined high strength and ductility.
基金supported by the National Natural Science Foundation of China(No.52061135101 and 52001078)the German Research Foundation(DFG,No.448318292)+3 种基金the Technology Innovation Guidance Special Foundation of Shaanxi Province(No.2023GXLH-085)the Fundamental Research Funds for the Central Universities(No.D5000240161)the Project of Key areas of innovation team in Shaanxi Province(No.2024RS-CXTD-20)The author Yingchun Xie thanks the support from the National Key R&D Program(No.2023YFE0108000).
文摘1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-sized particles(5-50μm)to fabricate coatings[1-3].CS has been extensively used in a variety of coating applications,such as aerospace,automotive,energy,medical,marine,and others,to provide protection against high temperatures,corrosion,erosion,oxidation,and chemicals[4,5].Nowadays,the technical interest in CS is twofold:(i)as a repair process for damaged components,and(ii)as a solid-state additive manufacturing process.Compared to other fusion-based additive manufacturing(AM)technologies,Cold Spray Additive Manufacturing(CSAM)is a new member of the AM family that can enable the fabrication of deposits without undergoing melting.The chemical composition has been largely preserved from the powder to the deposit due to the minimal oxidation.The significant advantages of CSAM over other additive manufacturing processes include a high production rate,unlimited deposition size,high flexibility,and suitability for repairing damaged parts.
基金supported by the National Key R&D Program of China(No.2019YFA0209902)the Natural Science Foundation of China(Nos.52071326,52192593,51601204)+1 种基金the NSFC Basic Science Center Program for Multiscale Problems in Nonlinear Mechanics(No.11988102)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB22040503).
文摘A newly developed P-doped CrCoNi medium-entropy alloy(MEA)provides both higher yield strength and larger uniform elongation than the conventional CrCoNi MEA,even superior tensile ductility to the other-element-doped CrCoNi MEAs at similar yield strength levels.P segregation at grain boundaries(GBs)and dissolution inside grain interiors,together with the related lower stacking fault energy(SFE)are found in the P-doped CrCoNi MEA.Higher hetero-deformation-induced(HDI)hardening rate is observed in the P-doped CrCoNi MEA due to the grain-to-grain plastic deformation and the dynamic structural refinement by high-density stacking fault-walls(SFWs).The enhanced yield strength in the P-doped CoCrNi MEA can be attributed to the strong substitutional solid-solution strengthening by severer lattice distortion and the GB strengthening by phosphorus segregation at GBs.During the tensile deformation,the multiple SFW frames inundated with massive multi-orientational tiny planar stacking faults(SFs)between them,rather than deformation twins,are observed to induce dynamic structural refinement for forming par-allelepiped domains in the P-doped CoCrNi MEA,due to the lower SFE and even lower atomically-local SFE.These nano-sized domains with domain boundary spacing at tens of nanometers can block disloca-tion movement for strengthening on one hand,and can accumulate defects in the interiors of domains for exceptionally high hardening rate on the other hand.
基金funding from the National Natural Science Foundation of China(Nos.52063017 and 52061025)the Major Science and Technology Project of Gansu Province(Nos.22ZD6GA008 and 20ZD7GJ008)+3 种基金the Natural Science Foundation of Gansu Province(No.23JRRA820)The Science and Technology Project of Major Science and Technology Project of Gansu Province(No.22ZD6GA008)the Science and Technology Project of Gansu Province(No.23YFGA0058)the College Industry Support Plan of Gansu Province(No.2023CYZC-27).
文摘The growing demand for material properties in challenging environments has led to a surge of interest in rapid composition design. Given the great potential composition space, the field of high/medium entropy alloys (H/MEAs) still lacks effective atomic-scale composition design and screening schemes, which hinders the accurate prediction of desired composition and properties. This study proposes a novel approach for rapidly designing the composition of materials with the aim of overcoming the trade-off between strength and ductility in metal matrix composites. The effect of chemical composition on stacking fault energy (SFE), shear modulus, and phase stability was investigated through the use of molecular dynamics (MD) and thermodynamic calculation software. The alloy's low SFE, highest shear modulus, and stable face-centered cubic (FCC) phase have been identified as three standard physical quantities for rapid screening to characterize the deformation mechanism, ultimate tensile strength, phase stability, and ductility of the alloy. The calculation results indicate that the optimal composition space is expected to fall within the ranges of 17 %–34 % Ni, 33 %–50 % Co, and 25 %–33 % Mn. The comparison of stress-strain curves for various predicted components using simulated and experimental results serves to reinforce the efficacy of the method. This indicates that the screening criteria offer a necessary design concept, deviating from traditional strategies and providing crucial guidance for the rapid development and application of MEAs.
文摘The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analysis of bridge inspection materials,the principle of ultrasonic non-destructive testing technology and its adaptability to bridge engineering are elaborated.Subsequently,starting from the preparation work before inspection until damage assessment,the entire process of ultrasonic non-destructive testing is studied,and finally,a technical system of ultrasonic non-destructive testing for bridge engineering that runs through the entire process is formed.It is hoped that this article can provide technical reference value for relevant units in China,and promote the high-quality development of China’s bridge engineering from a macro perspective.
基金supported by the“National Ocean Technology Center Innovation Fund”under Project No.N3220Z002,led by Ning Jia.The official website of the National Ocean Technology Center is accessible at:http://www.notcsoa.org.cn/.
文摘With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist in the field testing methodologies for wave energy converters(WECs).In this paper,a numerical wave field of the Dawanshan Island Sea Area in Zhuhai City is constructed based on the MIKE21 SW wave model and by using an NCEP wind field driving model.In conjunction with the IEC-62600-100 standard,by taking site testing of the“Wanshan”wave energy converter on which a sea trial has been conducted in Dawanshan Island of Zhuhai city as an example,research on-site testing method for a wave energy converter has been carried out.The wave measurement position for the“Wanshan”converter was determined by combining statistically analyzed field data with a validated numerical wave model.By comparing a valid wave height at the position where a wave rider is located with a valid wave height at the position where the“Wanshan”wave energy converter is situated,the correlation coefficient between simulation and observed data reached 0.90,with a root-mean-square error of 0.19.The representativeness of wave measurement data during site testing is verified and can be used as a basis for calculating the input energy of the“Wanshan”wave energy converter.
基金The National Natural Science Foundation of China(No.5117810151378112)the Doctoral Fund of Ministry of Education(No.20110092110011)
文摘To study the seismic performance of double-skin steelconcrete composite box( DSCB) piers, a total of 11 DSCB pier specimens were tested under bidirectional cyclic loading. The effects of the loading pattern, the steel plate thickness, the axial load ratio, the slenderness ratio and the aspect ratio were taken into consideration. The damage evolution process and failure modes of the tested specimens are presented in detail. Test results are also discussed in terms of the hysteretic curve, skeleton curve, ductility and energy dissipation capacity of DSCB pier specimens. It can be concluded that the hysteretic performance of DSCB piers in one direction is affected and weakened by the cyclic loading in the other direction. DSCB piers under bidirectional cyclic loading exhibit good performance in terms of load carrying capacity, ductility, and energy dissipation capacity. Overall, DSCB piers can meet the basic aseismic requirements. The research results can be taken as a reference for using DSCB piers as high piers in bridges in strong earthquakeprone areas.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(Grant No.42225206)National Natural Science Foundation of China(42207180,42477209,42302320).
文摘Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring.
文摘Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.
基金financially supported by the National Key Research&Development Plan(No.2022YFE0110600)the National Natural Science Foundation of China(Nos.52171117,52371113,92263201 and 52175306)+3 种基金Qing Lan Project(No.54944004)the Basic Research Program of Jiangsu(Nos.BK20232011 and BK20232025)the Postdoctoral Fellowship Program of CPSF(No.GZC20233481)Tuoyuan project of Nanjing Tech University(No.20230113)
文摘Strain rate is a critical factor influencing the mechanical response of hexagonal close-packed titanium under cryogenic conditions.In this study,uniaxial tensile tests were performed on commercially pure titanium at 77 K over a broad strain rate range from 0.001 to 1 s^(-1).A critical strain rate of approximately 0.5 s^(-1)was identified,above which ductility exhibits a pronounced reduction,whereas below this threshold,ductility remains relatively stable.Through comprehensive analyses of strain evolution,deformed microstructure,and fracture morphology,this behavior is attributed to severe localized adiabatic heating resulting from inhomogeneous deformation,rather than conventional twin or shear mechanisms.
基金supported by the National Key R&D program of China(No.2022YFB3705704)the Natural Science Foundation of Heilongjiang Province of China(No.YQ2023E007)+2 种基金the National Natural Science Foundation of China(Nos.52201116,52071228 and 52271118)the State Key Laboratory of Advanced Welding and Joining,the Harbin Institute of Technology(No.AWJ-23M24)the funding Shi Changxu Innovation Center for Advanced Materials(No.SCXKFJJ202213)。
文摘A novel triplex heat treatment was designed to simultaneously improve the high-temperature strength and ductility of titanium matrix composites(TMCs)by modulating the microstructure and(TiB+TiC)reinforcements and promoting the precipitation of(Ti,Zr)_(6)Si_(3) silicides and theα2 phase.
文摘Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant on traditional laptops and computers, which, while portable, lack true ultra-portability. This paper explores the potential impact of developing a dedicated, ultra-portable, low-cost device for on-the-go penetration testing. Such a device could replicate the core functionalities of advanced penetration testing tools, including those found in Kali Linux, within a compact form factor that fits easily into a pocket. By offering the convenience and portability akin to a smartphone, this innovative device could redefine the way penetration testers operate, enabling them to carry essential tools wherever they go and ensuring they are always prepared to conduct security assessments efficiently. This approach aims to revolutionize penetration testing by merging high functionality with unparalleled portability.
基金support from the National Science Foundation of China(No.52071037)Zhejiang province science and technology planning project(No.2022C01008).
文摘In this research,a high ductility Mg-Gd-Mn magnesium alloy was designed and developed,with an elongation capability surpassing 50%.To gain insights into the underlying mechanism behind the high ductility of the Mg-2Gd-0.5Mn alloy,quasi-in-situ electron backscattered diffraction and two-beam diffraction were conducted.The results reveal that the Mg-Gd-Mn alloy exhibits a distinct rare-earth texture,and the activation of non-basal slip systems is evident from the clear observation of non-basal slip traces during the later stages of deformation.However,the primary deformation mechanisms in Mg-Gd-Mn alloy remain basalslip and{10–12}tensile twinning,and the remarkable ductility observed in Mg-Gd-Mn alloys can be attributed to the softening of non-basal slip modes,which leads to a coordinated deformation between various modes of deformation.To further validate this conclusion,an analysis was conducted using a visco-plastic self-consistent(VPSC)model to investigate the relative activity of basal and non-basal slip in Mg-Gd-Mn alloys.The obtained results align well with experimental observations,providing additional support for the hypothesis.
基金supported by the National Natural Science Foun-dation of China(No.52122103)the Shaanxi Province Youth In-novation Team Project(No.22JP042)+1 种基金Shaanxi Province Innova-tion Team Project(Nos.2024RS-CXTD-58 and2023-CXTD-50)Shaanxi International Science and Technology Cooperation Base(No.2020GHJD-10).
文摘Grain boundary hardening is an important mechanism for improving the strength and ductility of metal materials.However,the industrial fabrication of fine-grained FeCrAl alloys was limited by the interaction between the recrystallization and precipitation.Here,we report the facile mass production of fine-grained FeCrAl alloys by Si alloying and manipulation of the recrystallization process through introducing heterogeneous Si-rich Laves precipitates.The pre-precipitation of heterogeneous Laves phase not only promotes subsequent recrystallization grain nucleation by the PSN(Particles simultaneous nucleation)and SIBM(Strain-induced grain boundary migration)mechanisms,but also provides resistance to grain growth by the Zener pinning mechanism.Moreover,continuous grain refinement can be achieved by intensifying the heterogeneous Laves precipitates through decreasing their formation energy.This approach enables the preparation of a fully recrystallized fine-grain structure with a grain size of 4.6μm without the introduction of segregated boundaries.Consequently,an unprecedented synergy enhancement of strength(σ_(y)=625 MPa,σ_(uts)=867 MPa,)and ductility(ε_(u)=13.8%)is achieved in the fine-grain structured FeCrAl alloys compared with the coarse grain counterpart.The experimental results prove that the proposed strategy is appropriate for developing high strength and ductility FeCrAl alloys,and further boosting its potential applications as accident-tolerant-fuel cladding in nuclear reactors.In addition,this grainrefinement strategy should be extendable to other alloy systems,where there is a significant difference between precipitation and recrystallization temperatures.
基金financially supported by the National Natural Science Foundation of China(Nos.52321001,52322105,52130002,U2241245,52261135634 and 52371084)the Youth Innovation Promotion Association(CAS,No.2021192)the IMR Innovation Fund(No.2023-ZD01).
文摘Metastable β titanium alloy is an ideal material for lightweight and high strength due to its excellent comprehensive mechanical properties.However,overcoming the trade-off relation between strength and ductility remains a significant challenge.In this study,the mechanical properties of Ti-38644 alloy were optimized by introducing a heterogeneous bi-grain bi-lamella(BG-BL)structure through a well-designed combination of rolling,drawing and heat treatment.The results demonstrate that the present BG-BL Ti-38644 alloy shows a tensile strength of~1500 MPa and a total elongation of 18%.In particular,the high strength-elongation combination of the BG-BL Ti-38644 alloy breakthroughs the trade-off relation in all the titanium alloys available.The recrystallized grains with low dislocation enhance the ductility of the Ti-38644 alloy,while the highly distorted elongated grains mainly contribute to the high strength.The present study provides a new principle for designing Ti alloys with superior strength and ductility.
基金supported by the National Natural Science Foundation of China(Nos.52130002 and 52321001)the National Key Research and Development Program of China(No.2022YFB3708200)the Youth Innovation Promotion Association CAS(No.2018226).
文摘Composition design is one of the signifcant methods to break the trade-of relation between strength and ductility of medium-/high-entropy alloys(M/HEAs).Herein,we introduced three fundamental principles for the composition design:high elastic modulus,low stacking-fault energy(SFE),and appropriate phase stability.Subsequently,based on the three principles of component design and the frst-principles calculation results,we designed and investigated a non-equiatomic Ni28 MEA with a single-phase and uniform microstructure.The Ni28 MEA has great mechanical properties with yield strength of 329.5 MPa,tensile strength of 829.4 MPa,and uniform elongation of 56.9%at ambient temperature,respectively.The high ductility of Ni28 MEA may be attributed to the dynamically refned microstructure composed of hexagonal close-packed(HCP)lamellas and stacking faults(SFs),which provide extremely high work-hardening ability.This work demonstrates the feasibility of the three principles for composition design and can be extended to more M/HEAs in the future.
基金The National Natural Science Foundation of China(No.60425206,60633010,60773104,60503033)the Excellent Talent Foundation of Teaching and Research of Southeast University
文摘Some metamorphic relations (MR) are not good at detecting faults in metamorphic testing. In this paper, the method of making compositional MR (CMR) based on the speculative law of proposition logic is presented. This method constructs new MRs by composing existing MRs in a pairwise way. Because CMR contains all the advantages of the MRs that form it, its fault detection performance is wonderful. On the other hand, the number of relations will decrease greatly after composing, so a program can be tested with much fewer test cases when CMRs are used. In order to research the characteristics of a CMR, two case studies are analyzed. The experimental results show that the CMR's performance is mostly determined by the central MRs forming it and the sequence of composition. Testing efficiency is improved greatly when CMRs are used.