期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
New Symmetry Reductions,Dromions—Like and Compacton Solutions for a 2D BS(m,n) Equations Hierarchy with Fully Nonlinear Dispersion 被引量:1
1
作者 YANZhen-Ya 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第3期269-276,共8页
We have found two types of important exact solutions, compacton solutions, which are solitary waves with the property that after colliding with their own kind, they re-emerge with the same coherent shape very much as ... We have found two types of important exact solutions, compacton solutions, which are solitary waves with the property that after colliding with their own kind, they re-emerge with the same coherent shape very much as the solitons do during a completely elastic interaction, in the and even models, and dromion solutions (exponentially decaying solutions in all direction) in many and models. In this paper, symmetry reductions in are considered for the break soliton-type equation with fully nonlinear dispersion (called equation) , which is a generalized model of break soliton equation , by using the extended direct reduction method. As a result, six types of symmetry reductions are obtained. Starting from the reduction equations and some simple transformations, we obtain the solitary wave solutions of equations, compacton solutions of equations and the compacton-like solution of the potential form (called ) . In addition, we show that the variable admits dromion solutions rather than the field itself in equation. 展开更多
关键词 BS(m n) equations PBS(m n) equation symmetry reduction solitary wave solution dromion solution compacton solution
在线阅读 下载PDF
Solutions of novel soliton molecules and their interactions of(2+1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation 被引量:1
2
作者 Hong-Cai Ma Yi-Dan Gao Ai-Ping Deng 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期77-83,共7页
The method of variable separation has always been regarded as a crucial method for solving nonlinear evolution equations.In this paper,we use a new form of variable separation to study novel soliton molecules and thei... The method of variable separation has always been regarded as a crucial method for solving nonlinear evolution equations.In this paper,we use a new form of variable separation to study novel soliton molecules and their interactions in(2+1)-dimensional potential Boiti–Leon-Manna–Pempinelli equation.Dromion molecules,ring molecules,lump molecules,multi-instantaneous molecules,and their interactions are obtained.Then we draw corresponding images with maple software to study their dynamic behavior. 展开更多
关键词 variable separation method Hirota bilinear method dromion solution (2+1)-dimensional potential Boiti–Leon–Manna–Pempinelli equation
原文传递
Interaction Behaviors Between Special Dromions in the(2+1)-Dimensional Broer-Kaup-Kupershmidt Equation 被引量:1
3
作者 陈未路 张雯婷 +1 位作者 张李溥 戴朝卿 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第1期68-72,共5页
A modified mapping method is used to obtain variable separation solution with two arbitrary functions of the(2+1)-dimensional Broer-Kaup-Kupershmidt equation.Based on the variable separation solution and by selecting ... A modified mapping method is used to obtain variable separation solution with two arbitrary functions of the(2+1)-dimensional Broer-Kaup-Kupershmidt equation.Based on the variable separation solution and by selecting appropriate functions,we discuss the completely elastic head-on collision between two dromion-lattices,non-completely elastic "chase and collision" between two multi-dromion-pairs and completely non-elastic interaction phenomenon between anti-dromion and dromion-pair. 展开更多
关键词 Broer-Kaup-Kupershmidt equation modified mapping method variable separation solutions interactive dromions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部