For studying the evolution of the density operator of the time-dependent dynamical system author presents here a general reformulation of subdynamics of driven system to obtain the efficient dynamical equation. The ex...For studying the evolution of the density operator of the time-dependent dynamical system author presents here a general reformulation of subdynamics of driven system to obtain the efficient dynamical equation. The explicit formulas to calculate the creation operator and the destruction operator are given. A new intertwining relation is discussed, The method presented here can be useful to get the evolution formalism of the density operator for any system driven by an external field.展开更多
One of the most important safety parameters taken into consideration during the design and actual operation of a nuclear reactor is its control rods adjustment to reach criticality. Concerning the conventional nuclear...One of the most important safety parameters taken into consideration during the design and actual operation of a nuclear reactor is its control rods adjustment to reach criticality. Concerning the conventional nuclear systems, the specification of their rods’ position through the utilization of neutronics codes, deterministic or stochastic, is considered nowadays trivial. However, innovative nuclear reactor concepts such as the Accelerator Driven Systems require sophisticated simulation capabilities of the stochastic neutronics codes since they combine high energy physics, for the spallation-produced neutrons, with classical nuclear technology. ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is an under development stochastic neutronics code, able to cover the broad neutron energy spectrum involved in ADS systems and therefore capable of simulating conventional and hybrid nuclear reactors and calculating important reactor parameters. In this work, ANETS’s reliability to calculate the effective multiplication factor for three core configurations containing control rods of the Kyoto University Critical Assembly, an operating ADS, is examined. The ANET results successfully compare with results produced by well-established stochastic codes such as MCNP6.1.展开更多
Soft cable-driven systems have been employed in many assembled mechanisms, such as industrial robots, parallel kinematic mechanism machines, medical devices, and humaniform hands. A pre-stretching process is necessary...Soft cable-driven systems have been employed in many assembled mechanisms, such as industrial robots, parallel kinematic mechanism machines, medical devices, and humaniform hands. A pre-stretching process is necessary to guarantee the quality of cable-driven systems during the assembly process. However, the stress relaxation of cables becomes a critical concern during long-term operation. This study investigates the effects of non-uniform deformation and long-term stress relaxation of the driven cables owing to moving parts in the system. A simple closed-loop cable-driven system is built and an alternating load is applied to it to replicate the operation of transmission cables. Under different experimental conditions, the cable tension is recorded and the boundary data are selected to be curve-fitted. Based on the fitted results, a formula is presented to estimate the stress relaxation of cables to evaluate the assembly performance. Further experimental results show that the stress relaxation is mainly caused by cable creep and the assembly procedure. To remove the influence of the assembly procedure, a modified pre-stretching assembly method based on the stress relaxation theory is proposed and verification experiments are performed. Finally, the assembly performance is optimized using a cable-driven surgical robot as an example. This paper proposes a dual stretching method instead of the pre-stretching method to assemble the cable-driven system to improve its performance and prolong its service life.展开更多
This paper reflects the scopes of accelerator driven system (ADS) based nuclear energy, as a reliable source of electric energy generation, comparing to the other existing non-renewable and renewable sources. There ar...This paper reflects the scopes of accelerator driven system (ADS) based nuclear energy, as a reliable source of electric energy generation, comparing to the other existing non-renewable and renewable sources. There are different limitations in the use of every source of electric energy but in consideration of minimum environmental impact, exclusively inherently low greenhouse gas (GHG) emission, and also, high life time with maximum power production efficiency, nuclear would be the best choice. From this study it was found that several difficulties involved in the ADS based energy production, more specifically, difficulties regarding the target parameters, coding system, waste management, etc. Hence suggestions from this study points out that if it is possible to ensure more energy efficient production of enriched uranium, improved nuclear fuels and reactors that allow greater utilization, extended life times for nuclear power plants (NPPs) that reduce the need to build new facilities, improved coding system capable of minimizing the discrepancy between theoretical and experimental calculation of spallation products, improved data library with sufficiently available high energy nuclear data to perform a better coding analysis, and finally, considering the environmental safety if the disposal of the radioactive wastes could manage more effectively, nuclear energy would then play a significant role in minimizing future energy crisis worldwide as well as to save our loving green earth.展开更多
Using electric motors instead of diesel engines as the driving system for mining excavators can reduce the energy consumption and operating costs.However,pure electric-driven mining excavators are prone to unexpected ...Using electric motors instead of diesel engines as the driving system for mining excavators can reduce the energy consumption and operating costs.However,pure electric-driven mining excavators are prone to unexpected power outages in mines because of drastic changes in load power,leading to significant fluctuations in the power demand of the grid,which in turn affects production.To solve the above problem,a pure electric-driven mining hydraulic excavator based on electric-motor-driven swing platform and hydraulic pumps was used as the research object.Moreover,supercapacitors and DC/DC converter,as the energy storage system(ESS)adjust the output power of the grid and recover the braking kinetic energy of the swing platform.Subsequently,a novel integrated energy management strategy for a DC bus voltage predictive controller based on the power feedforward of fuzzy rules is proposed to run mining excavators efficiently and reliably.Specifically,the working modes of the ESS are determined by the DC bus voltage and state of charge(SOC)of the supercapacitor.Next,the output power of the supercapacitor and the DC bus voltage were controlled by adjusting the charging and discharging currents of the DC/DC converter using a predictive controller and fuzzy rules.In addition,a digital prototype of the excavator was verified using an original machine test.The performance of the different strategies and driven systems were analyzed using digital prototypes.The results showed that,compared with traditional excavators with diesel engines,the operational cost of the developed excavators was reduced by 54.02%.Compared to pure electric-driven excavators without an ESS,the peak power of the grid for the developed excavators was reduced by 10%.This study designed an integrated energy management strategy for a pure electric mining excavator that can regulate the power output of the grid and maintain the stability of the bus voltage and SOC of the ESS.展开更多
Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the ...Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.展开更多
Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This s...Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This study is based on developing a safer laser driven flyer plate prototype comprised of a laser initiator and a flyer plate subsystem that can be used with secondary explosives.System parameters were optimized to initiate the shock-to-detonation transition(SDT)of a secondary explosive based on the impact created by the flyer plate on the explosive surface.Rupture of the flyer was investigated at the mechanically weakened region located on the interface of these subsystems,where the product gases from the deflagration of the explosive provide the required energy.A bilayer energetic material was used,where the first layer consisted of a pyrotechnic component,zirconium potassium perchlorate(ZPP),for sustaining the ignition by the laser beam and the second layer consisted of an insensitive explosive,cyclotetramethylene-tetranitramine(HMX),for deflagration.A plexiglass interface was used to enfold the energetic material.The focal length of the laser beam from the diode was optimized to provide a homogeneous beam profile with maximum power at the surface of the ZPP.Closed bomb experiments were conducted in an internal volume of 10 cm^(3) for evaluation of performance.Dependency of the laser driven flyer plate system output on confinement,explosive density,and laser beam power were analyzed.Measurements using a high-speed camera resulted in a flyer velocity of 670±20 m/s that renders the prototype suitable as a laser detonator in applications,where controlled employment of explosives is critical.展开更多
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de...This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.展开更多
Methane(CH4),the predominant component of natural gas and shale gas,is regarded as a promising carbon feedstock for chemical synthesis[1].However,considering the extreme stability of CH4 molecules,it's quite chall...Methane(CH4),the predominant component of natural gas and shale gas,is regarded as a promising carbon feedstock for chemical synthesis[1].However,considering the extreme stability of CH4 molecules,it's quite challenging in simultaneously achieving high activity and selectivity for target products under mild conditions,especially when synthesizing high-value C2t chemicals such as ethanol[2].The conversion of methane to ethanol by photocatalysis is promising for achieving transformation under ambient temperature and pressure conditions.Currently,the apparent quantum efficiency(AQE)of solar-driven methane-to-ethanol conversion is generally below 0.5%[3,4].Furthermore,the stability of photocatalysts remains inadequate,offering substantial potential for further improvement.展开更多
The accelerated pace of natural and human-driven climate change presents profound challenges for Earth's systems.Oceans and ice sheets are critical regulators of climate systems,functioning as carbon sinks and the...The accelerated pace of natural and human-driven climate change presents profound challenges for Earth's systems.Oceans and ice sheets are critical regulators of climate systems,functioning as carbon sinks and thermal reservoirs.However,they are increasingly vulnerable to warming and greenhouse gas emissions.展开更多
Additive manufacturing(AM)technology has revolutionized engineering field by enabling the creation of intricate,high-performance structures that were once difficult or impossible to fabricate.This transformative techn...Additive manufacturing(AM)technology has revolutionized engineering field by enabling the creation of intricate,high-performance structures that were once difficult or impossible to fabricate.This transformative technology has particularly advanced the development of metamaterials-engineered materials whose unique properties arise from their structure rather than composition-unlocking immense potential in fields ranging from aerospace to biomedical engineering.展开更多
Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpret...Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpretability.A promising approach to overcoming these challenges is to embed domain knowledge into the ML pipeline,enhancing the model with additional pattern information.In this paper,we review the latest developments in PHM,encapsulated under the concept of Knowledge Driven Machine Learning(KDML).We propose a hierarchical framework to define KDML in PHM,which includes scientific paradigms,knowledge sources,knowledge representations,and knowledge embedding methods.Using this framework,we examine current research to demonstrate how various forms of knowledge can be integrated into the ML pipeline and provide roadmap to specific usage.Furthermore,we present several case studies that illustrate specific implementations of KDML in the PHM domain,including inductive experience,physical model,and signal processing.We analyze the improvements in generalization capability and interpretability that KDML can achieve.Finally,we discuss the challenges,potential applications,and usage recommendations of KDML in PHM,with a particular focus on the critical need for interpretability to ensure trustworthy deployment of artificial intelligence in PHM.展开更多
Acute lung injury(ALI)was characterized by excessive reactive oxygen species(ROS)levels and inflammatory response in the lung.Scavenging ROS could inhibit the excessive inflammatory response,further treating ALI.Herei...Acute lung injury(ALI)was characterized by excessive reactive oxygen species(ROS)levels and inflammatory response in the lung.Scavenging ROS could inhibit the excessive inflammatory response,further treating ALI.Herein,we designed a novel nanozyme(P@Co)comprised of polydopamine(PDA)nanoparticles(NPs)loading with ultra-small Co,combining with near infrared(NIR)irradiation,which could efficiently scavenge intracellular ROS and suppress inflammatory responses against ALI.For lipopolysaccharide(LPS)induced macrophages,P@Co+NIR presented excellent antioxidant and anti-inflammatory capacities through lowering intracellular ROS levels,decreasing the expression levels of interleukin-6(IL-6)and tumor necrosis factor-α(TNF-α)as well as inducing macrophage M2 directional polarization.Significantly,it displayed the outstanding activities of lowering acute lung inflammation,relieving diffuse alveolar damage,and up-regulating heat shock protein 70(HSP70)expression,resulting in synergistic enhanced ALI therapy effect.It offers a novel strategy for the clinical treatment of ROS related diseases.展开更多
Belt conveyors are extensively utilized in mining and power industries.In a typical coal mine conveyor system,coal is transported over distances exceeding 2 km,involving more than 20000 idlers,which far exceeds a reas...Belt conveyors are extensively utilized in mining and power industries.In a typical coal mine conveyor system,coal is transported over distances exceeding 2 km,involving more than 20000 idlers,which far exceeds a reasonable manual inspection capacity.Given that idlers typically have a lifespan of 1-2 years,there is an urgent need for a rapid,cost-effective,and intelligent safety monitoring system.However,current embedded systems face prohibitive replacement costs,while conventional monitoring technologies suffer from inefficiency at low rotational speeds and lack systematic structural optimization frameworks for diverse idler types and parameters.To address these challenges,this paper introduces an integrated,on-site detachable self-powered idler condition monitoring system(ICMS).This system combines energy harvesting based on the magnetic modulation technology with wireless condition monitoring capabilities.Specifically,it develops a data-driven model integrating convolutional neural networks(CNNs) with genetic algorithms(GAs).The conventional testing results show that the data-driven model not only significantly accelerates the parameter response time,but also achieves a prediction accuracy of 92.95%.The in-situ experiments conducted in coal mines demonstrate the system's reliability and monitoring functionality under both no-load and fullload conditions.This research provides an innovative self-powered condition monitoring solution and develops an efficient data-driven model,offering feasible online monitoring approaches for smart mine construction.展开更多
Social behaviors,including social support and mating,play a critical role in survival and reproduction.Animals must make adaptive social decisions based on internal states and external contexts[1].The sex of a social ...Social behaviors,including social support and mating,play a critical role in survival and reproduction.Animals must make adaptive social decisions based on internal states and external contexts[1].The sex of a social partner is a crucial factor that shapes social decision-making,as oppositesex interactions are vital for fulfilling reproductive needs,whereas same-sex interactions are essential for both collaborative support and competitive behaviors.Under normal circumstances,mice typically exhibit a variety of prosocial behaviors that strengthen social bonds within their groups.展开更多
The discovery of new superconducting materials,particularly those exhibiting high critical temperature(Tc),has been a vibrant area of study within the field of condensed matter physics.Conventional approaches primaril...The discovery of new superconducting materials,particularly those exhibiting high critical temperature(Tc),has been a vibrant area of study within the field of condensed matter physics.Conventional approaches primarily rely on physical intuition to search for potential superconductors within the existing databases.However,the known materials only scratch the surface of the extensive array of possibilities within the realm of materials.展开更多
Introduction Early cancer detection represents a critical evolution in healthcare,addressing a significant pain point in cancer treatment:the tendency for diagnoses to occur at advanced stages.Traditionally,many cance...Introduction Early cancer detection represents a critical evolution in healthcare,addressing a significant pain point in cancer treatment:the tendency for diagnoses to occur at advanced stages.Traditionally,many cancers are not identified until they have progressed to late stages,where treatment options become limited,less effective,and more costly.This late detection results in poorer prognoses,higher mortality rates,and increased healthcare costs.Without early detection tools like Fluorescence In Situ Hybridization(FISH),these challenges persist,leaving patients with fewer opportunities for successful outcomes.展开更多
Accurate identification and effective support of key blocks are crucial for ensuring the stability and safety of rock slopes.The number of structural planes and rock blocks were reduced in previous studies.This impair...Accurate identification and effective support of key blocks are crucial for ensuring the stability and safety of rock slopes.The number of structural planes and rock blocks were reduced in previous studies.This impairs the ability to characterize complex rock slopes accurately and inhibits the identification of key blocks.In this paper,a knowledge-data dually driven paradigm for accurate identification of key blocks in complex rock slopes is proposed.Our basic idea is to integrate key block theory into data-driven models based on finely characterizing structural features to identify key blocks in complex rock slopes accurately.The proposed novel paradigm consists of(1)representing rock slopes as graph-structured data based on complex systems theory,(2)identifying key nodes in the graph-structured data using graph deep learning,and(3)mapping the key nodes of graph-structured data to corresponding key blocks in the rock slope.Verification experiments and real-case applications are conducted by the proposed method.The verification results demonstrate excellent model performance,strong generalization capability,and effective classification results.Moreover,the real case application is conducted on the northern slope of the Yanqianshan Iron Mine.The results show that the proposed method can accurately identify key blocks in complex rock slopes,which can provide a decision-making basis and rational recommendations for effective support and instability prevention of rock slopes,thereby ensuring the stability of rock engineering and the safety of life and property.展开更多
Driven critical dynamics in quantum phase transitions holds significant theoretical importance,and also has practical applications in fast-developing quantum devices.While scaling corrections have been shown to play i...Driven critical dynamics in quantum phase transitions holds significant theoretical importance,and also has practical applications in fast-developing quantum devices.While scaling corrections have been shown to play important roles in fully characterizing equilibrium quantum criticality,their impact on nonequilibrium critical dynamics has not been extensively explored.In this work,we investigate the driven critical dynamics in a two-dimensional quantum Heisenberg model.We find that in this model the scaling corrections arising from both finite system size and finite driving rate must be incorporated into the finite-time scaling form in order to properly describe the nonequilibrium scaling behaviors.In addition,improved scaling relations are obtained from the expansion of the full scaling form.We numerically verify these scaling forms and improved scaling relations for different starting states using the nonequilibrium quantum Monte Carlo algorithm.展开更多
The 2025 National Energy Conference(hereinafter referred to as“the conference”)was held in Beijing on December 15,2024.The conference highlighted that“next year and the‘15th Five-Year Plan’period will be crucial ...The 2025 National Energy Conference(hereinafter referred to as“the conference”)was held in Beijing on December 15,2024.The conference highlighted that“next year and the‘15th Five-Year Plan’period will be crucial for accelerating the construction of a new energy system and promoting high-quality energy development and high-level security”.This marks the 16th national energy conference since the annual national energy conference was reinstated in January 2009 after a hiatus of over a decade.展开更多
文摘For studying the evolution of the density operator of the time-dependent dynamical system author presents here a general reformulation of subdynamics of driven system to obtain the efficient dynamical equation. The explicit formulas to calculate the creation operator and the destruction operator are given. A new intertwining relation is discussed, The method presented here can be useful to get the evolution formalism of the density operator for any system driven by an external field.
文摘One of the most important safety parameters taken into consideration during the design and actual operation of a nuclear reactor is its control rods adjustment to reach criticality. Concerning the conventional nuclear systems, the specification of their rods’ position through the utilization of neutronics codes, deterministic or stochastic, is considered nowadays trivial. However, innovative nuclear reactor concepts such as the Accelerator Driven Systems require sophisticated simulation capabilities of the stochastic neutronics codes since they combine high energy physics, for the spallation-produced neutrons, with classical nuclear technology. ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is an under development stochastic neutronics code, able to cover the broad neutron energy spectrum involved in ADS systems and therefore capable of simulating conventional and hybrid nuclear reactors and calculating important reactor parameters. In this work, ANETS’s reliability to calculate the effective multiplication factor for three core configurations containing control rods of the Kyoto University Critical Assembly, an operating ADS, is examined. The ANET results successfully compare with results produced by well-established stochastic codes such as MCNP6.1.
基金Supported by National Natural Science Foundation of China(Grant Nos.51290293,51520105006)National Key R&D Program of China(Grant No.2017YFC0110401)
文摘Soft cable-driven systems have been employed in many assembled mechanisms, such as industrial robots, parallel kinematic mechanism machines, medical devices, and humaniform hands. A pre-stretching process is necessary to guarantee the quality of cable-driven systems during the assembly process. However, the stress relaxation of cables becomes a critical concern during long-term operation. This study investigates the effects of non-uniform deformation and long-term stress relaxation of the driven cables owing to moving parts in the system. A simple closed-loop cable-driven system is built and an alternating load is applied to it to replicate the operation of transmission cables. Under different experimental conditions, the cable tension is recorded and the boundary data are selected to be curve-fitted. Based on the fitted results, a formula is presented to estimate the stress relaxation of cables to evaluate the assembly performance. Further experimental results show that the stress relaxation is mainly caused by cable creep and the assembly procedure. To remove the influence of the assembly procedure, a modified pre-stretching assembly method based on the stress relaxation theory is proposed and verification experiments are performed. Finally, the assembly performance is optimized using a cable-driven surgical robot as an example. This paper proposes a dual stretching method instead of the pre-stretching method to assemble the cable-driven system to improve its performance and prolong its service life.
文摘This paper reflects the scopes of accelerator driven system (ADS) based nuclear energy, as a reliable source of electric energy generation, comparing to the other existing non-renewable and renewable sources. There are different limitations in the use of every source of electric energy but in consideration of minimum environmental impact, exclusively inherently low greenhouse gas (GHG) emission, and also, high life time with maximum power production efficiency, nuclear would be the best choice. From this study it was found that several difficulties involved in the ADS based energy production, more specifically, difficulties regarding the target parameters, coding system, waste management, etc. Hence suggestions from this study points out that if it is possible to ensure more energy efficient production of enriched uranium, improved nuclear fuels and reactors that allow greater utilization, extended life times for nuclear power plants (NPPs) that reduce the need to build new facilities, improved coding system capable of minimizing the discrepancy between theoretical and experimental calculation of spallation products, improved data library with sufficiently available high energy nuclear data to perform a better coding analysis, and finally, considering the environmental safety if the disposal of the radioactive wastes could manage more effectively, nuclear energy would then play a significant role in minimizing future energy crisis worldwide as well as to save our loving green earth.
基金Supported by National Natural Science Foundation of ChinaShanxi Coalbased Low-Carbon Joint Fund(Grant No.U1910211)。
文摘Using electric motors instead of diesel engines as the driving system for mining excavators can reduce the energy consumption and operating costs.However,pure electric-driven mining excavators are prone to unexpected power outages in mines because of drastic changes in load power,leading to significant fluctuations in the power demand of the grid,which in turn affects production.To solve the above problem,a pure electric-driven mining hydraulic excavator based on electric-motor-driven swing platform and hydraulic pumps was used as the research object.Moreover,supercapacitors and DC/DC converter,as the energy storage system(ESS)adjust the output power of the grid and recover the braking kinetic energy of the swing platform.Subsequently,a novel integrated energy management strategy for a DC bus voltage predictive controller based on the power feedforward of fuzzy rules is proposed to run mining excavators efficiently and reliably.Specifically,the working modes of the ESS are determined by the DC bus voltage and state of charge(SOC)of the supercapacitor.Next,the output power of the supercapacitor and the DC bus voltage were controlled by adjusting the charging and discharging currents of the DC/DC converter using a predictive controller and fuzzy rules.In addition,a digital prototype of the excavator was verified using an original machine test.The performance of the different strategies and driven systems were analyzed using digital prototypes.The results showed that,compared with traditional excavators with diesel engines,the operational cost of the developed excavators was reduced by 54.02%.Compared to pure electric-driven excavators without an ESS,the peak power of the grid for the developed excavators was reduced by 10%.This study designed an integrated energy management strategy for a pure electric mining excavator that can regulate the power output of the grid and maintain the stability of the bus voltage and SOC of the ESS.
基金supported by the National Natural Science Foundation of China(62325304,U22B2046,62073079,62376029)the Jiangsu Provincial Scientific Research Center of Applied Mathematics(BK20233002)the China Postdoctoral Science Foundation(2023M730255,2024T171123)
文摘Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.
文摘Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This study is based on developing a safer laser driven flyer plate prototype comprised of a laser initiator and a flyer plate subsystem that can be used with secondary explosives.System parameters were optimized to initiate the shock-to-detonation transition(SDT)of a secondary explosive based on the impact created by the flyer plate on the explosive surface.Rupture of the flyer was investigated at the mechanically weakened region located on the interface of these subsystems,where the product gases from the deflagration of the explosive provide the required energy.A bilayer energetic material was used,where the first layer consisted of a pyrotechnic component,zirconium potassium perchlorate(ZPP),for sustaining the ignition by the laser beam and the second layer consisted of an insensitive explosive,cyclotetramethylene-tetranitramine(HMX),for deflagration.A plexiglass interface was used to enfold the energetic material.The focal length of the laser beam from the diode was optimized to provide a homogeneous beam profile with maximum power at the surface of the ZPP.Closed bomb experiments were conducted in an internal volume of 10 cm^(3) for evaluation of performance.Dependency of the laser driven flyer plate system output on confinement,explosive density,and laser beam power were analyzed.Measurements using a high-speed camera resulted in a flyer velocity of 670±20 m/s that renders the prototype suitable as a laser detonator in applications,where controlled employment of explosives is critical.
基金supported by Poongsan-KAIST Future Research Center Projectthe fund support provided by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Grant No.2023R1A2C2005661)。
文摘This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.
基金the support from the National Natural Science Foundation of China(52202306)Program from Guangdong Introducing Innovative and Entrepreneurial Teams(2019ZT08L101 and RCTDPT-2020-001)+1 种基金Shenzhen Key Laboratory of Eco-materials and Renewable Energy(ZDSYS20200922160400001)the Provincial Talent Plan of Guangdong(2023TB0012).
文摘Methane(CH4),the predominant component of natural gas and shale gas,is regarded as a promising carbon feedstock for chemical synthesis[1].However,considering the extreme stability of CH4 molecules,it's quite challenging in simultaneously achieving high activity and selectivity for target products under mild conditions,especially when synthesizing high-value C2t chemicals such as ethanol[2].The conversion of methane to ethanol by photocatalysis is promising for achieving transformation under ambient temperature and pressure conditions.Currently,the apparent quantum efficiency(AQE)of solar-driven methane-to-ethanol conversion is generally below 0.5%[3,4].Furthermore,the stability of photocatalysts remains inadequate,offering substantial potential for further improvement.
文摘The accelerated pace of natural and human-driven climate change presents profound challenges for Earth's systems.Oceans and ice sheets are critical regulators of climate systems,functioning as carbon sinks and thermal reservoirs.However,they are increasingly vulnerable to warming and greenhouse gas emissions.
文摘Additive manufacturing(AM)technology has revolutionized engineering field by enabling the creation of intricate,high-performance structures that were once difficult or impossible to fabricate.This transformative technology has particularly advanced the development of metamaterials-engineered materials whose unique properties arise from their structure rather than composition-unlocking immense potential in fields ranging from aerospace to biomedical engineering.
基金Supported in part by Science Center for Gas Turbine Project(Project No.P2022-DC-I-003-001)National Natural Science Foundation of China(Grant No.52275130).
文摘Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpretability.A promising approach to overcoming these challenges is to embed domain knowledge into the ML pipeline,enhancing the model with additional pattern information.In this paper,we review the latest developments in PHM,encapsulated under the concept of Knowledge Driven Machine Learning(KDML).We propose a hierarchical framework to define KDML in PHM,which includes scientific paradigms,knowledge sources,knowledge representations,and knowledge embedding methods.Using this framework,we examine current research to demonstrate how various forms of knowledge can be integrated into the ML pipeline and provide roadmap to specific usage.Furthermore,we present several case studies that illustrate specific implementations of KDML in the PHM domain,including inductive experience,physical model,and signal processing.We analyze the improvements in generalization capability and interpretability that KDML can achieve.Finally,we discuss the challenges,potential applications,and usage recommendations of KDML in PHM,with a particular focus on the critical need for interpretability to ensure trustworthy deployment of artificial intelligence in PHM.
基金financially supported by the Key Research&Development Program of Guangxi(No.GuiKeAB22080088)the Joint Project on Regional High-Incidence Diseases Research of Guangxi Natural Science Foundation(No.2023GXNSFDA026023)+3 种基金the Natural Science Foundation of Guangxi(No.2023JJA140322)the National Natural Science Foundation of China(No.82360372)the High-level Medical Expert Training Program of Guangxi“139 Plan Funding(No.G202003010)the Medical Appropriate Technology Development and Popularization and Application Project of Guangxi(No.S2020099)。
文摘Acute lung injury(ALI)was characterized by excessive reactive oxygen species(ROS)levels and inflammatory response in the lung.Scavenging ROS could inhibit the excessive inflammatory response,further treating ALI.Herein,we designed a novel nanozyme(P@Co)comprised of polydopamine(PDA)nanoparticles(NPs)loading with ultra-small Co,combining with near infrared(NIR)irradiation,which could efficiently scavenge intracellular ROS and suppress inflammatory responses against ALI.For lipopolysaccharide(LPS)induced macrophages,P@Co+NIR presented excellent antioxidant and anti-inflammatory capacities through lowering intracellular ROS levels,decreasing the expression levels of interleukin-6(IL-6)and tumor necrosis factor-α(TNF-α)as well as inducing macrophage M2 directional polarization.Significantly,it displayed the outstanding activities of lowering acute lung inflammation,relieving diffuse alveolar damage,and up-regulating heat shock protein 70(HSP70)expression,resulting in synergistic enhanced ALI therapy effect.It offers a novel strategy for the clinical treatment of ROS related diseases.
基金supported by the National Natural Science Foundation of China(Nos.12172248,12302022,12021002,and 12132010)the Tianjin Research Program of Application Foundation and Advanced Technology of China(No.23JCZDJC00950)。
文摘Belt conveyors are extensively utilized in mining and power industries.In a typical coal mine conveyor system,coal is transported over distances exceeding 2 km,involving more than 20000 idlers,which far exceeds a reasonable manual inspection capacity.Given that idlers typically have a lifespan of 1-2 years,there is an urgent need for a rapid,cost-effective,and intelligent safety monitoring system.However,current embedded systems face prohibitive replacement costs,while conventional monitoring technologies suffer from inefficiency at low rotational speeds and lack systematic structural optimization frameworks for diverse idler types and parameters.To address these challenges,this paper introduces an integrated,on-site detachable self-powered idler condition monitoring system(ICMS).This system combines energy harvesting based on the magnetic modulation technology with wireless condition monitoring capabilities.Specifically,it develops a data-driven model integrating convolutional neural networks(CNNs) with genetic algorithms(GAs).The conventional testing results show that the data-driven model not only significantly accelerates the parameter response time,but also achieves a prediction accuracy of 92.95%.The in-situ experiments conducted in coal mines demonstrate the system's reliability and monitoring functionality under both no-load and fullload conditions.This research provides an innovative self-powered condition monitoring solution and develops an efficient data-driven model,offering feasible online monitoring approaches for smart mine construction.
基金supported by grants from the National Natural Science Foundation of China(32471074 and 32200825)the STI2030-Major Projects(2021ZD0203000 and 2021ZD0203002)+1 种基金the Shandong Provincial Taishan Scholars Project(tsqn202306174)the Shandong Provincial Natural Science Foundation(ZR2022QC173).
文摘Social behaviors,including social support and mating,play a critical role in survival and reproduction.Animals must make adaptive social decisions based on internal states and external contexts[1].The sex of a social partner is a crucial factor that shapes social decision-making,as oppositesex interactions are vital for fulfilling reproductive needs,whereas same-sex interactions are essential for both collaborative support and competitive behaviors.Under normal circumstances,mice typically exhibit a variety of prosocial behaviors that strengthen social bonds within their groups.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.62476278,12434009,and 12204533)the National Key R&D Program of China(Grant No.2024YFA1408601)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302402)。
文摘The discovery of new superconducting materials,particularly those exhibiting high critical temperature(Tc),has been a vibrant area of study within the field of condensed matter physics.Conventional approaches primarily rely on physical intuition to search for potential superconductors within the existing databases.However,the known materials only scratch the surface of the extensive array of possibilities within the realm of materials.
基金supported by Guangzhou Development Zone Science and Technology(2021GH10,2020GH10,2023GH02)the University of Macao(MYRG2022-00271-FST)The Science and Technology Development Fund(FDCT)of Macao(0032/2022/A).
文摘Introduction Early cancer detection represents a critical evolution in healthcare,addressing a significant pain point in cancer treatment:the tendency for diagnoses to occur at advanced stages.Traditionally,many cancers are not identified until they have progressed to late stages,where treatment options become limited,less effective,and more costly.This late detection results in poorer prognoses,higher mortality rates,and increased healthcare costs.Without early detection tools like Fluorescence In Situ Hybridization(FISH),these challenges persist,leaving patients with fewer opportunities for successful outcomes.
基金supported by the National Natural Science Foundation of China(Grant Nos.42277161,42230709).
文摘Accurate identification and effective support of key blocks are crucial for ensuring the stability and safety of rock slopes.The number of structural planes and rock blocks were reduced in previous studies.This impairs the ability to characterize complex rock slopes accurately and inhibits the identification of key blocks.In this paper,a knowledge-data dually driven paradigm for accurate identification of key blocks in complex rock slopes is proposed.Our basic idea is to integrate key block theory into data-driven models based on finely characterizing structural features to identify key blocks in complex rock slopes accurately.The proposed novel paradigm consists of(1)representing rock slopes as graph-structured data based on complex systems theory,(2)identifying key nodes in the graph-structured data using graph deep learning,and(3)mapping the key nodes of graph-structured data to corresponding key blocks in the rock slope.Verification experiments and real-case applications are conducted by the proposed method.The verification results demonstrate excellent model performance,strong generalization capability,and effective classification results.Moreover,the real case application is conducted on the northern slope of the Yanqianshan Iron Mine.The results show that the proposed method can accurately identify key blocks in complex rock slopes,which can provide a decision-making basis and rational recommendations for effective support and instability prevention of rock slopes,thereby ensuring the stability of rock engineering and the safety of life and property.
基金supported by the National Natural Science Foundation of China(Grant Nos.12104109,12222515,and 12075324)the Science and Technology Projects in Guangzhou(Grant No.2024A04J2092)the Science and Technology Projects in Guangdong Province(Grant No.211193863020).
文摘Driven critical dynamics in quantum phase transitions holds significant theoretical importance,and also has practical applications in fast-developing quantum devices.While scaling corrections have been shown to play important roles in fully characterizing equilibrium quantum criticality,their impact on nonequilibrium critical dynamics has not been extensively explored.In this work,we investigate the driven critical dynamics in a two-dimensional quantum Heisenberg model.We find that in this model the scaling corrections arising from both finite system size and finite driving rate must be incorporated into the finite-time scaling form in order to properly describe the nonequilibrium scaling behaviors.In addition,improved scaling relations are obtained from the expansion of the full scaling form.We numerically verify these scaling forms and improved scaling relations for different starting states using the nonequilibrium quantum Monte Carlo algorithm.
文摘The 2025 National Energy Conference(hereinafter referred to as“the conference”)was held in Beijing on December 15,2024.The conference highlighted that“next year and the‘15th Five-Year Plan’period will be crucial for accelerating the construction of a new energy system and promoting high-quality energy development and high-level security”.This marks the 16th national energy conference since the annual national energy conference was reinstated in January 2009 after a hiatus of over a decade.