For studying the evolution of the density operator of the time-dependent dynamical system author presents here a general reformulation of subdynamics of driven system to obtain the efficient dynamical equation. The ex...For studying the evolution of the density operator of the time-dependent dynamical system author presents here a general reformulation of subdynamics of driven system to obtain the efficient dynamical equation. The explicit formulas to calculate the creation operator and the destruction operator are given. A new intertwining relation is discussed, The method presented here can be useful to get the evolution formalism of the density operator for any system driven by an external field.展开更多
One of the most important safety parameters taken into consideration during the design and actual operation of a nuclear reactor is its control rods adjustment to reach criticality. Concerning the conventional nuclear...One of the most important safety parameters taken into consideration during the design and actual operation of a nuclear reactor is its control rods adjustment to reach criticality. Concerning the conventional nuclear systems, the specification of their rods’ position through the utilization of neutronics codes, deterministic or stochastic, is considered nowadays trivial. However, innovative nuclear reactor concepts such as the Accelerator Driven Systems require sophisticated simulation capabilities of the stochastic neutronics codes since they combine high energy physics, for the spallation-produced neutrons, with classical nuclear technology. ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is an under development stochastic neutronics code, able to cover the broad neutron energy spectrum involved in ADS systems and therefore capable of simulating conventional and hybrid nuclear reactors and calculating important reactor parameters. In this work, ANETS’s reliability to calculate the effective multiplication factor for three core configurations containing control rods of the Kyoto University Critical Assembly, an operating ADS, is examined. The ANET results successfully compare with results produced by well-established stochastic codes such as MCNP6.1.展开更多
Soft cable-driven systems have been employed in many assembled mechanisms, such as industrial robots, parallel kinematic mechanism machines, medical devices, and humaniform hands. A pre-stretching process is necessary...Soft cable-driven systems have been employed in many assembled mechanisms, such as industrial robots, parallel kinematic mechanism machines, medical devices, and humaniform hands. A pre-stretching process is necessary to guarantee the quality of cable-driven systems during the assembly process. However, the stress relaxation of cables becomes a critical concern during long-term operation. This study investigates the effects of non-uniform deformation and long-term stress relaxation of the driven cables owing to moving parts in the system. A simple closed-loop cable-driven system is built and an alternating load is applied to it to replicate the operation of transmission cables. Under different experimental conditions, the cable tension is recorded and the boundary data are selected to be curve-fitted. Based on the fitted results, a formula is presented to estimate the stress relaxation of cables to evaluate the assembly performance. Further experimental results show that the stress relaxation is mainly caused by cable creep and the assembly procedure. To remove the influence of the assembly procedure, a modified pre-stretching assembly method based on the stress relaxation theory is proposed and verification experiments are performed. Finally, the assembly performance is optimized using a cable-driven surgical robot as an example. This paper proposes a dual stretching method instead of the pre-stretching method to assemble the cable-driven system to improve its performance and prolong its service life.展开更多
This paper reflects the scopes of accelerator driven system (ADS) based nuclear energy, as a reliable source of electric energy generation, comparing to the other existing non-renewable and renewable sources. There ar...This paper reflects the scopes of accelerator driven system (ADS) based nuclear energy, as a reliable source of electric energy generation, comparing to the other existing non-renewable and renewable sources. There are different limitations in the use of every source of electric energy but in consideration of minimum environmental impact, exclusively inherently low greenhouse gas (GHG) emission, and also, high life time with maximum power production efficiency, nuclear would be the best choice. From this study it was found that several difficulties involved in the ADS based energy production, more specifically, difficulties regarding the target parameters, coding system, waste management, etc. Hence suggestions from this study points out that if it is possible to ensure more energy efficient production of enriched uranium, improved nuclear fuels and reactors that allow greater utilization, extended life times for nuclear power plants (NPPs) that reduce the need to build new facilities, improved coding system capable of minimizing the discrepancy between theoretical and experimental calculation of spallation products, improved data library with sufficiently available high energy nuclear data to perform a better coding analysis, and finally, considering the environmental safety if the disposal of the radioactive wastes could manage more effectively, nuclear energy would then play a significant role in minimizing future energy crisis worldwide as well as to save our loving green earth.展开更多
Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the ...Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.展开更多
Using electric motors instead of diesel engines as the driving system for mining excavators can reduce the energy consumption and operating costs.However,pure electric-driven mining excavators are prone to unexpected ...Using electric motors instead of diesel engines as the driving system for mining excavators can reduce the energy consumption and operating costs.However,pure electric-driven mining excavators are prone to unexpected power outages in mines because of drastic changes in load power,leading to significant fluctuations in the power demand of the grid,which in turn affects production.To solve the above problem,a pure electric-driven mining hydraulic excavator based on electric-motor-driven swing platform and hydraulic pumps was used as the research object.Moreover,supercapacitors and DC/DC converter,as the energy storage system(ESS)adjust the output power of the grid and recover the braking kinetic energy of the swing platform.Subsequently,a novel integrated energy management strategy for a DC bus voltage predictive controller based on the power feedforward of fuzzy rules is proposed to run mining excavators efficiently and reliably.Specifically,the working modes of the ESS are determined by the DC bus voltage and state of charge(SOC)of the supercapacitor.Next,the output power of the supercapacitor and the DC bus voltage were controlled by adjusting the charging and discharging currents of the DC/DC converter using a predictive controller and fuzzy rules.In addition,a digital prototype of the excavator was verified using an original machine test.The performance of the different strategies and driven systems were analyzed using digital prototypes.The results showed that,compared with traditional excavators with diesel engines,the operational cost of the developed excavators was reduced by 54.02%.Compared to pure electric-driven excavators without an ESS,the peak power of the grid for the developed excavators was reduced by 10%.This study designed an integrated energy management strategy for a pure electric mining excavator that can regulate the power output of the grid and maintain the stability of the bus voltage and SOC of the ESS.展开更多
High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging ...High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).展开更多
China’s accelerator driven subcritical system(ADS)development has made significant progress during the past decade.With the successful construction and operation of the international prototype of ADS superconducting ...China’s accelerator driven subcritical system(ADS)development has made significant progress during the past decade.With the successful construction and operation of the international prototype of ADS superconducting proton linac,the lead-based critical/subcritical zero-power facility VENUS-II and the comprehensive thermal-hydraulic and material test facilities for LBE(lead bismuth eutectic)coolant,China is playing a pivotal role in advanced steady-state operations toward the next step,the ADS project.The China initiative Accelerator Driven System(CiADS)is the next facility for China’s ADS program,aimed to bridge the gaps between the ADS experiment and the LBE cooled subcritical reactor.The total power of the CiADS will reach 10 MW.The CiADS engineering design was approved by Chinese government in 2018.Since then,the CiADS project has been fully transferred to the construction application stage.The subcritical reactor is an important part of the whole CiADS project.Currently,a pool-type LBE cooled fast reactor is chosen as the subcritical reactor of the CiADS.Physical and thermal experiments and software development for LBE coolant were conducted simultaneously to support the design and construction of the CiADS LBEcooled subcritical reactor.Therefore,it is necessary to introduce the efforts made in China in the LBE-cooled fast reactor to provide certain supporting data and reference solutions for further design and development for ADS.Thus,the roadmap of China’s ADS,the development process of the CiADS,the important design of the current CiADS subcritical reactor,and the efforts to build the LBE-cooled fast reactor are presented.展开更多
A two-dimensional binary driven disk system embedded by impermeable tilted plates is investigated through nonequilibrium computer simulations. It is well known that a binary disk system in which two particle species a...A two-dimensional binary driven disk system embedded by impermeable tilted plates is investigated through nonequilibrium computer simulations. It is well known that a binary disk system in which two particle species are driven in opposite directions exhibits jammed, phase separated, disordered, and laning states. The presence of tilted plates can not only advance the formation of laning phase, but also effectively stabilize laning phase by suppressing massively drifting behavior perpendicular to the driving force. The lane width distribution can be controlled easily by the interplate distance. The collective behavior of driven particles in laning phase is guided by the funnel-shaped confinements constituted by the neighboring tilted plates. Our results provide the important clues for investigating the mechanism of laning formation in driven system.展开更多
This paper proposes a sub-critical nuclear energy system driven by fusion neutron source, FDS, which can be used to transmute long-lived radioactive wastes and to produce fissile nuclear fuel as a way for early applic...This paper proposes a sub-critical nuclear energy system driven by fusion neutron source, FDS, which can be used to transmute long-lived radioactive wastes and to produce fissile nuclear fuel as a way for early application of fusion technology. The necessity and feasibility to develop that system in China are illustrated on the basis of prediction of the demand of energy source in the first half of the 21th century, the status of current fission energy supply and the progress in fusion technology in the world. The characteristics of fusion neutron driver and the potential for transmutation of long-lived nuclear wastes and breeding of fissile nuclear fuel in a blanket are analyzed. A scenario of development steps is proposed.展开更多
The numerical analysis for the matching of the core driven compression system in a double bypass variable cycle engine was presented in this paper.The system consists of a one-stage-core driven fan stage(CDFS),an inne...The numerical analysis for the matching of the core driven compression system in a double bypass variable cycle engine was presented in this paper.The system consists of a one-stage-core driven fan stage(CDFS),an inner bypass duct and a five-stage high pressure compressor(HPC),providing two basic operating modes: the single bypass mode and the double bypass mode.Variable vanes are necessary to realize the mode switch of the system.The correct matching in the double bypass mode requires a proper combination of the mass flow,total pressure ratio and blade speed.The work capacity of the system decreases in the double bypass mode and the pressure ratio tends to decrease more for the CDFS and the front stages of the HPC.The overall system efficiency is higher in the double bypass mode.The radial distributions of aerodynamic parameters are similar in different modes.The notable redistribution of mass flow downstream the CDFS in the single bypass mode leads to strong radial flows and additional mixing losses.The absolute flow angles into the inner bypass increase for the inner span and decrease for the outer span when the system is switched from the single bypass mode to the double bypass mode.展开更多
We present a weak-coupling theory of semiclassical periodically driven two-level systems. The explicit analytical approximating solution is shown to reproduce highly accurately the exact results well beyond the regime...We present a weak-coupling theory of semiclassical periodically driven two-level systems. The explicit analytical approximating solution is shown to reproduce highly accurately the exact results well beyond the regime of the rotating-wave approximation.展开更多
The concept of the liquid Li17Pb83 and Helium gas dual-cooled Fuel Breeding Blanket (FBB) for the Fusion-Driven sub-critical System (FDS) is presented and analyzed. Taking self-sustaining tritium (TBR >1.05) and an...The concept of the liquid Li17Pb83 and Helium gas dual-cooled Fuel Breeding Blanket (FBB) for the Fusion-Driven sub-critical System (FDS) is presented and analyzed. Taking self-sustaining tritium (TBR >1.05) and annual output of 100 kg or more fissile 239Pu (FBR > 0.238) as objective parameters, and based on the three-dimensional Monte Carlo neutron-photon transport code MCNP/4A, a neutronics-optimizated calculation of different cases was carried out and the concept is proved feasible. In addition, the total breeding ratio ( BR = TBR + FBR ) is listed corresponding to different cases.展开更多
The electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration.However,due to the particularity of its parallel structure,the effective ut...The electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration.However,due to the particularity of its parallel structure,the effective utilization rate of energy is not high,which has become an important obstacle to its practical application.To research the power consumption characteristics of robot mobile system is beneficial to speed up it toward practicability.Based on the configuration and walking modes of robot,the mathematical model of the power consumption of mobile system is set up.In view of the tripod gait is often selected for the six-legged robots,the simplified power consumption model of mobile system under the tripod gait is established by means of reducing the dimension of the robot’s statically indeterminate problem and constructing the equal force distribution.Then,the power consumption of robot mobile system is solved under different working conditions.The variable tendencies of the power consumption of robot mobile system are respectively obtained with changes in the rotational angles of hip joint and knee joint,body height,and span.The articulated rotational zones and the ranges of body height and span are determined under the lowest power consumption.According to the walking experiments of prototype,the variable tendencies of the average power consumption of robot mobile system are respectively acquired with changes in duty ratio,body height,and span.Then,the feasibility and correctness of theory analysis are verified in the power consumption of robot mobile system.The proposed analysis method in this paper can provide a reference on the lower power research of the large-load-ratio multi-legged robots.展开更多
The hybrid beamforming is a promising technology for the millimeter wave MIMO system,which provides high spectrum efficiency,high data rate transmission,and a good balance between transmission performance and hardware...The hybrid beamforming is a promising technology for the millimeter wave MIMO system,which provides high spectrum efficiency,high data rate transmission,and a good balance between transmission performance and hardware complexity.The most existing beamforming systems transmit multiple streams by formulating multiple orthogonal beams.However,the Neural network Hybrid Beamforming(NHB)adopts a totally different strategy,which combines multiple streams into one and transmits by employing a high-order non-orthogonal modulation strategy.Driven by the Deep Learning(DL)hybrid beamforming,in this work,we propose a DL-driven nonorthogonal hybrid beamforming for the single-user multiple streams scenario.We first analyze the beamforming strategy of NHB and prove it with better Bit Error Rate(BER)performance than the orthogonal hybrid beamforming even with the optimal power allocation.Inspired by the NHB,we propose a new DL-driven beamforming scheme to simulate the NHB behavior,which avoids time-consuming neural network training and achieves better BERs than traditional hybrid beamforming.Moreover,our simulation results demonstrate that the DL-driven nonorthogonal beamforming outperforms its traditional orthogonal beamforming counterpart in the presence of subconnected schemes and imperfect Channel State Information(CSI).展开更多
The band conveyer driven by linear friction is a new device. It can reduce drivesize and conveyor belt tensity, and increase delivery capacity. It has feasibility and usability particularly in altering the original co...The band conveyer driven by linear friction is a new device. It can reduce drivesize and conveyor belt tensity, and increase delivery capacity. It has feasibility and usability particularly in altering the original conveyer and solving the problems of capacity insufficiency. The technology has brought certain difficulty for engineers, because it has certaindifficulty both in theory and in calculation. Therefore, Visual Basic 6.0 programming technology was used to develop a set of 'the design system of the band conveyer driven bylinear friction.' After being proved in the field, it can completely meet the demands of thedesign. This paper introduced its main theory or basis in design, so as to provide relatedtechnical support to this kind of project.展开更多
The arm driven inverted pendulum system is a highly nonlinear model, muhivariable and absolutely unstable dynamic system so it is very difficult to obtain exact mathematical model and balance the inverted pendulum wit...The arm driven inverted pendulum system is a highly nonlinear model, muhivariable and absolutely unstable dynamic system so it is very difficult to obtain exact mathematical model and balance the inverted pendulum with variable position of the ann. To solve this problem, this paper presents a mathematical model for arm driven inverted pendulum in mid-position configuration and an adaptive gain scheduling linear quadratic regulator control method for the stabilizing the inverted pendulum. The proposed controllers for arm driven inverted pendulum are simulated using MATLAB-SIMULINK and implemented on an experiment system using PIC 18F4431 mieroeontroller. The result of experiment system shows the control performance to be very good in a wide range stabilization of the arm position.展开更多
A new method of switched reluctance wind power generation position sensorless based on DFNN by FEA was proposed, Through current and magnetic linkage to get the angle of SRG rotor position, the nonlinear mapping of cu...A new method of switched reluctance wind power generation position sensorless based on DFNN by FEA was proposed, Through current and magnetic linkage to get the angle of SRG rotor position, the nonlinear mapping of cur- rent-magnetic linkage-angle was built, By training these sample data from FEA, the angle of SRG rotor position was replaced by the output of DFNN to achieve SRG position sensorless. Simulation results show that the error between actual rotor position and estimate rotor position is small; SRG can commutate with great accuracy; and the output voltage of SRG wind power system under variable wind speed is essentially constant.展开更多
Software development is a complex and difficult task that requires the investment of sufficient resources and carries major risk of failure. Model Driven Engineering (MDE) focuses on creating software models and autom...Software development is a complex and difficult task that requires the investment of sufficient resources and carries major risk of failure. Model Driven Engineering (MDE) focuses on creating software models and automating code generation from the models. Model Driven Software Development (MDSD) offers significantly more effective approaches. These approaches improve the way of building software. Model driven approaches partially increase developer productivity, decrease the cost of software construction, improve software reusability, and make software more maintainable. This paper investigates the methods where Model Driven Software Development is integrated with Software Product Line (SPL). This SLR has been conducted to identify 71 research works published since 2014. We have collected 18 tools, 14 techniques and 17 languages used for MDSD for SPL. We analyze which technique is suitable for SPL. We compare the techniques on the basis of features provided by these tools to understand the better-quality results.展开更多
Owing to the advantages of wire-driven parallel manipulator, a new wire-driven parallel suspension system for airplane model in low-speed wind tunnel is constructed, and the methods to measure and calculate the aerody...Owing to the advantages of wire-driven parallel manipulator, a new wire-driven parallel suspension system for airplane model in low-speed wind tunnel is constructed, and the methods to measure and calculate the aerodynamic parameters of the airplane model are studied. In detail, a static model of the wire-driven parallel suspension is analyzed, a mathematical model for describ- ing the aerodynamic loads exerted on the scale model is constructed and a calculation method for obtaining the aerodynamic parameters of the model by measuring the tension of wires is presented. Moreover, the measurement system for wire tension and its corresponding data acquisition system are designed and built. Thereafter, the wire-driven parallel suspension system is placed in an open return circuit low-speed wind tunnel for wind tunnel tests to acquire data of each wire tension when the airplane model is at different attitudes and different wind speeds. A group of curves about the parameters for aerodynamic load exerted on the airplane model are obtained at different wind speeds after the acquired data are analyzed. The research results validate the feasibility of using a wire-driven parallel manipulator as the suspension system for low-speed wind ttmnel tests.展开更多
文摘For studying the evolution of the density operator of the time-dependent dynamical system author presents here a general reformulation of subdynamics of driven system to obtain the efficient dynamical equation. The explicit formulas to calculate the creation operator and the destruction operator are given. A new intertwining relation is discussed, The method presented here can be useful to get the evolution formalism of the density operator for any system driven by an external field.
文摘One of the most important safety parameters taken into consideration during the design and actual operation of a nuclear reactor is its control rods adjustment to reach criticality. Concerning the conventional nuclear systems, the specification of their rods’ position through the utilization of neutronics codes, deterministic or stochastic, is considered nowadays trivial. However, innovative nuclear reactor concepts such as the Accelerator Driven Systems require sophisticated simulation capabilities of the stochastic neutronics codes since they combine high energy physics, for the spallation-produced neutrons, with classical nuclear technology. ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is an under development stochastic neutronics code, able to cover the broad neutron energy spectrum involved in ADS systems and therefore capable of simulating conventional and hybrid nuclear reactors and calculating important reactor parameters. In this work, ANETS’s reliability to calculate the effective multiplication factor for three core configurations containing control rods of the Kyoto University Critical Assembly, an operating ADS, is examined. The ANET results successfully compare with results produced by well-established stochastic codes such as MCNP6.1.
基金Supported by National Natural Science Foundation of China(Grant Nos.51290293,51520105006)National Key R&D Program of China(Grant No.2017YFC0110401)
文摘Soft cable-driven systems have been employed in many assembled mechanisms, such as industrial robots, parallel kinematic mechanism machines, medical devices, and humaniform hands. A pre-stretching process is necessary to guarantee the quality of cable-driven systems during the assembly process. However, the stress relaxation of cables becomes a critical concern during long-term operation. This study investigates the effects of non-uniform deformation and long-term stress relaxation of the driven cables owing to moving parts in the system. A simple closed-loop cable-driven system is built and an alternating load is applied to it to replicate the operation of transmission cables. Under different experimental conditions, the cable tension is recorded and the boundary data are selected to be curve-fitted. Based on the fitted results, a formula is presented to estimate the stress relaxation of cables to evaluate the assembly performance. Further experimental results show that the stress relaxation is mainly caused by cable creep and the assembly procedure. To remove the influence of the assembly procedure, a modified pre-stretching assembly method based on the stress relaxation theory is proposed and verification experiments are performed. Finally, the assembly performance is optimized using a cable-driven surgical robot as an example. This paper proposes a dual stretching method instead of the pre-stretching method to assemble the cable-driven system to improve its performance and prolong its service life.
文摘This paper reflects the scopes of accelerator driven system (ADS) based nuclear energy, as a reliable source of electric energy generation, comparing to the other existing non-renewable and renewable sources. There are different limitations in the use of every source of electric energy but in consideration of minimum environmental impact, exclusively inherently low greenhouse gas (GHG) emission, and also, high life time with maximum power production efficiency, nuclear would be the best choice. From this study it was found that several difficulties involved in the ADS based energy production, more specifically, difficulties regarding the target parameters, coding system, waste management, etc. Hence suggestions from this study points out that if it is possible to ensure more energy efficient production of enriched uranium, improved nuclear fuels and reactors that allow greater utilization, extended life times for nuclear power plants (NPPs) that reduce the need to build new facilities, improved coding system capable of minimizing the discrepancy between theoretical and experimental calculation of spallation products, improved data library with sufficiently available high energy nuclear data to perform a better coding analysis, and finally, considering the environmental safety if the disposal of the radioactive wastes could manage more effectively, nuclear energy would then play a significant role in minimizing future energy crisis worldwide as well as to save our loving green earth.
基金supported by the National Natural Science Foundation of China(62325304,U22B2046,62073079,62376029)the Jiangsu Provincial Scientific Research Center of Applied Mathematics(BK20233002)the China Postdoctoral Science Foundation(2023M730255,2024T171123)
文摘Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.
基金Supported by National Natural Science Foundation of ChinaShanxi Coalbased Low-Carbon Joint Fund(Grant No.U1910211)。
文摘Using electric motors instead of diesel engines as the driving system for mining excavators can reduce the energy consumption and operating costs.However,pure electric-driven mining excavators are prone to unexpected power outages in mines because of drastic changes in load power,leading to significant fluctuations in the power demand of the grid,which in turn affects production.To solve the above problem,a pure electric-driven mining hydraulic excavator based on electric-motor-driven swing platform and hydraulic pumps was used as the research object.Moreover,supercapacitors and DC/DC converter,as the energy storage system(ESS)adjust the output power of the grid and recover the braking kinetic energy of the swing platform.Subsequently,a novel integrated energy management strategy for a DC bus voltage predictive controller based on the power feedforward of fuzzy rules is proposed to run mining excavators efficiently and reliably.Specifically,the working modes of the ESS are determined by the DC bus voltage and state of charge(SOC)of the supercapacitor.Next,the output power of the supercapacitor and the DC bus voltage were controlled by adjusting the charging and discharging currents of the DC/DC converter using a predictive controller and fuzzy rules.In addition,a digital prototype of the excavator was verified using an original machine test.The performance of the different strategies and driven systems were analyzed using digital prototypes.The results showed that,compared with traditional excavators with diesel engines,the operational cost of the developed excavators was reduced by 54.02%.Compared to pure electric-driven excavators without an ESS,the peak power of the grid for the developed excavators was reduced by 10%.This study designed an integrated energy management strategy for a pure electric mining excavator that can regulate the power output of the grid and maintain the stability of the bus voltage and SOC of the ESS.
文摘High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).
基金the Special Fund of Shanghai Municipal Economic and Informatization Commission(GYQJ-2018-2-02)。
文摘China’s accelerator driven subcritical system(ADS)development has made significant progress during the past decade.With the successful construction and operation of the international prototype of ADS superconducting proton linac,the lead-based critical/subcritical zero-power facility VENUS-II and the comprehensive thermal-hydraulic and material test facilities for LBE(lead bismuth eutectic)coolant,China is playing a pivotal role in advanced steady-state operations toward the next step,the ADS project.The China initiative Accelerator Driven System(CiADS)is the next facility for China’s ADS program,aimed to bridge the gaps between the ADS experiment and the LBE cooled subcritical reactor.The total power of the CiADS will reach 10 MW.The CiADS engineering design was approved by Chinese government in 2018.Since then,the CiADS project has been fully transferred to the construction application stage.The subcritical reactor is an important part of the whole CiADS project.Currently,a pool-type LBE cooled fast reactor is chosen as the subcritical reactor of the CiADS.Physical and thermal experiments and software development for LBE coolant were conducted simultaneously to support the design and construction of the CiADS LBEcooled subcritical reactor.Therefore,it is necessary to introduce the efforts made in China in the LBE-cooled fast reactor to provide certain supporting data and reference solutions for further design and development for ADS.Thus,the roadmap of China’s ADS,the development process of the CiADS,the important design of the current CiADS subcritical reactor,and the efforts to build the LBE-cooled fast reactor are presented.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21873082,21674082,and 21674096)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY19B040006)
文摘A two-dimensional binary driven disk system embedded by impermeable tilted plates is investigated through nonequilibrium computer simulations. It is well known that a binary disk system in which two particle species are driven in opposite directions exhibits jammed, phase separated, disordered, and laning states. The presence of tilted plates can not only advance the formation of laning phase, but also effectively stabilize laning phase by suppressing massively drifting behavior perpendicular to the driving force. The lane width distribution can be controlled easily by the interplate distance. The collective behavior of driven particles in laning phase is guided by the funnel-shaped confinements constituted by the neighboring tilted plates. Our results provide the important clues for investigating the mechanism of laning formation in driven system.
文摘This paper proposes a sub-critical nuclear energy system driven by fusion neutron source, FDS, which can be used to transmute long-lived radioactive wastes and to produce fissile nuclear fuel as a way for early application of fusion technology. The necessity and feasibility to develop that system in China are illustrated on the basis of prediction of the demand of energy source in the first half of the 21th century, the status of current fission energy supply and the progress in fusion technology in the world. The characteristics of fusion neutron driver and the potential for transmutation of long-lived nuclear wastes and breeding of fissile nuclear fuel in a blanket are analyzed. A scenario of development steps is proposed.
文摘The numerical analysis for the matching of the core driven compression system in a double bypass variable cycle engine was presented in this paper.The system consists of a one-stage-core driven fan stage(CDFS),an inner bypass duct and a five-stage high pressure compressor(HPC),providing two basic operating modes: the single bypass mode and the double bypass mode.Variable vanes are necessary to realize the mode switch of the system.The correct matching in the double bypass mode requires a proper combination of the mass flow,total pressure ratio and blade speed.The work capacity of the system decreases in the double bypass mode and the pressure ratio tends to decrease more for the CDFS and the front stages of the HPC.The overall system efficiency is higher in the double bypass mode.The radial distributions of aerodynamic parameters are similar in different modes.The notable redistribution of mass flow downstream the CDFS in the single bypass mode leads to strong radial flows and additional mixing losses.The absolute flow angles into the inner bypass increase for the inner span and decrease for the outer span when the system is switched from the single bypass mode to the double bypass mode.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10575040, 90503010, 60478029, and 10634060, and by the State Key Basic Research Program under Grant No. 2005CB724508
文摘We present a weak-coupling theory of semiclassical periodically driven two-level systems. The explicit analytical approximating solution is shown to reproduce highly accurately the exact results well beyond the regime of the rotating-wave approximation.
基金This work was supported by the Chinese Academy of Sciences and the National Natural Science Foundation of China No.10175068.
文摘The concept of the liquid Li17Pb83 and Helium gas dual-cooled Fuel Breeding Blanket (FBB) for the Fusion-Driven sub-critical System (FDS) is presented and analyzed. Taking self-sustaining tritium (TBR >1.05) and annual output of 100 kg or more fissile 239Pu (FBR > 0.238) as objective parameters, and based on the three-dimensional Monte Carlo neutron-photon transport code MCNP/4A, a neutronics-optimizated calculation of different cases was carried out and the concept is proved feasible. In addition, the total breeding ratio ( BR = TBR + FBR ) is listed corresponding to different cases.
基金National Natural Science Foundation of China(Grant No.51505335)Industry University Cooperation Collaborative Education Project of the Department of Higher Education of the Ministry of Education of China(Grant No.202102517001)Doctor Startup Projects of TUTE of China(Grant No.KYQD1806)。
文摘The electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration.However,due to the particularity of its parallel structure,the effective utilization rate of energy is not high,which has become an important obstacle to its practical application.To research the power consumption characteristics of robot mobile system is beneficial to speed up it toward practicability.Based on the configuration and walking modes of robot,the mathematical model of the power consumption of mobile system is set up.In view of the tripod gait is often selected for the six-legged robots,the simplified power consumption model of mobile system under the tripod gait is established by means of reducing the dimension of the robot’s statically indeterminate problem and constructing the equal force distribution.Then,the power consumption of robot mobile system is solved under different working conditions.The variable tendencies of the power consumption of robot mobile system are respectively obtained with changes in the rotational angles of hip joint and knee joint,body height,and span.The articulated rotational zones and the ranges of body height and span are determined under the lowest power consumption.According to the walking experiments of prototype,the variable tendencies of the average power consumption of robot mobile system are respectively acquired with changes in duty ratio,body height,and span.Then,the feasibility and correctness of theory analysis are verified in the power consumption of robot mobile system.The proposed analysis method in this paper can provide a reference on the lower power research of the large-load-ratio multi-legged robots.
基金This work is supported by Sichuan Science and Technology Program(NO.2021YFG0127).
文摘The hybrid beamforming is a promising technology for the millimeter wave MIMO system,which provides high spectrum efficiency,high data rate transmission,and a good balance between transmission performance and hardware complexity.The most existing beamforming systems transmit multiple streams by formulating multiple orthogonal beams.However,the Neural network Hybrid Beamforming(NHB)adopts a totally different strategy,which combines multiple streams into one and transmits by employing a high-order non-orthogonal modulation strategy.Driven by the Deep Learning(DL)hybrid beamforming,in this work,we propose a DL-driven nonorthogonal hybrid beamforming for the single-user multiple streams scenario.We first analyze the beamforming strategy of NHB and prove it with better Bit Error Rate(BER)performance than the orthogonal hybrid beamforming even with the optimal power allocation.Inspired by the NHB,we propose a new DL-driven beamforming scheme to simulate the NHB behavior,which avoids time-consuming neural network training and achieves better BERs than traditional hybrid beamforming.Moreover,our simulation results demonstrate that the DL-driven nonorthogonal beamforming outperforms its traditional orthogonal beamforming counterpart in the presence of subconnected schemes and imperfect Channel State Information(CSI).
基金Supported by the Beijing Important Constructive Subject of Processing and Storage of Agriculture Products ( PXM2009-014207-078172 )
文摘The band conveyer driven by linear friction is a new device. It can reduce drivesize and conveyor belt tensity, and increase delivery capacity. It has feasibility and usability particularly in altering the original conveyer and solving the problems of capacity insufficiency. The technology has brought certain difficulty for engineers, because it has certaindifficulty both in theory and in calculation. Therefore, Visual Basic 6.0 programming technology was used to develop a set of 'the design system of the band conveyer driven bylinear friction.' After being proved in the field, it can completely meet the demands of thedesign. This paper introduced its main theory or basis in design, so as to provide relatedtechnical support to this kind of project.
文摘The arm driven inverted pendulum system is a highly nonlinear model, muhivariable and absolutely unstable dynamic system so it is very difficult to obtain exact mathematical model and balance the inverted pendulum with variable position of the ann. To solve this problem, this paper presents a mathematical model for arm driven inverted pendulum in mid-position configuration and an adaptive gain scheduling linear quadratic regulator control method for the stabilizing the inverted pendulum. The proposed controllers for arm driven inverted pendulum are simulated using MATLAB-SIMULINK and implemented on an experiment system using PIC 18F4431 mieroeontroller. The result of experiment system shows the control performance to be very good in a wide range stabilization of the arm position.
基金Supported by the National Natural Science Foundation of China (50977080) the Science & Technology Department Project of Hunan Province (2010F J3116) the Education Department Project of Hunan Province ( 10A 114)
文摘A new method of switched reluctance wind power generation position sensorless based on DFNN by FEA was proposed, Through current and magnetic linkage to get the angle of SRG rotor position, the nonlinear mapping of cur- rent-magnetic linkage-angle was built, By training these sample data from FEA, the angle of SRG rotor position was replaced by the output of DFNN to achieve SRG position sensorless. Simulation results show that the error between actual rotor position and estimate rotor position is small; SRG can commutate with great accuracy; and the output voltage of SRG wind power system under variable wind speed is essentially constant.
文摘Software development is a complex and difficult task that requires the investment of sufficient resources and carries major risk of failure. Model Driven Engineering (MDE) focuses on creating software models and automating code generation from the models. Model Driven Software Development (MDSD) offers significantly more effective approaches. These approaches improve the way of building software. Model driven approaches partially increase developer productivity, decrease the cost of software construction, improve software reusability, and make software more maintainable. This paper investigates the methods where Model Driven Software Development is integrated with Software Product Line (SPL). This SLR has been conducted to identify 71 research works published since 2014. We have collected 18 tools, 14 techniques and 17 languages used for MDSD for SPL. We analyze which technique is suitable for SPL. We compare the techniques on the basis of features provided by these tools to understand the better-quality results.
基金National Natural Science Foundation of China (50475099)
文摘Owing to the advantages of wire-driven parallel manipulator, a new wire-driven parallel suspension system for airplane model in low-speed wind tunnel is constructed, and the methods to measure and calculate the aerodynamic parameters of the airplane model are studied. In detail, a static model of the wire-driven parallel suspension is analyzed, a mathematical model for describ- ing the aerodynamic loads exerted on the scale model is constructed and a calculation method for obtaining the aerodynamic parameters of the model by measuring the tension of wires is presented. Moreover, the measurement system for wire tension and its corresponding data acquisition system are designed and built. Thereafter, the wire-driven parallel suspension system is placed in an open return circuit low-speed wind tunnel for wind tunnel tests to acquire data of each wire tension when the airplane model is at different attitudes and different wind speeds. A group of curves about the parameters for aerodynamic load exerted on the airplane model are obtained at different wind speeds after the acquired data are analyzed. The research results validate the feasibility of using a wire-driven parallel manipulator as the suspension system for low-speed wind ttmnel tests.