期刊文献+
共找到435,483篇文章
< 1 2 250 >
每页显示 20 50 100
Robust Multiobjective and Multidisciplinary Design Optimization of Electrical Drive Systems 被引量:3
1
作者 Gang Lei Tianshi Wang +1 位作者 Jianguo Zhu Youguang Guo 《CES Transactions on Electrical Machines and Systems》 2018年第4期409-416,共8页
Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.Th... Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.This paper aims to present efficient system-level multiobjective optimization methods for the multidisciplinary design optimization of electrical drive systems.From the perspective of quality control,deterministic and robust approaches will be investigated for the development of the optimization models for the proposed methods.Meanwhile,two approximation methods,Kriging model and Taylor expansion are employed to decrease the computation/simulation cost.To illustrate the advantages of the proposed methods,a drive system with a permanent magnet synchronous motor driven by a field oriented control system is investigated.Deterministic and robust Pareto optimal solutions are presented and compared in terms of several steady-state and dynamic performances(like average torque and speed overshoot)of the drive system.The robust multiobjective optimization method can produce optimal Pareto solutions with high manufacturing quality for the drive system. 展开更多
关键词 Electrical drive systems electrical machines multidisciplinary design optimization multiobjective optimization robust design optimization
在线阅读 下载PDF
System-L evel Efficiency Optimization of a Linear Induction Motor Drive System 被引量:7
2
作者 Wei Xu Dong Hu +1 位作者 Gang Lei Jianguo Zhu 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第3期285-291,共7页
Linear induction motors are superior to rotary induction motors in direct drive systems because they can generate direct forward thrust force independent of mechanical transmission.However,due to the large air gap and... Linear induction motors are superior to rotary induction motors in direct drive systems because they can generate direct forward thrust force independent of mechanical transmission.However,due to the large air gap and cut-open magnetic circuit,their efficiency and power factor are quite low,which limit their application in high power drive systems.To attempt this challenge,this work presents a system-level optimization method for a single-sided linear induction motor drive system.Not only the motor but also the control system is included in the analysis.A system-level optimization method is employed to gain optimal steady-state and dynamic performances.To validate the effectiveness of the proposed optimization method,experimental results on a linear induction motor drive are presented and discussed. 展开更多
关键词 Efficiency optimization control linear inductor motor system loss model system-level optimization.
在线阅读 下载PDF
Optimization design of two-stage amplification micro-drive system without additional motion based on particle swarm optimization algorithm
3
作者 Manzhi Yang Kaiyang Wei +4 位作者 Chuanwei Zhang Dandan Liu Yizhi Yang Feiyan Han Shuanfeng Zhao 《Visual Computing for Industry,Biomedicine,and Art》 EI 2022年第1期340-351,共12页
With the increasing requirements of precision mechanical systems in electronic packaging,ultra-precision machining,biomedicine and other high-tech fields,it is necessary to study a precision two-stage amplification mi... With the increasing requirements of precision mechanical systems in electronic packaging,ultra-precision machining,biomedicine and other high-tech fields,it is necessary to study a precision two-stage amplification micro-drive system that can safely provide high precision and a large amplification ratio.In view of the disadvantages of the current two-stage amplification and micro-drive system,such as poor security,low motion accuracy and limited amplification ratio,an optimization design of a precise symmetrical two-stage amplification micro-drive system was completed in this study,and its related performance was studied.Based on the guiding principle of the flexure hinge,a two-stage amplification micro-drive mechanism with no parasitic motion or non-motion direction force was designed.In addition,the structure optimization design of the mechanism was completed using the particle swarm optimization algorithm,which increased the amplification ratio of the mechanism from 5 to 18 times.A precise symmetrical two-stage amplification system was designed using a piezoelectric ceramic actuator and two-stage amplification micro-drive mechanism as the micro-driver and actuator,respectively.The driving,strength,and motion performances of the system were subsequently studied.The results showed that the driving linearity of the system was high,the strength satisfied the design requirements,the motion amplification ratio was high and the motion accuracy was high(relative error was 5.31%).The research in this study can promote the optimization of micro-drive systems. 展开更多
关键词 Particle swarm optimization Micro-drive mechanism Two-stage amplification optimization design Performance of guidance
在线阅读 下载PDF
A Review of AI-Driven Optimization Technologies for Distributed Photovoltaic Power Generation Systems
4
作者 Nanting Li 《Journal of Electronic Research and Application》 2025年第5期132-142,共11页
The rapid development of artificial intelligence(AI)technology,particularly breakthroughs in branches such as deep learning,reinforcement learning,and federated learning,has provided powerful technical tools for addre... The rapid development of artificial intelligence(AI)technology,particularly breakthroughs in branches such as deep learning,reinforcement learning,and federated learning,has provided powerful technical tools for addressing these core bottlenecks.This paper provides a systematic review of the research background,technological evolution,core systems,key challenges,and future directions of AI technology in the field of distributed photovoltaic power generation system optimization.At the same time,this paper analyzes the current technical bottlenecks and cutting-edge response strategies.Finally,it explores fusion innovation directions such as quantum-classical hybrid algorithms and neural symbolic systems,as well as business model expansion paths such as carbon finance integration and community energy autonomy. 展开更多
关键词 AI optimization Distributed photovoltaic systems Virtual power plant coordination Community energy autonomy
在线阅读 下载PDF
Dynamic Multi-Objective Gannet Optimization(DMGO):An Adaptive Algorithm for Efficient Data Replication in Cloud Systems
5
作者 P.William Ved Prakash Mishra +3 位作者 Osamah Ibrahim Khalaf Arvind Mukundan Yogeesh N Riya Karmakar 《Computers, Materials & Continua》 2025年第9期5133-5156,共24页
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat... Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance. 展开更多
关键词 Cloud computing data replication dynamic optimization multi-objective optimization gannet optimization algorithm adaptive algorithms resource efficiency SCALABILITY latency reduction energy-efficient computing
在线阅读 下载PDF
Optimization and Scheduling of Green Power System Consumption Based on Multi-Device Coordination and Multi-Objective Optimization
6
作者 Liang Tang Hongwei Wang +2 位作者 Xinyuan Zhu Jiying Liu Kaiyue Li 《Energy Engineering》 2025年第6期2257-2289,共33页
The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of... The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels. 展开更多
关键词 Multi-objective optimization scheduling model multi-objective particle swarm optimization algorithm consumption capacity of green power wind and solar curtailment coordinated optimization of multiple devices
在线阅读 下载PDF
Max-Min Security Rate Optimization in STAR-RIS Aided Secure MIMO Systems
7
作者 HUANG Jinhao MIAO Ling +1 位作者 SUO Long ZHOU Wen 《电讯技术》 北大核心 2025年第10期1657-1664,共8页
The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-inpu... The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-input multiple-output(MIMO)communication system with a STAR-RIS,a base station(BS),an eavesdropper,and multiple users,the system security rate is studied.A joint design of the power allocation at the transmitter and phase shift matrices for reflection and transmission at the STAR-RIS is conducted,in order to maximize the worst achievable security data rate(ASDR).Since the problem is nonconvex and hence challenging,a particle swarm optimization(PSO)based algorithm is developed to tackle the problem.Both the cases of continuous and discrete phase shift matrices at the STAR-RIS are considered.Simulation results demonstrate the effectiveness of the proposed algorithm and shows the benefits of using STAR-RIS in MIMO mutliuser systems. 展开更多
关键词 multiple-input multiple-output(MIMO) reflecting reconfigurable intelligent surface(STAR-RIS) particle swarm optimization(PSO) max-min security rate optimization
在线阅读 下载PDF
Convex Optimization-Based Model Predictive Control for Mars Ascent Vehicle Guidance System
8
作者 Kun Li Yanning Guo +2 位作者 Guangtao Ran Yueyong Lyu Guangfu Ma 《IEEE/CAA Journal of Automatica Sinica》 2025年第10期2159-2161,共3页
Dear Editor,This letter proposes a convex optimization-based model predictive control(MPC)autonomous guidance method for the Mars ascent vehicle(MAV).We use the modified chebyshev-picard iteration(MCPI)to solve optimi... Dear Editor,This letter proposes a convex optimization-based model predictive control(MPC)autonomous guidance method for the Mars ascent vehicle(MAV).We use the modified chebyshev-picard iteration(MCPI)to solve optimization sub-problems within the MPC framework,eliminating the dynamic constraints in solving the optimal control problem and enhancing the convergence performance of the algorithm.Moreover,this method can repeatedly perform trajectory optimization calculations at a high frequency,achieving timely correction of the optimal control command.Numerical simulations demonstrate that the method can satisfy the requirements of rapid computation and reliability for the MAV system when considering uncertainties and perturbations. 展开更多
关键词 guidance method optimal control problem model predictive mars ascent vehicle mav we Mars ascent vehicle convex optimization trajectory optimization enhancing convergence performance
在线阅读 下载PDF
A Sine and Wormhole Energy Whale Optimization Algorithm for Optimal FACTS Placement in Uncertain Wind Integrated Scenario Based Power Systems
9
作者 Sunilkumar P.Agrawal Pradeep Jangir +4 位作者 Arpita Sundaram B.Pandya Anil Parmar Ahmad O.Hourani Bhargavi Indrajit Trivedi 《Journal of Bionic Engineering》 2025年第4期2115-2134,共20页
The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACT... The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACTS)devices which include Thyristor-Controlled Series Compensator(TCSC),Thyristor-Controlled Phase Shifter(TCPS),and Static Var Compensator(SVC).SWEWOA expands Whale Optimization Algorithm(WOA)through the integration of sine and wormhole energy features thus improving exploration and exploitation capabilities for efficient convergence in complex non-linear OPF problems.A performance evaluation of SWEWOA takes place on the IEEE-30 bus test system through static and dynamic loading scenarios where it demonstrates better results than five contemporary algorithms:Adaptive Chaotic WOA(ACWOA),WOA,Chaotic WOA(CWOA),Sine Cosine Algorithm Differential Evolution(SCADE),and Hybrid Grey Wolf Optimization(HGWO).The research shows that SWEWOA delivers superior generation cost reduction than other algorithms by reaching a minimum of 0.9%better performance.SWEWOA demonstrates superior power loss performance by achieving(P_(loss,min))at the lowest level compared to all other tested algorithms which leads to better system energy efficiency.The dynamic loading performance of SWEWOA leads to a 4.38%reduction in gross costs which proves its capability to handle different operating conditions.The algorithm achieves top performance in Friedman Rank Test(FRT)assessments through multiple performance metrics which verifies its consistent reliability and strong stability during changing power demands.The repeated simulations show that SWEWOA generates mean costs(C_(gen,min))and mean power loss values(P_(loss,min))with small deviations which indicate its capability to maintain cost-effective solutions in each simulation run.SWEWOA demonstrates great potential as an advanced optimization solution for power system operations through the results presented in this study. 展开更多
关键词 Sine and wormhole energy whale optimization algorithm(SWEWOA) Optimal power flow(OPF) Wind integration FACTS devices Power system optimization
在线阅读 下载PDF
Model-Based System Multidisciplinary Design Optimization for Preliminary Design of a Blended Wing-Body Underwater Glider
10
作者 WANG Zhi-long LI Jing-lu +3 位作者 WANG Peng DONG Hua-chao WANG Xin-jing WEN Zhi-wen 《China Ocean Engineering》 2025年第4期755-767,共13页
Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while... Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while mini-mizing energy consumption.However,enhancing gliding performance is challenging due to the complex system design and limited design experience.To address this challenge,this paper introduces a model-based,multidisciplinary system design optimization method for BWBUGs at the conceptual design stage.First,a model-based,multidisciplinary co-simulation design framework is established to evaluate both system-level and disciplinary indices of BWBUG performance.A data-driven,many-objective multidisciplinary optimization is subsequently employed to explore the design space,yielding 32 Pareto optimal solutions.Finally,a model-based physical system simulation,which represents the design with the largest hyper-volume contribution among the 32 final designs,is established.Its gliding perfor-mance,validated by component behavior,lays the groundwork for constructing the entire system’s digital prototype.In conclusion,this model-based,multidisciplinary design optimization method effectively generates design schemes for innovative underwater vehicles,facilitating the development of digital prototypes. 展开更多
关键词 model-based design multidisciplinary design optimization data-driven optimization blended-wingbody underwater glider(BWBUG) physical system simulation
在线阅读 下载PDF
Multi-Neighborhood Enhanced Harris Hawks Optimization for Efficient Allocation of Hybrid Renewable Energy System with Cost and Emission Reduction
11
作者 Elaine Yi-Ling Wu 《Computer Modeling in Engineering & Sciences》 2025年第4期1185-1214,共30页
Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex syst... Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex system interactions and multiple operational constraints.This study develops a novel Multi-Neighborhood Enhanced Harris Hawks Optimization(MNEHHO)algorithm to address the allocation of HRES components.The proposed approach integrates key technical parameters,including charge-discharge efficiency,storage device configurations,and renewable energy fraction.We formulate a comprehensive mathematical model that simultaneously minimizes levelized energy costs and pollutant emissions while maintaining system reliability.The MNEHHO algorithm employs multiple neighborhood structures to enhance solution diversity and exploration capabilities.The model’s effectiveness is validated through case studies across four distinct institutional energy demand profiles.Results demonstrate that our approach successfully generates practically feasible HRES configurations while achieving significant reductions in costs and emissions compared to conventional methods.The enhanced search mechanisms of MNEHHO show superior performance in avoiding local optima and achieving consistent solutions.Experimental results demonstrate concrete improvements in solution quality(up to 46% improvement in objective value)and computational efficiency(average coefficient of variance of 24%-27%)across diverse institutional settings.This confirms the robustness and scalability of our method under various operational scenarios,providing a reliable framework for solving renewable energy allocation problems. 展开更多
关键词 Hybrid renewable energy system multi-neighborhood enhanced Harris Hawks optimization costemission optimization renewable energy allocation problem reliability
在线阅读 下载PDF
Data-driven framework based on machine learning and optimization algorithms to predict oxide-zeolite-based composite and reaction conditions for syngas-to-olefin conversion
12
作者 Mansurbek Urol ugli Abdullaev Woosong Jeon +5 位作者 Yun Kang Juhwan Noh Jung Ho Shin Hee-Joon Chun Hyun Woo Kim Yong Tae Kim 《Chinese Journal of Catalysis》 2025年第7期211-227,共17页
Bifunctional oxide-zeolite-based composites(OXZEO)have emerged as promising materials for the direct conversion of syngas to olefins.However,experimental screening and optimization of reaction parameters remain resour... Bifunctional oxide-zeolite-based composites(OXZEO)have emerged as promising materials for the direct conversion of syngas to olefins.However,experimental screening and optimization of reaction parameters remain resource-intensive.To address this challenge,we implemented a three-stage framework integrating machine learning,Bayesian optimization,and experimental validation,utilizing a carefully curated dataset from the literature.Our ensemble-tree model(R^(2)>0.87)identified Zn-Zr and Cu-Mg binary mixed oxides as the most effective OXZEO systems,with their light olefin space-time yields confirmed by physically mixing with HSAPO-34 through experimental validation.Density functional theory calculations further elucidated the activity trends between Zn-Zr and Cu-Mg mixed oxides.Among 16 catalyst and reaction condition descriptors,the oxide/zeolite ratio,reaction temperature,and pressure emerged as the most significant factors.This interpretable,data-driven framework offers a versatile approach that can be applied to other catalytic processes,providing a powerful tool for experiment design and optimization in catalysis. 展开更多
关键词 Syngas-to-olefin Oxide-zeolite-based composite Machine learning Bayesian optimization Catalyst and reaction engineering discovery Reaction condition optimization Density functional theory
在线阅读 下载PDF
Parameter matching and optimization of hybrid excavator swing system
13
作者 Chao SHEN Jianxin ZHU +2 位作者 Jian CHEN Saibai LI Lixin YI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第2期138-150,共13页
In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of mul... In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of multiple energy sources can be realized,while the swing braking energy can be recovered and used by means of hydraulic energy.Additionally,considering the system constraints and comprehensive optimization conditions of energy efficiency and dynamic characteristics,an improved multi-objective particle swarm optimization(IMOPSO)combined with an adaptive grid is proposed for parameter optimization of the SSEHS.Meanwhile,a parameter rule-based control strategy is designed,which can switch to a reasonable working mode according to the real-time state.Finally,a physical prototype of a 50-t excavator and its AMESim model is established.The semi-simulation and semi-experiment results demonstrate that compared with a conventional swing system,energy consumption under the 90°rotation condition could be reduced by about 51.4%in the SSEHS before parameter optimization,while the energy-saving efficiency is improved by another 13.2%after parameter optimization.This confirms the effectiveness of the SSEHS and the IMOPSO parameter optimization method proposed in this paper.The IMOPSO algorithm is universal and can be used for parameter matching and optimization of hybrid power systems. 展开更多
关键词 Hybrid system Energy regeneration Swing braking energy Parameter optimization Improved multi-objective particle swarm optimization(IMOPSO) Adaptive grid
原文传递
Second-Life Battery Energy Storage System Capacity Planning and Power Dispatch via Model-Free Adaptive Control-Embedded Heuristic Optimization
14
作者 Chuan Yuan Chang Liu +5 位作者 Shijun Chen Weiting Xu Jing Gou Ke Xu Zhengbo Li Youbo Liu 《Energy Engineering》 2025年第9期3573-3593,共21页
The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain deg... The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches. 展开更多
关键词 Second-life battery energy storage systems model-free adaptive voltage control bilevel optimization framework heterogeneous battery degradation model heuristic capacity configuration optimization
在线阅读 下载PDF
A Novel Cascaded TID-FOI Controller Tuned with Walrus Optimization Algorithm for Frequency Regulation of Deregulated Power System
15
作者 Geetanjali Dei Deepak Kumar Gupta +3 位作者 Binod Kumar Sahu Amitkumar V.Jha Bhargav Appasani Nicu Bizon 《Energy Engineering》 2025年第8期3399-3431,共33页
This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation techno... This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework. 展开更多
关键词 Integral time multiplied by absolute error(ITAE) load frequency control(LFC) particle swarm optimization(PSO) tilted integral derivative controller(TID) independent system operator(ISO) walrus optimization algorithm(WaOA) proportional integral derivative controller(PID)
在线阅读 下载PDF
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System 被引量:1
16
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
Topology,Size,and Shape Optimization in Civil Engineering Structures:A Review
17
作者 Ahmed Manguri Hogr Hassan +1 位作者 Najmadeen Saeed Robert Jankowski 《Computer Modeling in Engineering & Sciences》 2025年第2期933-971,共39页
The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal de... The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal design,by considering material performance,cost,and structural safety.The design approaches aim to reduce the built environment’s energy use and carbon emissions.This comprehensive review examines optimization techniques,including size,shape,topology,and multi-objective approaches,by integrating these methodologies.The trends and advancements that contribute to developing more efficient,cost-effective,and reliable structural designs were identified.The review also discusses emerging technologies,such as machine learning applications with different optimization techniques.Optimization of truss,frame,tensegrity,reinforced concrete,origami,pantographic,and adaptive structures are covered and discussed.Optimization techniques are explained,including metaheuristics,genetic algorithm,particle swarm,ant-colony,harmony search algorithm,and their applications with mentioned structure types.Linear and non-linear structures,including geometric and material nonlinearity,are distinguished.The role of optimization in active structures,structural design,seismic design,form-finding,and structural control is taken into account,and the most recent techniques and advancements are mentioned. 展开更多
关键词 Structural optimization topology optimization size optimization shape optimization multi-objective optimization
在线阅读 下载PDF
Physics and data-driven alternative optimization enabled ultra-low-sampling single-pixel imaging 被引量:2
18
作者 Yifei Zhang Yingxin Li +5 位作者 Zonghao Liu Fei Wang Guohai Situ Mu Ku Chen Haoqiang Wang Zihan Geng 《Advanced Photonics Nexus》 2025年第3期55-66,共12页
Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ul... Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ultra-low sampling rates.We develop an alternative optimization with physics and a data-driven diffusion network(APD-Net).It features alternative optimization driven by the learned task-agnostic natural image prior and the task-specific physics prior.During the training stage,APD-Net harnesses the power of diffusion models to capture data-driven statistics of natural signals.In the inference stage,the physics prior is introduced as corrective guidance to ensure consistency between the physics imaging model and the natural image probability distribution.Through alternative optimization,APD-Net reconstructs data-efficient,high-fidelity images that are statistically and physically compliant.To accelerate reconstruction,initializing images with the inverse SPI physical model reduces the need for reconstruction inference from 100 to 30 steps.Through both numerical simulations and real prototype experiments,APD-Net achieves high-quality,full-color reconstructions of complex natural images at a low sampling rate of 1%.In addition,APD-Net’s tuning-free nature ensures robustness across various imaging setups and sampling rates.Our research offers a broadly applicable approach for various applications,including but not limited to medical imaging and industrial inspection. 展开更多
关键词 single-pixel imaging deep learning alternative optimization
在线阅读 下载PDF
Damping Collaborative Optimization of Five-suspensions for Driver-seat-cab Coupled System 被引量:4
19
作者 ZHAO Leilei ZHOU Changcheng YU Yuewei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期773-780,共8页
Both the seat and cab system of truck play a vital role in ride comfort.The damping matching methods of the two systems are studied separately at present.However,the driver,seat,and cab system are one inseparable whol... Both the seat and cab system of truck play a vital role in ride comfort.The damping matching methods of the two systems are studied separately at present.However,the driver,seat,and cab system are one inseparable whole.In order to further improve ride comfort,the seat suspension is regarded as the fifth suspension of the cab,a new idea of "Five-suspensions" is proposed.Based on this idea,a 4 degree-of-freedom driver-seat-cab coupled system model is presented.Using the tested cab suspensions excitations as inputs and seat acceleration response as compared output,the simulation model is built.Taking optimal ride comfort as target,a new method of damping collaborative optimization for Five-suspensions is proposed.With a practical example of seat and cab system,the damping parameters are optimized and validated by simulation and bench test.The results show the seat vertical frequency-weighted RMS acceleration values tested for the un-optimized and optimized Five-suspensions are 0.50 m/s~2 and 0.39 m/s~2,respectively,with a decrease by 22.0%,which proves the model and method proposed are correct and reliable.The idea of "Five-suspensions" and the method proposed provide a reference for achieving global optimal damping matching of seat suspension and cab suspensions. 展开更多
关键词 vehicle engineering seat and cab system Five-suspensions damping collaborative optimization
在线阅读 下载PDF
Joint spatial optimization of UAV relay system for emergency communications 被引量:1
20
作者 MA Yue QIN Danyang +1 位作者 CHEN Yuhong TANG Huapeng 《黑龙江大学工程学报(中英俄文)》 2025年第2期41-48,87,2,共10页
The rapid evolution of Fifth-Generation(5G)networks and the strategic development of Sixth-Generation(6G)technologies have significantly advanced the implementation of air-ground integrated networks with seamless cove... The rapid evolution of Fifth-Generation(5G)networks and the strategic development of Sixth-Generation(6G)technologies have significantly advanced the implementation of air-ground integrated networks with seamless coverage.Unmanned Aerial Vehicles(UAVs),serving as high-mobility aerial platforms,are extensively utilized to enhance coverage in long-distance emergency communication scenarios.The resource-constrained communication environments in emergencies by classifying UAVs into swarm UAVs and relay UAVs as aerial communication nodes is inversitgated.A horizontal deployment strategy for swarm UAVs is formulated through K-means clustering algorithm optimization,while a vertical deployment scheme is established using convex optimization methods.The minimum-path trajectory planning for relay UAVs is optimized via the Particle Swarm Optimization(PSO)algorithm,enhancing communication reliability between UAV swarms and terrestrial base stations.A three-dimensional heterogeneous network architecture is realized by modeling spatial multi-hop relay links.Experimental results demonstrate that the proposed joint UAV relay optimization framework outperforms conventional algorithms in both coverage performance and relay capability during video stream transmission,achieving significant improvements in coverage enhancement and relay efficiency.This work provides technical foundations for constructing high-reliability air-ground cooperative systems in emergency communications. 展开更多
关键词 emergency communication UAV-assisted networks relay system spatial deployment trajectory optimization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部