A down-scaled operational oceanographic system is developed for the coastal waters of Korea using a re- gional ocean modeling system (ROMS). The operational oceanographic modeling system consists of at- mospheric an...A down-scaled operational oceanographic system is developed for the coastal waters of Korea using a re- gional ocean modeling system (ROMS). The operational oceanographic modeling system consists of at- mospheric and hydrodynamic models. The hydrodynamic model, ROMS, is coupled with wave, sediment transport, and water quality modules. The system forecasts the predicted results twice a day on a 72 h basis, including sea surface elevation, currents, temperature, salinity, storm surge height, and wave information for the coastal waters of Korea. The predicted results are exported to the web-GIS-based coastal informa- tion system for real-time dissemination to the public and validation with real-time monitoring data using visualization technologies. The ROMS is two-way coupled with a simulating waves nearshore model, SWAN, for the hydrodynamics and waves, nested with the meteorological model, WRE for the atmospheric surface forcing, and externally nested with the eutrophication model, CE-QUAL-ICM, for the water quality. The op- erational model, ROMS, was calibrated with the tidal surface observed with a tide-gage and verified with current data observed by bottom-mounted ADCP or AWAC near the coastal waters of Korea. To validate the predicted results, we used real-time monitoring data derived from remote buoy system, HF-radar, and geostationary ocean color imager (GOCI). This down-scaled operational coastal forecasting system will be used as a part of the Korea operational oceanographic system (KOOS) with other operational oceanographic systems.展开更多
Although the coding modes of H.264 coded video would be changed by the transcoding process of spatial resolution reduction, there exists good correlation in prediction modes and prediction directions between input and...Although the coding modes of H.264 coded video would be changed by the transcoding process of spatial resolution reduction, there exists good correlation in prediction modes and prediction directions between input and output video. In this paper, we first introduce a new spatial resolution reduction transcoding architecture of intra coded frames where the distortion can be calculated directly in compression domain. We then propose a fast mode decision algorithm in which only a small part of rate distortion optimization (RDO) calculation is needed for mode decision. For 4×4 luma block, the proposed scheme has average 21.3% computation saving, compared to the cascaded pixel-domain transcoding scheme with the fast intra mode decision algorithm proposed in JVT-G013. For 16×16 luma block, RDO calculation is completely avoided in our scheme while the scheme in JVT-G013 needs 2 RDO calculations. Experimental results show that our scheme outperforms that of JVT-G013 in terms of significantly computasavings with negligible loss of PSNR展开更多
在第2代加拿大地球系统模型(the second generation Canadian earth system model,CanESM2)中的3种典型浓度路径(representative concentration pathways,RCPs)情景(RCP2.6、RCP4.5和RCP8.5)下,基于统计降尺度模型(statistical down sca...在第2代加拿大地球系统模型(the second generation Canadian earth system model,CanESM2)中的3种典型浓度路径(representative concentration pathways,RCPs)情景(RCP2.6、RCP4.5和RCP8.5)下,基于统计降尺度模型(statistical down scaling model,SDSM)研究兰江流域未来年份温度和降水量的变化趋势。结果表明:1)SDSM在兰江流域具有较好的适用性,各站点最高温度、最低温度、降水量的解释方差分别为70.62%~79.74%、69.61%~78.76%、28.56%~41.45%;2)3种RCPs情景下温度均呈上升趋势,且上升幅度随辐射强迫度上升而同步增大,至21世纪末,RCP2.6、RCP4.5、RCP8.5情景下的最高温度分别较基准期上升0.06℃、1.22℃、2.76℃,最低温度分别较基准期上升0.35℃、1.15℃、3.01℃;3)RCP2.6情景下的降水量总体呈下降趋势,至2080—2100年下降0.98%,RCP4.5情景下的降水量呈先上升后下降趋势,至2050—2079年达到峰值,较基准期上升12.03%,RCP8.5情景下的降水量呈先下降后快速上升趋势,至2080—2100年上升38.08%。研究结果可为兰江流域内水资源管理、生态文明建设及社会经济可持续发展提供依据和理论支持。展开更多
脱丁烷塔聚合物结垢问题是制约乙烯装置长周期运行的主要因素之一。目前新建装置通过降低操作压力在防止脱丁烷塔聚合物结垢方面取得了显著效果。以脱丁烷塔为例,对降压过程的可行性、经济性以及风险点进行分析和总结,利用化工流程模拟...脱丁烷塔聚合物结垢问题是制约乙烯装置长周期运行的主要因素之一。目前新建装置通过降低操作压力在防止脱丁烷塔聚合物结垢方面取得了显著效果。以脱丁烷塔为例,对降压过程的可行性、经济性以及风险点进行分析和总结,利用化工流程模拟软件Aspen Plus对降压后各项工艺参数进行模拟优化,将优化结果应用于实际生产过程。结果表明,脱丁烷塔的降压极限为350 kPa,降压后全塔温度降低约4℃,塔釜粗裂解汽油中的C_(4)摩尔分数降低0.32百分点,节省低压蒸汽1.3 t h,装置能耗和C_(4)产品损失降低,循环水侧压降、循环水在换热器内的流速和对数传热温差均在合理范围之内。展开更多
基金The project entitled Cooperation on the Development of Basic Technologies for the Yellow Sea and East China Sea Operational Oceanographic System funded by the China-Korea Joint Ocean Research Centerthe project entitled"Development of Korea Operational Oceanographic System"funded by the Ministry of Oceans and Fisheries,Koreathe project Functional Improvement of Korea Ocean Satellite Center and Development of the Marine Environment Impact Prediction Program funded by the Korea Institute of Ocean Science and Technology
文摘A down-scaled operational oceanographic system is developed for the coastal waters of Korea using a re- gional ocean modeling system (ROMS). The operational oceanographic modeling system consists of at- mospheric and hydrodynamic models. The hydrodynamic model, ROMS, is coupled with wave, sediment transport, and water quality modules. The system forecasts the predicted results twice a day on a 72 h basis, including sea surface elevation, currents, temperature, salinity, storm surge height, and wave information for the coastal waters of Korea. The predicted results are exported to the web-GIS-based coastal informa- tion system for real-time dissemination to the public and validation with real-time monitoring data using visualization technologies. The ROMS is two-way coupled with a simulating waves nearshore model, SWAN, for the hydrodynamics and waves, nested with the meteorological model, WRE for the atmospheric surface forcing, and externally nested with the eutrophication model, CE-QUAL-ICM, for the water quality. The op- erational model, ROMS, was calibrated with the tidal surface observed with a tide-gage and verified with current data observed by bottom-mounted ADCP or AWAC near the coastal waters of Korea. To validate the predicted results, we used real-time monitoring data derived from remote buoy system, HF-radar, and geostationary ocean color imager (GOCI). This down-scaled operational coastal forecasting system will be used as a part of the Korea operational oceanographic system (KOOS) with other operational oceanographic systems.
文摘Although the coding modes of H.264 coded video would be changed by the transcoding process of spatial resolution reduction, there exists good correlation in prediction modes and prediction directions between input and output video. In this paper, we first introduce a new spatial resolution reduction transcoding architecture of intra coded frames where the distortion can be calculated directly in compression domain. We then propose a fast mode decision algorithm in which only a small part of rate distortion optimization (RDO) calculation is needed for mode decision. For 4×4 luma block, the proposed scheme has average 21.3% computation saving, compared to the cascaded pixel-domain transcoding scheme with the fast intra mode decision algorithm proposed in JVT-G013. For 16×16 luma block, RDO calculation is completely avoided in our scheme while the scheme in JVT-G013 needs 2 RDO calculations. Experimental results show that our scheme outperforms that of JVT-G013 in terms of significantly computasavings with negligible loss of PSNR
文摘在第2代加拿大地球系统模型(the second generation Canadian earth system model,CanESM2)中的3种典型浓度路径(representative concentration pathways,RCPs)情景(RCP2.6、RCP4.5和RCP8.5)下,基于统计降尺度模型(statistical down scaling model,SDSM)研究兰江流域未来年份温度和降水量的变化趋势。结果表明:1)SDSM在兰江流域具有较好的适用性,各站点最高温度、最低温度、降水量的解释方差分别为70.62%~79.74%、69.61%~78.76%、28.56%~41.45%;2)3种RCPs情景下温度均呈上升趋势,且上升幅度随辐射强迫度上升而同步增大,至21世纪末,RCP2.6、RCP4.5、RCP8.5情景下的最高温度分别较基准期上升0.06℃、1.22℃、2.76℃,最低温度分别较基准期上升0.35℃、1.15℃、3.01℃;3)RCP2.6情景下的降水量总体呈下降趋势,至2080—2100年下降0.98%,RCP4.5情景下的降水量呈先上升后下降趋势,至2050—2079年达到峰值,较基准期上升12.03%,RCP8.5情景下的降水量呈先下降后快速上升趋势,至2080—2100年上升38.08%。研究结果可为兰江流域内水资源管理、生态文明建设及社会经济可持续发展提供依据和理论支持。
文摘脱丁烷塔聚合物结垢问题是制约乙烯装置长周期运行的主要因素之一。目前新建装置通过降低操作压力在防止脱丁烷塔聚合物结垢方面取得了显著效果。以脱丁烷塔为例,对降压过程的可行性、经济性以及风险点进行分析和总结,利用化工流程模拟软件Aspen Plus对降压后各项工艺参数进行模拟优化,将优化结果应用于实际生产过程。结果表明,脱丁烷塔的降压极限为350 kPa,降压后全塔温度降低约4℃,塔釜粗裂解汽油中的C_(4)摩尔分数降低0.32百分点,节省低压蒸汽1.3 t h,装置能耗和C_(4)产品损失降低,循环水侧压降、循环水在换热器内的流速和对数传热温差均在合理范围之内。