In terms of the multi-area optimal power flow (OPF) problem, the optimized objectives are always a fuel cost function expressed by a second-order polynomial. However, the valve-point loading effect, whose cost curve i...In terms of the multi-area optimal power flow (OPF) problem, the optimized objectives are always a fuel cost function expressed by a second-order polynomial. However, the valve-point loading effect, whose cost curve is a transcendental function formed by the superposition of the sine and polynomial function, will make the objective function non-convex and non-differentiable. Conventional distributed optimization technologies can hardly make a solution directly. Therefore, it is necessary to realize a distributed solution for multi-area OPF from another point of view. In this paper, we constitute a new double-layer optimization mechanism. The proposed distributed meta-heuristic optimization (DMHO) algorithm is put on the top layer to optimize the dispatching of each area, and in each iteration a distributed power flow calculation method is embedded as the bottom layer to minimize the mismatch of power balance. Numerical experiments demonstrate that the proposed approach not only implements a multi-area OPF distributed solution but also accelerates the convergence rate, improves the solution accuracy and enhances the robustness. In addition, a fully decentralized computation experiment is performed in an actual distributed environment to test its practicability and computation efficiency.展开更多
This study focuses on exploring the effects of geometrical imperfections and different analysis methods on the optimum design of Double-Layer Grids(DLGs),as used in the construction industry.A total of 12 notable meta...This study focuses on exploring the effects of geometrical imperfections and different analysis methods on the optimum design of Double-Layer Grids(DLGs),as used in the construction industry.A total of 12 notable metaheuristics are assessed and contrasted,and as a result,the Slime Mold Algorithm is identified as the most effective approach for size optimization of DLGs.To evaluate the influence of geometric imperfections and nonlinearity on the optimal design of real-size DLGs,the optimization process is carried out by considering and disregarding geometric nonlinearity while incorporating three distinct forms of geometrical imperfections,namely local imperfections,global imperfections,and combinations of both.In light of the uncertain nature of geometrical imperfections,probabilistic distributions are used to define these imperfections randomly in direction and magnitude.The results demonstrate that it is necessary to account for these imperfections to obtain an optimal solution.It’s worth noting that structural imperfections can increase the maximum stress ratio by up to 70%.The analysis also reveals that the initial curvature of members has a more significant impact on the optimal design of structures than the nodal installation error,indicating the need for greater attention to local imperfection issues in space structure construction.展开更多
基金supported by the National Natural Science Foundation of China(52177087)High-end Foreign Experts Project(G2022163018L)Guangdong Basic and Applied Basic Research Foundation(2024A1515030192).
文摘In terms of the multi-area optimal power flow (OPF) problem, the optimized objectives are always a fuel cost function expressed by a second-order polynomial. However, the valve-point loading effect, whose cost curve is a transcendental function formed by the superposition of the sine and polynomial function, will make the objective function non-convex and non-differentiable. Conventional distributed optimization technologies can hardly make a solution directly. Therefore, it is necessary to realize a distributed solution for multi-area OPF from another point of view. In this paper, we constitute a new double-layer optimization mechanism. The proposed distributed meta-heuristic optimization (DMHO) algorithm is put on the top layer to optimize the dispatching of each area, and in each iteration a distributed power flow calculation method is embedded as the bottom layer to minimize the mismatch of power balance. Numerical experiments demonstrate that the proposed approach not only implements a multi-area OPF distributed solution but also accelerates the convergence rate, improves the solution accuracy and enhances the robustness. In addition, a fully decentralized computation experiment is performed in an actual distributed environment to test its practicability and computation efficiency.
文摘This study focuses on exploring the effects of geometrical imperfections and different analysis methods on the optimum design of Double-Layer Grids(DLGs),as used in the construction industry.A total of 12 notable metaheuristics are assessed and contrasted,and as a result,the Slime Mold Algorithm is identified as the most effective approach for size optimization of DLGs.To evaluate the influence of geometric imperfections and nonlinearity on the optimal design of real-size DLGs,the optimization process is carried out by considering and disregarding geometric nonlinearity while incorporating three distinct forms of geometrical imperfections,namely local imperfections,global imperfections,and combinations of both.In light of the uncertain nature of geometrical imperfections,probabilistic distributions are used to define these imperfections randomly in direction and magnitude.The results demonstrate that it is necessary to account for these imperfections to obtain an optimal solution.It’s worth noting that structural imperfections can increase the maximum stress ratio by up to 70%.The analysis also reveals that the initial curvature of members has a more significant impact on the optimal design of structures than the nodal installation error,indicating the need for greater attention to local imperfection issues in space structure construction.