The acceleration of global urbanization has caused habitat loss,fragmentation,and decrease of habitat quality,often leading to a decline in biodiversity.However,most previous urbanization studies focused on taxonomic ...The acceleration of global urbanization has caused habitat loss,fragmentation,and decrease of habitat quality,often leading to a decline in biodiversity.However,most previous urbanization studies focused on taxonomic diversity,with relatively less research on functional and phylogenetic diversity.In this study,we examined the phylogenetic and functional diversity and underlying influencing factors of bird communities in 37 urban parks in Nanjing,China.We conducted a systematic survey of bird communities in Nanjing urban parks and selected six park characteristics that are generally considered to affect bird diversity.Model selection based on corrected Akaike Information Criterion(AICc)and model averaging showed that park area,habitat diversity and building index(a proxy for the degree of urbanization)were significant factors affecting avian phylogenetic and functional diversity in Nanjing urban parks.Specifically,habitat diversity and park area were positively correlated with bird diversity,while the building index was negatively correlated with bird diversity.Moreover,the phylogenetic and functional structures of urban bird communities exhibited a clustered pattern,indicating that environmental filtering might play a role in shaping community composition.In addition,building index had certain impact on the construction of bird phylogenetic communities in urban parks.Our results suggest that expanding park areas,increasing habitat diversity and reducing building indexes may be effective measures to increase the avian phylogenetic and functional diversity in our system.展开更多
Topographic complexity supports the maintenance of a high diversity of microhabitats,which may act as important‘safe havens’-or microrefugia-for biodiversity.Microrefugia are sites with specific environmental condit...Topographic complexity supports the maintenance of a high diversity of microhabitats,which may act as important‘safe havens’-or microrefugia-for biodiversity.Microrefugia are sites with specific environmental conditions that facilitate the persistence of species during environmental changes and exhibit unique ecoevolutionary dynamics.However,our knowledge about how topographic complexity and related ecoevolutionary selective forces influence the functional and phylogenetic signatures of species assemblages in microrefugia is very limited.Although the conceptual framework on the systematic integration of plant functional traits into the study of refugia is well established,more empirical studies on functional trait composition and functional diversity in refugia are urgently needed for more effective conservation.Here we analyzed the distribution of various plant functional traits and phylogenetic patterns in microhabitats(south-and north-facing slopes,and bottoms)of 30 large topographic depressions(i.e.doline microrefugia)and microhabitats of the surrounding plateaus in two distant forested karst regions.We found that plant assemblages in the understory of dolines and their surroundings are characterized by unique functional values and combinations of traits.Doline bottoms had the highest functional diversity among doline microhabitats and supported plant assemblages with considerably different trait compositions from the plateaus.Bottoms also had the highest phylogenetic diversity.These results suggest that topographic complexity in forested dolines has a significant effect on the distribution of plant functional traits in the understory.High functional and phylogenetic diversity in doline bottoms can have important consequences for the long-term survival of plant populations,highlighting that these microhabitats may provide a higher resilience and support an adaptive community-level response to natural and anthropogenic stressors.Understanding mechanisms that drive the survival of species within microrefugia is required to determine the best conservation and management strategies.展开更多
The response of plant functional diversity to external disturbances not only effectively predicts changes in the ecosystem but it also reflects how plant communities use external environmental resources.However,resear...The response of plant functional diversity to external disturbances not only effectively predicts changes in the ecosystem but it also reflects how plant communities use external environmental resources.However,research on how different herbivore assemblages affect plant functional diversity is limited.Therefore,this study systematically explored the effects of three typical herbivore assemblages(yak grazing,Tibetan sheep grazing,and mixed grazing by yaks and Tibetan sheep)on species richness,plant functional diversity,and soil physicochemical properties in alpine grasslands on the Qinghai-Tibet Plateau,China.This study further investigated the primary mechanisms driving the changes in plant functional diversity.The results indicate four key aspects of this system:(1)Grazing significantly enhanced plant functional diversity,particularly when the mixed grazing by yaks and Tibetan sheep was applied at a ratio of 1:2.This ratio showed the most substantial improvement in the functional dispersion index and Rao's quadratic entropy index.(2)Compared to enclosed treatments,grazing increased species richness andβ-diversity,contributing to higher plant functional diversity.(3)Grazing treatments affected various plant traits,such as reducing plant community height and leaf thickness while increasing specific leaf area.However,the impact on plant functional diversity was most pronounced under the mixed grazing by yaks and Tibetan sheep at a ratio of 1:2.(4)Speciesα-diversity was positively correlated with plant functional diversity.Changes in plant functional diversity were primarily regulated by variations in soil physicochemical properties.Specifically,increases in soil available nitrogen significantly promoted changes in plant functional diversity,while increases in soil available potassium and bulk density had a significant inhibitory effect on these changes.Long-term grazing significantly reduced the height of plant communities in alpine meadows,while a balanced mixture of yak and Tibetan sheep grazing,especially at a ratio of 1:2,enhanced plant functional diversity the most.This suggests that,under these conditions,the use of external environmental resources by the plant community is optimized.展开更多
The authors regret that an error occurred during the preparation of their article:One of the official databases,which was used for functional trait collections,contained an incorrect term–'chametophytes'–for...The authors regret that an error occurred during the preparation of their article:One of the official databases,which was used for functional trait collections,contained an incorrect term–'chametophytes'–for the life form category'chamaephytes'.Unfortunately,this incorrect term was used throughout the article following the nomenclature of this official database:in one instance in the main text,in Fig.3 and its caption,in Fig.5,and in two instances in the supplementary material.展开更多
Understanding plant diversity within geographical ranges and identifying key species that drive community variation can provide crucial insights for the management of grasslands.However,the contribution of both local ...Understanding plant diversity within geographical ranges and identifying key species that drive community variation can provide crucial insights for the management of grasslands.However,the contribution of both local sites and plant species to beta diversity in grassland ecosystems has yet to be accurately assessed.This study applied the ecological uniqueness approach to examine both local contributions to beta diversity(LCBD)and species contributions to beta diversity(SCBD)across six major geographical ranges in alpine grasslands.We found that LCBD was driven by species turnover,with climate,plant communities,and their interactions influencing LCBD across spatial scales.LCBD values were high in areas with low evapotranspiration,high rainfall variability,and low species and functional richness.Precipitation seasonality predicted large-scale LCBD dynamics,while plant community abundance explained local LCBD variation.In addition,we found that SCBD were confined to species with moderate occupancy,although these species contributed less to plant biological traits.Our findings are crucial for understanding how ecological characteristics influence plant beta diversity in grasslands and how it responds to environmental and community factors.In addition,these findings have successfully identified key sites and priority plants for conservation,indicating that using standardized quadrats can support the assessment of the ecological uniqueness in grassland ecosystems.We hope these insights will inform the development of conservation strategies,thereby supporting regional plant diversity and resisting vegetation homogenization.展开更多
Mountains serve as exceptional natural laboratories for studying biodiversity due to their heterogeneous landforms and climatic zones.The Himalaya,a global biodiversity hotspot,hosts rich endemic flora,supports vital ...Mountains serve as exceptional natural laboratories for studying biodiversity due to their heterogeneous landforms and climatic zones.The Himalaya,a global biodiversity hotspot,hosts rich endemic flora,supports vital ecosystem functions,and offers a unique window into multifaceted plant diversity patterns.This review synthesizes research on Himalayan plant diversity,including species,phylogenetic,functional,and genetic dimensions,highlighting knowledge gaps and solutions.Research on Himalayan plant diversity has developed significantly.However,gaps remain,especially in studies on phylogenetic and functional diversity.The region's vegetation ranges from tropical rainforests to alpine ecosystems,with species richness typically following a hump-shaped distribution along elevation gradients.The eastern Himalaya exhibits higher plant diversity than the central and western regions.Low-elevation communities were found to be more functionally diverse,whereas high-elevation communities displayed greater ecological specialization.Communities at mid-elevations tend to show greater phylogenetic diversity than those at higher and lower elevations.The eastern and western flanks of the Himalaya retain high levels of genetic diversity and serve as glacial refugia,whereas the central region acts as a hybrid zone for closely related species.Himalayan plant diversity is shaped by historical,climatic,ecological and anthropogenic factors across space and time.However,this rich biodiversity is increasingly threatened by environmental change and growing anthropogenic pressures.Unfortunately,research efforts are constrained by spatial biases and the lack of transnational initiatives and collaborative studies,which could significantly benefit from interdisciplinary approaches,and other coordinated actions.These efforts are vital to safeguarding the Himalayan natural heritage.展开更多
This study was carried out to assess plasticity to drought of 30 adult fig cultivars,based on a screening of leaf structural and functional traits under sustained deficit irrigation,corresponding to 60%of crop evapotr...This study was carried out to assess plasticity to drought of 30 adult fig cultivars,based on a screening of leaf structural and functional traits under sustained deficit irrigation,corresponding to 60%of crop evapotranspiration.All trees,three per cultivar,are planted in an ex-situ collection in Sais plain,northern Morocco.The measurements concerned leaf area,blade thickness,trichomes density,trichome hair length,stomatal density,stomatal dimensions,stomatal area index,chlorophyll concentration index,relative water content,stomatal conductance,leaf temperature,water loss in detached leaves,cuticular wax content,proline content,total phenolic compounds,and total soluble sugars.The ranking of cultivars regarding drought tolerance was established based on a two-level clustering approach,primarily relying on chlorophyll concentration index and secondarily on water status traits.Results showed significant genotypic variations for all measured traits,except phenolic compounds content.Correlations between structural and functional traits have pinpointed blade thickness and trichome hair length as the key indicators of fig drought tolerance,owing to their involvement in maintaining chlorophyll content under water stress conditions.The extent of the variations shows that fig leaf is endowed with a wide structural and functional diversity,which can give to the species potential for resilience to various environmental stresses,including drought.Among the cultivars assessed,two exotic varieties,“Kadota”and“Royal Blanck”,as well as four local cultivars,namely,“Ferqouch Jmel”,“El Qoti Labied”,“Hamra”and“Fassi”showed the highest drought plasticity level.展开更多
With Biolog Eco microplate, metabolic characteristics and functional diver-sity of carbon source in microflora of ponds were researched based on recitculating ponds and control ponds in order to explore effects of eco...With Biolog Eco microplate, metabolic characteristics and functional diver-sity of carbon source in microflora of ponds were researched based on recitculating ponds and control ponds in order to explore effects of eco-adjustments on microflo-ra in ponds. The results indicate that total number of bacterium, microbial metabolism activity, and diversity index in P7, P8, P1 and P2 kept higher, fol owed by P3, P4, P5 and P6. The utilization rate of microbes on sugars achieved the highest (31.0%-48.7%), fol owed by carboxylic acid (13.4%-18.0%), amino acid (10.1%-20.5%), polymers (9.4%-17.0%), biopolymer (5.7%-9.7%) and phenol (4.95%-7.50%). Principal component analysis divided microflora in different ponds, suggesting that microbial community has varied carbon source characteristics and nitrogen-containing compound and biopolymer metabolisms are most affected.展开更多
Given the rapid rise in human population and increasing urbanization,it is important to understand their potential impacts on biodiversity.From March 2007 to August 2007,we conducted bird surveys in 90 strip transects...Given the rapid rise in human population and increasing urbanization,it is important to understand their potential impacts on biodiversity.From March 2007 to August 2007,we conducted bird surveys in 90 strip transects,each 3 km long and 100 m wide,along a gradient of urbanization in Hangzhou,China.This gradient spanned a range of urbanization levels including urban areas,rural-urban continuum areas,farming areas,mixed forest/farming areas and forested areas.We recorded 96 breeding bird species and classified them into nine functional groups based on nesting requirements.The nine functional groups consisted of canopy nesters,shrub nesters,canopy/shrub nesters,natural cavity nesters,building nesters,natural cavity/building nesters,ground nesters,water surface nesters and parasitic nesters.Species and functional diversities were estimated based on the Shannon-Wiener index.Environmental data of each transect as human disturbance,vegetation cover and building index were also measured,and a synthetic urbanization index of each transect was introduced based on these data.We used regression analyses to model the relationship of species abundance,species diversity,functional abundance and functional diversity with this synthetic index.The results show that urbanization significantly reduces species richness,species diversity,functional richness and functional diversity,but the specific patterns differed.The relationship between species abundance/species diversity and urbanization is linear.In contrast,the relationship between functional diversity and urbanization was quadratic.In other words,with increased urbanization,functional diversity declined only slightly at first but then dropped at an accelerating rate.This implies that,although moderate urbanization reduces species diversity of breeding birds,it affects functional diversity of breeding birds only slightly in Hangzhou.The regression analysis of species diversity and functional diversity suggests a quadratic relationship between species diversity and functional diversity,i.e.,a linear relationship between species diversity and functional diversity can only exist at low diversity levels across urbanization gradients and increasing species abundance does not lead to an increase in functional diversity at the highest diversity levels.展开更多
Degradation of chlorpyrifos at different concentrations in soil and its impact on soil microbial functional diversity were investigated under laboratory condition. The degradation half-live of chlorpyrifos at levels o...Degradation of chlorpyrifos at different concentrations in soil and its impact on soil microbial functional diversity were investigated under laboratory condition. The degradation half-live of chlorpyrifos at levels of 4, 8, and 12 mg/kg in soil were calculated to be 14.3, 16.7, and 18.0 d, respectively. The Biolog study showed that the average well color development (AWCD) in soils was significantly (P 〈 0.05) inhibited by chlorpyrifos within the first two weeks and thereafter recovered to a similar level as the control. A similar variation in the diversity indices (Simpson index lID and McIntosh index U) was observed, but no significant difference among the values of the Shannon-Wiener index H' was found in chlorpyrifos-treated soils. With an increasing chlorpyrifos concentration, the half-life of chlorpyrifos was significantly (P ≤ 0.05) extended and its inhibitory effect on soil microorganisms was aggravated. It is concluded that chlorpyrifos residues in soil had a temporary or short-term inhibitory effect on soil microbial functional diversity.展开更多
An experiment with seven N, P, K-fertilizer treatments, i.e., control (no fertilizer), NP, NK, PK, NPK, NP2K, and NPK2 where P2 and K2 indicate double amounts of P and K fertilizers respectively, was conducted to exam...An experiment with seven N, P, K-fertilizer treatments, i.e., control (no fertilizer), NP, NK, PK, NPK, NP2K, and NPK2 where P2 and K2 indicate double amounts of P and K fertilizers respectively, was conducted to examine the effect of long-term continuous application of chemical fertilizers on microbial biomass and functional diversity of a black soil (Udoll in the USDA Soil Taxonomy) in Northeast China. The soil microbial biomass C ranged between 94 and 145 mg kg-1, with the NK treatment showing a lower biomass; the functional diversity of soil microbial community ranged from 4.13 to 4.25, with an increasing tendency from control to double-fertilizer treatments, and to triple-fertilizer treatments. The soil microbial biomass, and the microbial functional diversity and evenness did not show any significant differences among the different fertilizer treatments including control, suggesting that the long-term application of chemical fertilization would not result in significant changes in the microbial characteristics of the black soil.展开更多
With the development of transgenic crops, there is an increasing concern about the possible adverse effects of their vegetation and residues on soil environmental quality. This study was carried out to evaluate the po...With the development of transgenic crops, there is an increasing concern about the possible adverse effects of their vegetation and residues on soil environmental quality. This study was carried out to evaluate the possible effects of the vegetation of transgenic Bt rice lines Huachi B6 (HC) and TT51 (TT) followed by the return of their straw to the soil on soil enzymes (catalase, urease, neutral phosphatase and invertase), anaerobic respiration activity, microbial utilization of carbon substrates and community structure, under field conditions. The results indicated that the vegetation of the two transgenic rice lines (HC and TT) and return of their straw had few adverse effects on soil enzymes and anaerobic respiration activity compared to their parent and distant parent, although some transient differences were observed. The vegetation and subsequent straw amendment of Bt rice HC and TT did not appear to have a harmful effect on the richness, evenness and community structure of soil microorganisms. No different pattern of impact due to plant species was found between HC and TT. It could be concluded that the vegetation of transgenic Bt rice lines and the return of their straw as organic fertilizer may not alter soil microbe-mediated functions.展开更多
Copper (Cu) mine tailings, because of their high content of heavy metals, are usually hostile to plant colonization. A pot experiment was conducted to determine the tolerance of four forage grasses to heavy metals i...Copper (Cu) mine tailings, because of their high content of heavy metals, are usually hostile to plant colonization. A pot experiment was conducted to determine the tolerance of four forage grasses to heavy metals in Cu mine tailings and to examine the variation in the microbial functional diversity of soils from the tailing sites in southern China. All the four grass species survived on Cu mine tailings and Cu mine tailing-soil mixture. However, on pure mine tailings, the growth was minimal, whereas the growth was maximum for the control without mine tailings. The tolerance of grasses to heavy metals followed the sequence: Paspalum notatum 〉 Festuea arundinaeea 〉 Lolium perenne 〉 Cynodon daetylon. The planting of forage grasses enhanced the soil microbial biomass. The Biolog data indicated that the soil microbial metabolic profile values (average well color development, community richness, and Shannon index) of the four forage grasses also followed the sequence: P. notatum 〉 F. arundinaeea 〉 L. perenne 〉 C. daetylon. Thus, P. notatum, under the experimental conditions of this study, may be considered as the preferred plant species for revegetation of Cu mine tailing areas.展开更多
Soil microbial communities play an essential role in maintaining soil fertility and are considered as ecological indicators to evaluate soil health.In the present study,we examined the influence of almost 4 years of f...Soil microbial communities play an essential role in maintaining soil fertility and are considered as ecological indicators to evaluate soil health.In the present study,we examined the influence of almost 4 years of fertilization[no fertilizer(CK),nitrogen alone(N),nitrogen,phosphorus and potassium chemical fertilizer(NPK),organicmanure(M),nitrogen plus organic manure(NM),and NPK plus organic manure(NPKM)]on soil fertility and the functional diversity of soil microbial communities in an apple orchard.Compared to CK,fertilization increased soil organic carbon,total nitrogen,and available nutrients,but reduced soil pH in N and NPK treatments.The highest microbial biomass carbon and nitrogen,most probable number of actinomycetes,bacteria,and fungi occurred in the NPKM treatment.The average well color development(AWCD)values followed the order of NPKM>M>NPK and NM>CK and N.The Shannon index in organic manure treatments were significantly higher than in control and in treatments without organic manure.The principal component analysis showed that manure treatment was significantly separated from other treatments.These results indicated that organic manure applied alone or in combination with chemical fertilizers would increase soil fertility and functional diversity of soil microbial communities.Moreover,applying balanced N,P,K fertilizer in combination with organic manure was found to be superior to the use of a single fertilizer in improving soil microbial community quality.展开更多
The relationship between Solidago canadensis L. invasion and soil microbial community diversity including functional and structure diversities was studied across the invasive gradients varying from 0 to 40%, 80%, and ...The relationship between Solidago canadensis L. invasion and soil microbial community diversity including functional and structure diversities was studied across the invasive gradients varying from 0 to 40%, 80%, and 100% coverage of Solidago canadensis L. using sole carbon source utilization profiles analyses, principle component analysis (PCA) and phospholipid fatty acids (PLFA) profiles analyses. The results show the characteristics of soil microbial community functional and structure diversity in invaded soils strongly changed by Solidago canadensis L. invasion. Solidago canadensis L. invasion tended to result in higher substrate richness, and functional diversity. As compared to the native and ecotones, average utilization of specific substrate guilds of soil microbe was the highest in Solidago canadensis L. monoculture. Soil microbial functional diversity in Solidago canadensis L. monoculture was distinctly separated from the native area and the ecotones. Aerobic bacteria, fungi and actinomycetes population significantly increased but anaerobic bacteria decreased in the soil with Solidago canadensis L. monoculture. The ratio of cyl9:0 to 18:1 co7 gradually declined but mono/sat and fung/bact PLFAs increased when Solidago canadensis L. became more dominant. The microbial community composition clearly separated the native soil from the invaded soils by PCA analysis, especially 18: lco7c, 16: lco7t, 16: lco5c and 18:2co6, 9 were present in higher concentrations for exotic soil. In conclusion, Solidago canadensis L. invasion could create better soil conditions by improving soil microbial community structure and functional diversity, which in turn was more conducive to the growth ofSolidago canadensis L.展开更多
Changes in soil biological and biochemical properties under different land uses in the subtropical region of China were investigated in order to develop rational cultivation and fertilization management. A small water...Changes in soil biological and biochemical properties under different land uses in the subtropical region of China were investigated in order to develop rational cultivation and fertilization management. A small watershed of subtropical region of China was selected for this study. Land uses covered paddy fields, vegetable farming, fruit trees, upland crops, bamboo stands, and forestry. Soil biological and biochemical properties included soil organic C and nutrient contents, mineralization of soil organic C, and soil microbial biomass and community functional diversity. Soil organic C and total N contents, microbial biomass C and N, and respiration intensity under different land uses were changed in the following order: paddy fields (and vegetable farming) 〉 bamboo stands 〉 fruit trccs (and upland). The top surface (0-15 cm) paddy fields (and vegetable farming) were 76.4 and 80.8% higher in soil organic C and total N contents than fruit trees (and upland) soils, respectively. Subsurface paddy soils (15-30 cm) were 59.8 and 67.3% higher in organic C and total N than upland soils, respectively. Soil microbial C, N and respiration intensity in paddy soils (0-15 cm) were 6.36, 3.63 and 3.20 times those in fruit tree (and upland) soils respectively. Soil microbial metabolic quotient was in the order: fruit trees (and upland) 〉 forestry 〉 paddy fields. Metabolic quotient in paddy soils was only 47.7% of that in fruit tree (and upland) soils. Rates of soil organic C mineralization during incubation changed in the order: paddy fields 〉 bamboo stands 〉 fruit trees (and upland) and soil bacteria population: paddy fields 〉 fruit trees (and upland) 〉 forestry. No significant difference was found for fungi and actinomycetes populations. BIOLOG analysis indicated a changing order of paddy fields 〉 fruit trees (and upland) 〉 forestry in values of the average well cell development (AWCD) and functional diversity indexes of microbial community. Results also showed that the conversion from paddy fields to vegetable farming for 5 years resulted in a dramatic increase in soil available phosphorus content while insignificant changes in soil organic C and total N content due to a large inputs of phosphate fertilizers. This conversion caused 53, 41.5, and 41.3% decreases in soil microbial biomass C, N, and respiration intensity, respectively, while 23.6% increase in metabolic quotient and a decrease in soil organic C mineralization rate. Moreover, soil bacteria and actinomycetes populations were increased slightly, while fungi population increased dramatically. Functional diversity indexes of soil microbial community decreased significantly. It was concluded that land uses in the subtropical region of China strongly affected soil biological and biochemical properties. Soil organic C and nutrient contents, mineralization of organic C and functional diversity of microbial community in paddy fields were higher than those in upland and forestry. Overuse of chemical fertilizers in paddy fields with high fertility might degrade soil biological properties and biochemical function, resulting in deterioration of soil biological quality.展开更多
Ecological effects of crude oil residues on weed rhizospheres are still vague. The quantitative and diversity changes and metabolic responses of soil-bacterial communities in common dandelion (Taraxacum officinale),...Ecological effects of crude oil residues on weed rhizospheres are still vague. The quantitative and diversity changes and metabolic responses of soil-bacterial communities in common dandelion (Taraxacum officinale), jerusalem artichoke (Silphiurn perfoliatum L.) and evening primrose (A colypha australis L.) rhizospheric soils were thus examined using the method of carbon source utilization. The results indicated that there were various toxic effects of crude oil residues on the growth and reproduction of soil bacteria, but the weed rhizospheres could mitigate the toxic effects. Total heterotrophic counting colony-forming units (CFUs) in the rhizospheric soils were significantly higher than those in the non-rhizospheric soils. The culturable soil-bacterial CFUs in the jerusalem artichoke (S. perfoliatum) rhizosphere polluted with 0.50 kg/pot of crude oil residues were almost twice as much as those with 0.25 kg/pot and without the addition of crude oil residues. The addition of crude oil residues increased the difference in substrate evenness, substrate richness, and substrate diversity between non-rhizospheric and rhizospheric soils of T. officinale and A. australis, but there was no significant (p〉0.05) difference in the Shannon's diversity index between non-rhizospheric and rhizospheric soils of S. perfoliatum. The rhizospheric response of weed species to crude oil residues suggested that S. perfoliatum may be a potential weed species for the effective plant-microorganism bioremediation of contaminated soils by crude oil residues.展开更多
Characterizing trait variation across different ecological scales in plant communities has been viewed as a way to gain insights into the mechanisms driving species coexistence.However,little is known about how change...Characterizing trait variation across different ecological scales in plant communities has been viewed as a way to gain insights into the mechanisms driving species coexistence.However,little is known about how changes in intraspecific and interspecific traits across sites influence species richness and community assembly,especially in understory herbaceous communities.Here we partitioned the variance of four functional traits(maximum height,leaf thickness,leaf area and specific leaf area)across four nested biological scales:individual,species,plot,and elevation to quantify the scale-dependent distributions of understory herbaceous trait variance.We also integrated the comparison of the trait variance ratios to null models to investigate the effects of different ecological processes on community assembly and functional diversity along a 1200-m elevational gradient in Yulong Mountain.We found interspecific trait variation was the main trait variation component for leaf traits,although intraspecific trait variation ranged from 10% to 28% of total variation.In particular,maximum height exhibited high plasticity,and intraspecific variation accounted for 44% of the total variation.Despite the fact that species composition varied across elevation and species richness decreased dramatically along the elevational gradient,there was little variance at our largest(elevation)scale in leaf traits and functional diversity remained constant along the elevational gradient,indicating that traits responded to smaller scale influences.External filtering was only observed at high elevations.However,strong internal filtering was detected along the entire elevational gradient in understory herbaceous communities,possibly due to competition.Our results provide evidence that species coexistence in understory herbaceous communities might be structured by differential niche-assembled processes.This approach ee integrating different biological scales of trait variation ee may provide a better understanding of the mechanisms involved in the structure of communities.展开更多
Understanding the relationships between species, communities, and biodiversity are important challenges in conservation ecology. Current biodiversity conservation activities usually focus on species that are rare, end...Understanding the relationships between species, communities, and biodiversity are important challenges in conservation ecology. Current biodiversity conservation activities usually focus on species that are rare, endemic, distinctive, or at risk of extinction. However, empirical studies of whether such species contribute more to aspects of biodiversity than common species are still relatively rare. The aim of the present study was to assess the contribution of individual amphibian species to different facets of biodiversity, and to test whether species of conservation interest contribute more to taxonomic, functional, and phylogenetic diversity than do species without special conservation status. To answer these questions, 19 000 simulated random communities with a gradient of species richness were created by shuffling the regional pool of species inhabiting Emei Mountain. Differences of diversity values were then computed before and after removing individual species in these random communities. Our results indicated that although individual species contributed similarly to taxonomic diversity, their contribution to functional and phylogenetic diversity was more idiosyncratic. This was primarily driven by the diverse functional attributes of species and the differences in phylogenetic relationships among species. Additionally, species of conservation interest did not show a significantly higher contribution to any facet of biodiversity. Our results support the claims that the usefulness of metrics based only on species richness is limited. Instead, assemblages that include species with functional and phylogenetic diversity should be protected to maintain biodiversity.展开更多
基金supported by the National Natural Science Foundation of China(No.32271734)。
文摘The acceleration of global urbanization has caused habitat loss,fragmentation,and decrease of habitat quality,often leading to a decline in biodiversity.However,most previous urbanization studies focused on taxonomic diversity,with relatively less research on functional and phylogenetic diversity.In this study,we examined the phylogenetic and functional diversity and underlying influencing factors of bird communities in 37 urban parks in Nanjing,China.We conducted a systematic survey of bird communities in Nanjing urban parks and selected six park characteristics that are generally considered to affect bird diversity.Model selection based on corrected Akaike Information Criterion(AICc)and model averaging showed that park area,habitat diversity and building index(a proxy for the degree of urbanization)were significant factors affecting avian phylogenetic and functional diversity in Nanjing urban parks.Specifically,habitat diversity and park area were positively correlated with bird diversity,while the building index was negatively correlated with bird diversity.Moreover,the phylogenetic and functional structures of urban bird communities exhibited a clustered pattern,indicating that environmental filtering might play a role in shaping community composition.In addition,building index had certain impact on the construction of bird phylogenetic communities in urban parks.Our results suggest that expanding park areas,increasing habitat diversity and reducing building indexes may be effective measures to increase the avian phylogenetic and functional diversity in our system.
基金funded by the National Research,Development and Innovation Office(NKFIH FK 142428 grant)The contribution of Z.B.was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research,Development and Innovation Fund(ÚNKP-23-5-SZTE-697)+2 种基金K.F.was supported by the New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research,Development and Innovation Fund(ÚNKP-23-3-SZTE-441)C.T.was supported by the NKFIH K 146137 grantA.E-V.was supported by the long-term research development project of the Czech Academy of Sciences(RVO 67985939).
文摘Topographic complexity supports the maintenance of a high diversity of microhabitats,which may act as important‘safe havens’-or microrefugia-for biodiversity.Microrefugia are sites with specific environmental conditions that facilitate the persistence of species during environmental changes and exhibit unique ecoevolutionary dynamics.However,our knowledge about how topographic complexity and related ecoevolutionary selective forces influence the functional and phylogenetic signatures of species assemblages in microrefugia is very limited.Although the conceptual framework on the systematic integration of plant functional traits into the study of refugia is well established,more empirical studies on functional trait composition and functional diversity in refugia are urgently needed for more effective conservation.Here we analyzed the distribution of various plant functional traits and phylogenetic patterns in microhabitats(south-and north-facing slopes,and bottoms)of 30 large topographic depressions(i.e.doline microrefugia)and microhabitats of the surrounding plateaus in two distant forested karst regions.We found that plant assemblages in the understory of dolines and their surroundings are characterized by unique functional values and combinations of traits.Doline bottoms had the highest functional diversity among doline microhabitats and supported plant assemblages with considerably different trait compositions from the plateaus.Bottoms also had the highest phylogenetic diversity.These results suggest that topographic complexity in forested dolines has a significant effect on the distribution of plant functional traits in the understory.High functional and phylogenetic diversity in doline bottoms can have important consequences for the long-term survival of plant populations,highlighting that these microhabitats may provide a higher resilience and support an adaptive community-level response to natural and anthropogenic stressors.Understanding mechanisms that drive the survival of species within microrefugia is required to determine the best conservation and management strategies.
基金financially supported by the National Natural Science Foundation of China(U20A2007 and 32160343)the Open Project of Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region(Qinghai University),Ministry of Education of China(2023-SJY-KF-02)the West Light Foundation of the Chinese Academy of Sciences。
文摘The response of plant functional diversity to external disturbances not only effectively predicts changes in the ecosystem but it also reflects how plant communities use external environmental resources.However,research on how different herbivore assemblages affect plant functional diversity is limited.Therefore,this study systematically explored the effects of three typical herbivore assemblages(yak grazing,Tibetan sheep grazing,and mixed grazing by yaks and Tibetan sheep)on species richness,plant functional diversity,and soil physicochemical properties in alpine grasslands on the Qinghai-Tibet Plateau,China.This study further investigated the primary mechanisms driving the changes in plant functional diversity.The results indicate four key aspects of this system:(1)Grazing significantly enhanced plant functional diversity,particularly when the mixed grazing by yaks and Tibetan sheep was applied at a ratio of 1:2.This ratio showed the most substantial improvement in the functional dispersion index and Rao's quadratic entropy index.(2)Compared to enclosed treatments,grazing increased species richness andβ-diversity,contributing to higher plant functional diversity.(3)Grazing treatments affected various plant traits,such as reducing plant community height and leaf thickness while increasing specific leaf area.However,the impact on plant functional diversity was most pronounced under the mixed grazing by yaks and Tibetan sheep at a ratio of 1:2.(4)Speciesα-diversity was positively correlated with plant functional diversity.Changes in plant functional diversity were primarily regulated by variations in soil physicochemical properties.Specifically,increases in soil available nitrogen significantly promoted changes in plant functional diversity,while increases in soil available potassium and bulk density had a significant inhibitory effect on these changes.Long-term grazing significantly reduced the height of plant communities in alpine meadows,while a balanced mixture of yak and Tibetan sheep grazing,especially at a ratio of 1:2,enhanced plant functional diversity the most.This suggests that,under these conditions,the use of external environmental resources by the plant community is optimized.
文摘The authors regret that an error occurred during the preparation of their article:One of the official databases,which was used for functional trait collections,contained an incorrect term–'chametophytes'–for the life form category'chamaephytes'.Unfortunately,this incorrect term was used throughout the article following the nomenclature of this official database:in one instance in the main text,in Fig.3 and its caption,in Fig.5,and in two instances in the supplementary material.
基金the National Key Research and Development Program of China(2023YFF1304302)the Qaidam basin and Qilian Mountains germplasm resources collection project(Grant No.SJCZFY2022-1-6)。
文摘Understanding plant diversity within geographical ranges and identifying key species that drive community variation can provide crucial insights for the management of grasslands.However,the contribution of both local sites and plant species to beta diversity in grassland ecosystems has yet to be accurately assessed.This study applied the ecological uniqueness approach to examine both local contributions to beta diversity(LCBD)and species contributions to beta diversity(SCBD)across six major geographical ranges in alpine grasslands.We found that LCBD was driven by species turnover,with climate,plant communities,and their interactions influencing LCBD across spatial scales.LCBD values were high in areas with low evapotranspiration,high rainfall variability,and low species and functional richness.Precipitation seasonality predicted large-scale LCBD dynamics,while plant community abundance explained local LCBD variation.In addition,we found that SCBD were confined to species with moderate occupancy,although these species contributed less to plant biological traits.Our findings are crucial for understanding how ecological characteristics influence plant beta diversity in grasslands and how it responds to environmental and community factors.In addition,these findings have successfully identified key sites and priority plants for conservation,indicating that using standardized quadrats can support the assessment of the ecological uniqueness in grassland ecosystems.We hope these insights will inform the development of conservation strategies,thereby supporting regional plant diversity and resisting vegetation homogenization.
基金funded by the Key Research Program of Frontier Sciences,CAS(ZDBS-LY-7001)the National Natural Science Foundation of China(32170398,42211540718,W2433074,32071541)+6 种基金the CAS“Light of West China”Programthe Xingdian Talent Support Program of Yunnan Province(XDYC-QNRC-2022-0026)the Natural Science Foundation of Yunnan(202201AT070222)the Fund of Yunnan Key Laboratory of Crop Wild Relatives Omics(CWR-2024-04)funding from the China Scholarship Council(202304910135,202304910138)for their oneyear study at the University of Toronto,Canadathe Pakistan Science Foundation&NSFC for the joint venture under the project(PSF-NSFC/JSEP/BIO/COAU(04))surpported by the Innovation Program of Shanghai Municipal Education Commission(2023ZKZD36).
文摘Mountains serve as exceptional natural laboratories for studying biodiversity due to their heterogeneous landforms and climatic zones.The Himalaya,a global biodiversity hotspot,hosts rich endemic flora,supports vital ecosystem functions,and offers a unique window into multifaceted plant diversity patterns.This review synthesizes research on Himalayan plant diversity,including species,phylogenetic,functional,and genetic dimensions,highlighting knowledge gaps and solutions.Research on Himalayan plant diversity has developed significantly.However,gaps remain,especially in studies on phylogenetic and functional diversity.The region's vegetation ranges from tropical rainforests to alpine ecosystems,with species richness typically following a hump-shaped distribution along elevation gradients.The eastern Himalaya exhibits higher plant diversity than the central and western regions.Low-elevation communities were found to be more functionally diverse,whereas high-elevation communities displayed greater ecological specialization.Communities at mid-elevations tend to show greater phylogenetic diversity than those at higher and lower elevations.The eastern and western flanks of the Himalaya retain high levels of genetic diversity and serve as glacial refugia,whereas the central region acts as a hybrid zone for closely related species.Himalayan plant diversity is shaped by historical,climatic,ecological and anthropogenic factors across space and time.However,this rich biodiversity is increasingly threatened by environmental change and growing anthropogenic pressures.Unfortunately,research efforts are constrained by spatial biases and the lack of transnational initiatives and collaborative studies,which could significantly benefit from interdisciplinary approaches,and other coordinated actions.These efforts are vital to safeguarding the Himalayan natural heritage.
文摘This study was carried out to assess plasticity to drought of 30 adult fig cultivars,based on a screening of leaf structural and functional traits under sustained deficit irrigation,corresponding to 60%of crop evapotranspiration.All trees,three per cultivar,are planted in an ex-situ collection in Sais plain,northern Morocco.The measurements concerned leaf area,blade thickness,trichomes density,trichome hair length,stomatal density,stomatal dimensions,stomatal area index,chlorophyll concentration index,relative water content,stomatal conductance,leaf temperature,water loss in detached leaves,cuticular wax content,proline content,total phenolic compounds,and total soluble sugars.The ranking of cultivars regarding drought tolerance was established based on a two-level clustering approach,primarily relying on chlorophyll concentration index and secondarily on water status traits.Results showed significant genotypic variations for all measured traits,except phenolic compounds content.Correlations between structural and functional traits have pinpointed blade thickness and trichome hair length as the key indicators of fig drought tolerance,owing to their involvement in maintaining chlorophyll content under water stress conditions.The extent of the variations shows that fig leaf is endowed with a wide structural and functional diversity,which can give to the species potential for resilience to various environmental stresses,including drought.Among the cultivars assessed,two exotic varieties,“Kadota”and“Royal Blanck”,as well as four local cultivars,namely,“Ferqouch Jmel”,“El Qoti Labied”,“Hamra”and“Fassi”showed the highest drought plasticity level.
基金Supported by National Modern Agricultural Technology System(CARS-46)NationalSci-tech Support Plan(2012BAD25B05,2012BAD25B01)National Department PublicBenefit Research Foundation(201203083)~~
文摘With Biolog Eco microplate, metabolic characteristics and functional diver-sity of carbon source in microflora of ponds were researched based on recitculating ponds and control ponds in order to explore effects of eco-adjustments on microflo-ra in ponds. The results indicate that total number of bacterium, microbial metabolism activity, and diversity index in P7, P8, P1 and P2 kept higher, fol owed by P3, P4, P5 and P6. The utilization rate of microbes on sugars achieved the highest (31.0%-48.7%), fol owed by carboxylic acid (13.4%-18.0%), amino acid (10.1%-20.5%), polymers (9.4%-17.0%), biopolymer (5.7%-9.7%) and phenol (4.95%-7.50%). Principal component analysis divided microflora in different ponds, suggesting that microbial community has varied carbon source characteristics and nitrogen-containing compound and biopolymer metabolisms are most affected.
基金supported by the National Natural Science Foundation of China (Grant No. 30670344)the Hangzhou Municipal Bureau of Forestry and Water Resources
文摘Given the rapid rise in human population and increasing urbanization,it is important to understand their potential impacts on biodiversity.From March 2007 to August 2007,we conducted bird surveys in 90 strip transects,each 3 km long and 100 m wide,along a gradient of urbanization in Hangzhou,China.This gradient spanned a range of urbanization levels including urban areas,rural-urban continuum areas,farming areas,mixed forest/farming areas and forested areas.We recorded 96 breeding bird species and classified them into nine functional groups based on nesting requirements.The nine functional groups consisted of canopy nesters,shrub nesters,canopy/shrub nesters,natural cavity nesters,building nesters,natural cavity/building nesters,ground nesters,water surface nesters and parasitic nesters.Species and functional diversities were estimated based on the Shannon-Wiener index.Environmental data of each transect as human disturbance,vegetation cover and building index were also measured,and a synthetic urbanization index of each transect was introduced based on these data.We used regression analyses to model the relationship of species abundance,species diversity,functional abundance and functional diversity with this synthetic index.The results show that urbanization significantly reduces species richness,species diversity,functional richness and functional diversity,but the specific patterns differed.The relationship between species abundance/species diversity and urbanization is linear.In contrast,the relationship between functional diversity and urbanization was quadratic.In other words,with increased urbanization,functional diversity declined only slightly at first but then dropped at an accelerating rate.This implies that,although moderate urbanization reduces species diversity of breeding birds,it affects functional diversity of breeding birds only slightly in Hangzhou.The regression analysis of species diversity and functional diversity suggests a quadratic relationship between species diversity and functional diversity,i.e.,a linear relationship between species diversity and functional diversity can only exist at low diversity levels across urbanization gradients and increasing species abundance does not lead to an increase in functional diversity at the highest diversity levels.
基金supported by the National Hi-Tech Research and Development Program (863) of China (No.2006AA06Z386, 2007AA06Z306)the China Postdoctor-al Science Foundation (No. 20070421174)+2 种基金the National Natural Science Foundation of China (No. 30771254)the Zhejiang Provincial Natural Science Foundation (No.Z306260)the National Key Technologies R&D Pro-gram of China (No. 2006BAI09B03)
文摘Degradation of chlorpyrifos at different concentrations in soil and its impact on soil microbial functional diversity were investigated under laboratory condition. The degradation half-live of chlorpyrifos at levels of 4, 8, and 12 mg/kg in soil were calculated to be 14.3, 16.7, and 18.0 d, respectively. The Biolog study showed that the average well color development (AWCD) in soils was significantly (P 〈 0.05) inhibited by chlorpyrifos within the first two weeks and thereafter recovered to a similar level as the control. A similar variation in the diversity indices (Simpson index lID and McIntosh index U) was observed, but no significant difference among the values of the Shannon-Wiener index H' was found in chlorpyrifos-treated soils. With an increasing chlorpyrifos concentration, the half-life of chlorpyrifos was significantly (P ≤ 0.05) extended and its inhibitory effect on soil microorganisms was aggravated. It is concluded that chlorpyrifos residues in soil had a temporary or short-term inhibitory effect on soil microbial functional diversity.
基金the National Natural Science Foundation of China (No.40321101)the Ministry of Science and Technology of China (No.2005CB121105) the Knowledge Innovation Program of the Chinese Academy of Sciences(Nos.KZCX1-SW-19 and KZCX2-YW-408).
文摘An experiment with seven N, P, K-fertilizer treatments, i.e., control (no fertilizer), NP, NK, PK, NPK, NP2K, and NPK2 where P2 and K2 indicate double amounts of P and K fertilizers respectively, was conducted to examine the effect of long-term continuous application of chemical fertilizers on microbial biomass and functional diversity of a black soil (Udoll in the USDA Soil Taxonomy) in Northeast China. The soil microbial biomass C ranged between 94 and 145 mg kg-1, with the NK treatment showing a lower biomass; the functional diversity of soil microbial community ranged from 4.13 to 4.25, with an increasing tendency from control to double-fertilizer treatments, and to triple-fertilizer treatments. The soil microbial biomass, and the microbial functional diversity and evenness did not show any significant differences among the different fertilizer treatments including control, suggesting that the long-term application of chemical fertilization would not result in significant changes in the microbial characteristics of the black soil.
基金supported by the Genetically Modified Organisms Breeding Major Projects (No. 2009ZX08011-014B, 2009ZX08011-008B)the Major State Basic Research Development Programme of China (No.2009CB119006)the National Natural Science Foundation of China (No. 20877068, 30771254)
文摘With the development of transgenic crops, there is an increasing concern about the possible adverse effects of their vegetation and residues on soil environmental quality. This study was carried out to evaluate the possible effects of the vegetation of transgenic Bt rice lines Huachi B6 (HC) and TT51 (TT) followed by the return of their straw to the soil on soil enzymes (catalase, urease, neutral phosphatase and invertase), anaerobic respiration activity, microbial utilization of carbon substrates and community structure, under field conditions. The results indicated that the vegetation of the two transgenic rice lines (HC and TT) and return of their straw had few adverse effects on soil enzymes and anaerobic respiration activity compared to their parent and distant parent, although some transient differences were observed. The vegetation and subsequent straw amendment of Bt rice HC and TT did not appear to have a harmful effect on the richness, evenness and community structure of soil microorganisms. No different pattern of impact due to plant species was found between HC and TT. It could be concluded that the vegetation of transgenic Bt rice lines and the return of their straw as organic fertilizer may not alter soil microbe-mediated functions.
基金the National Natural Sciences Foundation of China (Nos40171054 and 40125005)the National Key Basic Research Support Foundation of China (No2002CB410809/10)
文摘Copper (Cu) mine tailings, because of their high content of heavy metals, are usually hostile to plant colonization. A pot experiment was conducted to determine the tolerance of four forage grasses to heavy metals in Cu mine tailings and to examine the variation in the microbial functional diversity of soils from the tailing sites in southern China. All the four grass species survived on Cu mine tailings and Cu mine tailing-soil mixture. However, on pure mine tailings, the growth was minimal, whereas the growth was maximum for the control without mine tailings. The tolerance of grasses to heavy metals followed the sequence: Paspalum notatum 〉 Festuea arundinaeea 〉 Lolium perenne 〉 Cynodon daetylon. The planting of forage grasses enhanced the soil microbial biomass. The Biolog data indicated that the soil microbial metabolic profile values (average well color development, community richness, and Shannon index) of the four forage grasses also followed the sequence: P. notatum 〉 F. arundinaeea 〉 L. perenne 〉 C. daetylon. Thus, P. notatum, under the experimental conditions of this study, may be considered as the preferred plant species for revegetation of Cu mine tailing areas.
基金This work was supported by the Special Fund for the National Key R&D Programof China(Grant No.2016YFD0201100)National Natural Science Foundation of China(Grant No.31501713)+1 种基金China Agriculture Research System(Grant No.CARS-27)and Taishan Scholar Assistance Program from Shandong Provincial Government.
文摘Soil microbial communities play an essential role in maintaining soil fertility and are considered as ecological indicators to evaluate soil health.In the present study,we examined the influence of almost 4 years of fertilization[no fertilizer(CK),nitrogen alone(N),nitrogen,phosphorus and potassium chemical fertilizer(NPK),organicmanure(M),nitrogen plus organic manure(NM),and NPK plus organic manure(NPKM)]on soil fertility and the functional diversity of soil microbial communities in an apple orchard.Compared to CK,fertilization increased soil organic carbon,total nitrogen,and available nutrients,but reduced soil pH in N and NPK treatments.The highest microbial biomass carbon and nitrogen,most probable number of actinomycetes,bacteria,and fungi occurred in the NPKM treatment.The average well color development(AWCD)values followed the order of NPKM>M>NPK and NM>CK and N.The Shannon index in organic manure treatments were significantly higher than in control and in treatments without organic manure.The principal component analysis showed that manure treatment was significantly separated from other treatments.These results indicated that organic manure applied alone or in combination with chemical fertilizers would increase soil fertility and functional diversity of soil microbial communities.Moreover,applying balanced N,P,K fertilizer in combination with organic manure was found to be superior to the use of a single fertilizer in improving soil microbial community quality.
基金Project(2009QNA6015) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(Y3110055)supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(Y200803219) supported by the Foundation of Zhejiang Educational Committee of China
文摘The relationship between Solidago canadensis L. invasion and soil microbial community diversity including functional and structure diversities was studied across the invasive gradients varying from 0 to 40%, 80%, and 100% coverage of Solidago canadensis L. using sole carbon source utilization profiles analyses, principle component analysis (PCA) and phospholipid fatty acids (PLFA) profiles analyses. The results show the characteristics of soil microbial community functional and structure diversity in invaded soils strongly changed by Solidago canadensis L. invasion. Solidago canadensis L. invasion tended to result in higher substrate richness, and functional diversity. As compared to the native and ecotones, average utilization of specific substrate guilds of soil microbe was the highest in Solidago canadensis L. monoculture. Soil microbial functional diversity in Solidago canadensis L. monoculture was distinctly separated from the native area and the ecotones. Aerobic bacteria, fungi and actinomycetes population significantly increased but anaerobic bacteria decreased in the soil with Solidago canadensis L. monoculture. The ratio of cyl9:0 to 18:1 co7 gradually declined but mono/sat and fung/bact PLFAs increased when Solidago canadensis L. became more dominant. The microbial community composition clearly separated the native soil from the invaded soils by PCA analysis, especially 18: lco7c, 16: lco7t, 16: lco5c and 18:2co6, 9 were present in higher concentrations for exotic soil. In conclusion, Solidago canadensis L. invasion could create better soil conditions by improving soil microbial community structure and functional diversity, which in turn was more conducive to the growth ofSolidago canadensis L.
基金the National Natural Science Foundation of China (40471066) the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX3-SW-417).
文摘Changes in soil biological and biochemical properties under different land uses in the subtropical region of China were investigated in order to develop rational cultivation and fertilization management. A small watershed of subtropical region of China was selected for this study. Land uses covered paddy fields, vegetable farming, fruit trees, upland crops, bamboo stands, and forestry. Soil biological and biochemical properties included soil organic C and nutrient contents, mineralization of soil organic C, and soil microbial biomass and community functional diversity. Soil organic C and total N contents, microbial biomass C and N, and respiration intensity under different land uses were changed in the following order: paddy fields (and vegetable farming) 〉 bamboo stands 〉 fruit trccs (and upland). The top surface (0-15 cm) paddy fields (and vegetable farming) were 76.4 and 80.8% higher in soil organic C and total N contents than fruit trees (and upland) soils, respectively. Subsurface paddy soils (15-30 cm) were 59.8 and 67.3% higher in organic C and total N than upland soils, respectively. Soil microbial C, N and respiration intensity in paddy soils (0-15 cm) were 6.36, 3.63 and 3.20 times those in fruit tree (and upland) soils respectively. Soil microbial metabolic quotient was in the order: fruit trees (and upland) 〉 forestry 〉 paddy fields. Metabolic quotient in paddy soils was only 47.7% of that in fruit tree (and upland) soils. Rates of soil organic C mineralization during incubation changed in the order: paddy fields 〉 bamboo stands 〉 fruit trees (and upland) and soil bacteria population: paddy fields 〉 fruit trees (and upland) 〉 forestry. No significant difference was found for fungi and actinomycetes populations. BIOLOG analysis indicated a changing order of paddy fields 〉 fruit trees (and upland) 〉 forestry in values of the average well cell development (AWCD) and functional diversity indexes of microbial community. Results also showed that the conversion from paddy fields to vegetable farming for 5 years resulted in a dramatic increase in soil available phosphorus content while insignificant changes in soil organic C and total N content due to a large inputs of phosphate fertilizers. This conversion caused 53, 41.5, and 41.3% decreases in soil microbial biomass C, N, and respiration intensity, respectively, while 23.6% increase in metabolic quotient and a decrease in soil organic C mineralization rate. Moreover, soil bacteria and actinomycetes populations were increased slightly, while fungi population increased dramatically. Functional diversity indexes of soil microbial community decreased significantly. It was concluded that land uses in the subtropical region of China strongly affected soil biological and biochemical properties. Soil organic C and nutrient contents, mineralization of organic C and functional diversity of microbial community in paddy fields were higher than those in upland and forestry. Overuse of chemical fertilizers in paddy fields with high fertility might degrade soil biological properties and biochemical function, resulting in deterioration of soil biological quality.
基金The National Natural Science Foundation of China as an Outstanding Youth Fund grant (No. 20225722) the National NaturalScience Foundation for the Joint China-Russia Project (No. 20611120015)
文摘Ecological effects of crude oil residues on weed rhizospheres are still vague. The quantitative and diversity changes and metabolic responses of soil-bacterial communities in common dandelion (Taraxacum officinale), jerusalem artichoke (Silphiurn perfoliatum L.) and evening primrose (A colypha australis L.) rhizospheric soils were thus examined using the method of carbon source utilization. The results indicated that there were various toxic effects of crude oil residues on the growth and reproduction of soil bacteria, but the weed rhizospheres could mitigate the toxic effects. Total heterotrophic counting colony-forming units (CFUs) in the rhizospheric soils were significantly higher than those in the non-rhizospheric soils. The culturable soil-bacterial CFUs in the jerusalem artichoke (S. perfoliatum) rhizosphere polluted with 0.50 kg/pot of crude oil residues were almost twice as much as those with 0.25 kg/pot and without the addition of crude oil residues. The addition of crude oil residues increased the difference in substrate evenness, substrate richness, and substrate diversity between non-rhizospheric and rhizospheric soils of T. officinale and A. australis, but there was no significant (p〉0.05) difference in the Shannon's diversity index between non-rhizospheric and rhizospheric soils of S. perfoliatum. The rhizospheric response of weed species to crude oil residues suggested that S. perfoliatum may be a potential weed species for the effective plant-microorganism bioremediation of contaminated soils by crude oil residues.
基金supported by the National Key Basic Research Program of China (2014CB954100)the Ministry of Science and Technology of the People's Republic of China (2012FY110800)the Applied Fundamental Research Foundation of Yunnan Province (2014GA003)
文摘Characterizing trait variation across different ecological scales in plant communities has been viewed as a way to gain insights into the mechanisms driving species coexistence.However,little is known about how changes in intraspecific and interspecific traits across sites influence species richness and community assembly,especially in understory herbaceous communities.Here we partitioned the variance of four functional traits(maximum height,leaf thickness,leaf area and specific leaf area)across four nested biological scales:individual,species,plot,and elevation to quantify the scale-dependent distributions of understory herbaceous trait variance.We also integrated the comparison of the trait variance ratios to null models to investigate the effects of different ecological processes on community assembly and functional diversity along a 1200-m elevational gradient in Yulong Mountain.We found interspecific trait variation was the main trait variation component for leaf traits,although intraspecific trait variation ranged from 10% to 28% of total variation.In particular,maximum height exhibited high plasticity,and intraspecific variation accounted for 44% of the total variation.Despite the fact that species composition varied across elevation and species richness decreased dramatically along the elevational gradient,there was little variance at our largest(elevation)scale in leaf traits and functional diversity remained constant along the elevational gradient,indicating that traits responded to smaller scale influences.External filtering was only observed at high elevations.However,strong internal filtering was detected along the entire elevational gradient in understory herbaceous communities,possibly due to competition.Our results provide evidence that species coexistence in understory herbaceous communities might be structured by differential niche-assembled processes.This approach ee integrating different biological scales of trait variation ee may provide a better understanding of the mechanisms involved in the structure of communities.
基金supported by China Scholarship Council (CSC)supported by the National Natural Science Foundation of China (31700353)+2 种基金the National Key Research and Development Program of China (2017YFC0505202)the West Light Foundation of Chinese Academy of Sciences (2016XBZG_XBQNXZ_ B_007)China Biodiversity Observation Networks (Sino BON)
文摘Understanding the relationships between species, communities, and biodiversity are important challenges in conservation ecology. Current biodiversity conservation activities usually focus on species that are rare, endemic, distinctive, or at risk of extinction. However, empirical studies of whether such species contribute more to aspects of biodiversity than common species are still relatively rare. The aim of the present study was to assess the contribution of individual amphibian species to different facets of biodiversity, and to test whether species of conservation interest contribute more to taxonomic, functional, and phylogenetic diversity than do species without special conservation status. To answer these questions, 19 000 simulated random communities with a gradient of species richness were created by shuffling the regional pool of species inhabiting Emei Mountain. Differences of diversity values were then computed before and after removing individual species in these random communities. Our results indicated that although individual species contributed similarly to taxonomic diversity, their contribution to functional and phylogenetic diversity was more idiosyncratic. This was primarily driven by the diverse functional attributes of species and the differences in phylogenetic relationships among species. Additionally, species of conservation interest did not show a significantly higher contribution to any facet of biodiversity. Our results support the claims that the usefulness of metrics based only on species richness is limited. Instead, assemblages that include species with functional and phylogenetic diversity should be protected to maintain biodiversity.