As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft ele...As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft electrical power distribution system based on the distributed computer system is proposed. The principles, features and structure of the aircraft electrical power distribution system and the distributed computer system named electrical load management system (ELMS) are studied. The ELMS composed of four electrical load management centers (ELMCs) and two power source processors (PSPs) operates in the 1553B buses. Principles of the ELMCs and the PSPs are introduced. With the application of the distributed computer system, the aircraft electrical power distribution system is simple, adaptable and flexible.展开更多
Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded...Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields.展开更多
Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the p...Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the production line,the manufacturing layer and the workshop layer.The dynamics of re-entrant production lines are governed by hyperbolic partial differential equations(PDEs)based on the law of mass conservation.展开更多
Steam power systems(SPSs)in industrial parks are the typical utility systems for heat and electricity supply.In SPSs,electricity is generated by steam turbines,and steam is generally produced and supplied at multiple ...Steam power systems(SPSs)in industrial parks are the typical utility systems for heat and electricity supply.In SPSs,electricity is generated by steam turbines,and steam is generally produced and supplied at multiple levels to serve the heat demands of consumers with different temperature grades,so that energy is utilized in cascade.While a large number of steam levels enhances energy utilization efficiency,it also tends to cause a complex steam pipeline network in the industrial park.In practice,a moderate number of steam levels is always adopted in SPSs,leading to temperature mismatches between heat supply and demand for some consumers.This study proposes a distributed steam turbine system(DSTS)consisting of main steam turbines on the energy supply side and auxiliary steam turbines on the energy consumption side,aiming to balance the heat production costs,the distance-related costs,and the electricity generation of SPSs in industrial parks.A mixed-integer nonlinear programming model is established for the optimization of SPSs,with the objective of minimizing the total annual cost(TAC).The optimal number of steam levels and the optimal configuration of DSTS for an industrial park can be determined by solving the model.A case study demonstrates that the TAC of the SPS is reduced by 220.6×10^(3)USD(2.21%)through the arrangement of auxiliary steam turbines.The sub-optimal number of steam levels and a non-optimal operating condition slightly increase the TAC by 0.46%and 0.28%,respectively.The sensitivity analysis indicates that the optimal number of steam levels tends to decrease from 3 to 2 as electricity price declines.展开更多
Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitation...Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitations: They either fail to address more complex nonlinear phenomena, rely on hard-to-verify assumptions, or encounter difficulties in solving system parameters.Consequently, this paper aims to address these challenges by investigating distributed observers for nonlinear systems through the full-measured canonical form(FMCF), which is inspired by full-measured system(FMS) theory. To begin with, this study addresses the fact that the FMCF can only be obtained through the observable canonical form(OCF) in existing FMS theories.The paper demonstrates that a class of nonlinear systems can directly obtain FMCF through state space equations, independent of OCF. Also, a general method for solving FMCF in such systems is provided. Furthermore, based on the FMCF, A distributed observer is developed for nonlinear systems under two scenarios: Lipschitz conditions and open-loop bounded conditions.The paper establishes their asymptotic omniscience and demonstrates that the designed distributed observer in this study has fewer design parameters and is more convenient to construct than existing approaches. Finally, the effectiveness of the proposed methods is validated through simulation results on Van der Pol oscillators and microgrid systems.展开更多
Waveform generation and digitization play essential roles in numerous physics experiments.In traditional distributed systems for large-scale experiments,each frontend node contains an FPGA for data preprocessing,which...Waveform generation and digitization play essential roles in numerous physics experiments.In traditional distributed systems for large-scale experiments,each frontend node contains an FPGA for data preprocessing,which interfaces with various data converters and exchanges data with a backend central processor.However,the streaming readout architecture has become a new paradigm for several experiments benefiting from advancements in data transmission and computing technologies.This paper proposes a scalable distributed waveform generation and digitization system that utilizes fiber optical connections for data transmission between frontend nodes and a central processor.By utilizing transparent transmission on top of the data link layer,the clock and data ports of the converters in the frontend nodes are directly mapped to the FPGA firmware at the backend.This streaming readout architecture reduces the complexity of frontend development and maintains the data conversion in proximity to the detector.Each frontend node uses a local clock for waveform digitization.To translate the timing information of events in each channel into the system clock domain within the backend central processing FPGA,a novel method is proposed and evaluated using a demonstrator system.展开更多
Distributed computing is an important topic in the field of wireless communications and networking,and its high efficiency in handling large amounts of data is particularly noteworthy.Although distributed computing be...Distributed computing is an important topic in the field of wireless communications and networking,and its high efficiency in handling large amounts of data is particularly noteworthy.Although distributed computing benefits from its ability of processing data in parallel,the communication burden between different servers is incurred,thereby the computation process is detained.Recent researches have applied coding in distributed computing to reduce the communication burden,where repetitive computation is utilized to enable multicast opportunities so that the same coded information can be reused across different servers.To handle the computation tasks in practical heterogeneous systems,we propose a novel coding scheme to effectively mitigate the "straggling effect" in distributed computing.We assume that there are two types of servers in the system and the only difference between them is their computational capabilities,the servers with lower computational capabilities are called stragglers.Given any ratio of fast servers to slow servers and any gap of computational capabilities between them,we achieve approximately the same computation time for both fast and slow servers by assigning different amounts of computation tasks to them,thus reducing the overall computation time.Furthermore,we investigate the informationtheoretic lower bound of the inter-communication load and show that the lower bound is within a constant multiplicative gap to the upper bound achieved by our scheme.Various simulations also validate the effectiveness of the proposed scheme.展开更多
With the advent of in-wheel motors and corner modules,the structure of vehicle chassis subsystems has shifted from traditionally centralized to distributed.This review focuses on the distributed chassis system(DCS)equ...With the advent of in-wheel motors and corner modules,the structure of vehicle chassis subsystems has shifted from traditionally centralized to distributed.This review focuses on the distributed chassis system(DCS)equipped with corner modules.It first provides a comprehensive summary and description of the revolution of the structure and control methods of vehicle chassis systems(including driving,braking,suspension,and steering systems).Given that DCS integrates various chassis subsystems,this review moves beyond individual subsystem analysis and delves into the coordination of these subsystems at the vehicle level.It provides a detailed summary of the methods and architectures used for integrated coordination and control,ensuring that multiple subsystems can function seamlessly as an integrated whole.Finally,this review summarizes the latest distributed control architecture for DCS.It also examines current control theories in the fields of control and information technology for distributed systems,such as multi-agent systems and cyber-physical systems.Based on these two control approaches,a multi-domain cooperative control framework for DCS is proposed.展开更多
This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer mult...This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer multiple of the state update period. The focus is on scenarios where the correlations among Measurement Noises(MNs) from different sensors are unknown. Firstly, a non-augmented local estimator that applies to sampling cases is designed to provide unbiased Local Estimates(LEs) at the fusion points. Subsequently, a measurement-equivalent approach is then developed to parameterize the correlation structure between LEs and reformulate LEs into a unified form, thereby constraining the correlations arising from MNs to an admissible range. Simultaneously, a family of upper bounds on the joint error covariance matrix of LEs is derived based on the constrained correlations, avoiding the need to calculate the exact error cross-covariance matrix of LEs. Finally, a sequential fusion estimator is proposed in the sense of Weighted Minimum Mean Square Error(WMMSE), and it is proven to be unbiased, consistent, and more accurate than the well-known covariance intersection method. Simulation results illustrate the effectiveness of the proposed algorithm by highlighting improvements in consistency and accuracy.展开更多
Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under dir...Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under directed graph to estimate the relative information between each follower robot and the leader robot.Then the formation control problem is transformed into the tracking problem and a finite-time tracking controller is proposed based on the robot model feature.展开更多
This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise co...This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.展开更多
The rapid development of artificial intelligence(AI)technology,particularly breakthroughs in branches such as deep learning,reinforcement learning,and federated learning,has provided powerful technical tools for addre...The rapid development of artificial intelligence(AI)technology,particularly breakthroughs in branches such as deep learning,reinforcement learning,and federated learning,has provided powerful technical tools for addressing these core bottlenecks.This paper provides a systematic review of the research background,technological evolution,core systems,key challenges,and future directions of AI technology in the field of distributed photovoltaic power generation system optimization.At the same time,this paper analyzes the current technical bottlenecks and cutting-edge response strategies.Finally,it explores fusion innovation directions such as quantum-classical hybrid algorithms and neural symbolic systems,as well as business model expansion paths such as carbon finance integration and community energy autonomy.展开更多
In this paper,the distributed optimal formation control problem of heterogeneous Euler–Lagrange multi-agent systems with generic formation constraints and inequality constraints is investigated.Based on the primal–d...In this paper,the distributed optimal formation control problem of heterogeneous Euler–Lagrange multi-agent systems with generic formation constraints and inequality constraints is investigated.Based on the primal–dual dynamics and the adaptive control technique,a distributed optimal formation controller consists of a velocity reference signal generator and a velocity tracking controller is proposed.By using the optimality condition,the relationship between the equilibrium point of the closed-loop system and the optimal solution of the optimization problem is established.Then,by utilizing Lyapunov stability analysis,it is rigorously proved that the optimal formation is reached with the proposed controller.Lastly,simulation examples are provided to substantiate the theoretical results.展开更多
In this paper, distributed event-triggered performance constraint control is proposed for Heterogeneous Multiagent Systems (HMASs) including quadrotor unmanned aerial vehicles and unmanned ground vehicles in the prese...In this paper, distributed event-triggered performance constraint control is proposed for Heterogeneous Multiagent Systems (HMASs) including quadrotor unmanned aerial vehicles and unmanned ground vehicles in the presence of unknown external disturbances. To tackle the problem of different dynamic characteristics and facilitate the controller design, the virtual variable is introduced in the z axis of the nonlinear model of unmanned ground vehicles. By using this approach, a universal model is established for the HMAS. Moreover, a distributed disturbance observer is established to cope with the adverse influence of the external disturbances. Then, an Appointed-Time Prescribed Performance Function (ATPPF) is designed to restrict the tracking error in the predefined regions. On this basis, the distributed performance constraint controller is proposed for the HMAS based on the ATPPF and the distributed disturbance observer. Furthermore, the improved event-triggered mechanism is proposed with a dynamic threshold, which depends on the distance between the tracking error and the boundary of the ATPPF. Finally, the effectiveness of the proposed control method is verified by the comparative experiments on an HMAS.展开更多
Rational distribution network planning optimizes power flow distribution,reduces grid stress,enhances voltage quality,promotes renewable energy utilization,and reduces costs.This study establishes a distribution netwo...Rational distribution network planning optimizes power flow distribution,reduces grid stress,enhances voltage quality,promotes renewable energy utilization,and reduces costs.This study establishes a distribution network planning model incorporating distributed wind turbines(DWT),distributed photovoltaics(DPV),and energy storage systems(ESS).K-means++is employed to partition the distribution network based on electrical distance.Considering the spatiotemporal correlation of distributed generation(DG)outputs in the same region,a joint output model of DWT and DPV is developed using the Frank-Copula.Due to the model’s high dimensionality,multiple constraints,and mixed-integer characteristics,bilevel programming theory is utilized to structure the model.The model is solved using a mixed-integer particle swarmoptimization algorithm(MIPSO)to determine the optimal location and capacity of DG and ESS integrated into the distribution network to achieve the best economic benefits and operation quality.The proposed bilevel planning method for distribution networks is validated through simulations on the modified IEEE 33-bus system.The results demonstrate significant improvements,with the proposedmethod reducing the annual comprehensive cost by 41.65%and 13.98%,respectively,compared to scenarios without DG and ESS or with only DG integration.Furthermore,it reduces the daily average voltage deviation by 24.35%and 10.24%and daily network losses by 55.72%and 35.71%.展开更多
Multicomputer systems(distributed memory computer systems) are becoming more and more popular and will be wildly used in scientific researches. In this paper, we present a parallel algorithm of Fourier Transform of a ...Multicomputer systems(distributed memory computer systems) are becoming more and more popular and will be wildly used in scientific researches. In this paper, we present a parallel algorithm of Fourier Transform of a vector of complex numbers on multicomputer system and give its computing times and its speedup in parallel environment supported by EXPRESS system on the multicomputer system which consists of four SGI workstations. Our analysis shows that the results is ideal and this scheme is suitable to multicomputer systems.展开更多
Using remote method invocation (RMI) and a distributed object-oriented technique, this paper presents a systematic approach to developing a manufacturing execution system (MES) framework, which is open, modularized, d...Using remote method invocation (RMI) and a distributed object-oriented technique, this paper presents a systematic approach to developing a manufacturing execution system (MES) framework, which is open, modularized, distributed, configurable, interoperable and maintainable. Moreover, the design patterns for the framework .are developed and a variety of functional components are designed by inheriting appropriate patterns. And then an application is constructed by invoking corresponding methods of related components. An MES system implementing the framework and design patterns can be facilely integrated with other manufacturing applications, such as enterprise resource planning (ERP) and floor control system (FCS) .展开更多
To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model...To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model mainly consists of two parts, the determination of initial configuration schemes according to user preference and the selection of the optimal scheme. The comprehensive evaluation index(CEI), which is acquired through the analytic hierarchy process(AHP) weight calculation method, is adopted as the evaluation criterion to rank the initial schemes. The optimal scheme is obtained according to the ranking results. The proposed model takes the diversity of different equipment parameters and investment cost into consideration and can give relatively suitable and economical suggestions for system configuration.Additionally, unlike Homer Pro, the proposed model considers the complementation of different renewable energy resources, and thus the rationality of the multi-energy DG system is improved compared with the single evaluation criterion method which only considers the total cost.展开更多
The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked age...The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.展开更多
A remote antenna unit (RAU) selection model is presented, and two kinds of handoffs, intra-cell handoff (HO) and inter-cell HO, are defined in distributed mobile communications systems (DAS). After that, an inte...A remote antenna unit (RAU) selection model is presented, and two kinds of handoffs, intra-cell handoff (HO) and inter-cell HO, are defined in distributed mobile communications systems (DAS). After that, an inter-cell HO model is proposed, in which the average power of the active set (AS) is used to predict the position of the mobile station (MS). The total power of the AS and the handoff set (HOS) are utilized to determine whether an inter-cell HO is necessary. Furthermore, the relationship between HO parameters and performance metrics is studied in detail based on RAU selection. Simulation results show that both the intra-cell HO and the inter-cell HO can achieve oerfect performance by aoprooriate settings of HO parameters.展开更多
文摘As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft electrical power distribution system based on the distributed computer system is proposed. The principles, features and structure of the aircraft electrical power distribution system and the distributed computer system named electrical load management system (ELMS) are studied. The ELMS composed of four electrical load management centers (ELMCs) and two power source processors (PSPs) operates in the 1553B buses. Principles of the ELMCs and the PSPs are introduced. With the application of the distributed computer system, the aircraft electrical power distribution system is simple, adaptable and flexible.
基金supported by the National Natural Science Foundation of China(62303273,62373226)the National Research Foundation,Singapore through the Medium Sized Center for Advanced Robotics Technology Innovation(WP2.7)
文摘Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields.
文摘Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the production line,the manufacturing layer and the workshop layer.The dynamics of re-entrant production lines are governed by hyperbolic partial differential equations(PDEs)based on the law of mass conservation.
基金Financial support from the National Natural Science Foundation of China under Grant(22393954 and 22078358)is gratefully acknowledged.
文摘Steam power systems(SPSs)in industrial parks are the typical utility systems for heat and electricity supply.In SPSs,electricity is generated by steam turbines,and steam is generally produced and supplied at multiple levels to serve the heat demands of consumers with different temperature grades,so that energy is utilized in cascade.While a large number of steam levels enhances energy utilization efficiency,it also tends to cause a complex steam pipeline network in the industrial park.In practice,a moderate number of steam levels is always adopted in SPSs,leading to temperature mismatches between heat supply and demand for some consumers.This study proposes a distributed steam turbine system(DSTS)consisting of main steam turbines on the energy supply side and auxiliary steam turbines on the energy consumption side,aiming to balance the heat production costs,the distance-related costs,and the electricity generation of SPSs in industrial parks.A mixed-integer nonlinear programming model is established for the optimization of SPSs,with the objective of minimizing the total annual cost(TAC).The optimal number of steam levels and the optimal configuration of DSTS for an industrial park can be determined by solving the model.A case study demonstrates that the TAC of the SPS is reduced by 220.6×10^(3)USD(2.21%)through the arrangement of auxiliary steam turbines.The sub-optimal number of steam levels and a non-optimal operating condition slightly increase the TAC by 0.46%and 0.28%,respectively.The sensitivity analysis indicates that the optimal number of steam levels tends to decrease from 3 to 2 as electricity price declines.
基金supported by the National Natural Science Foundation of China(62133008,62303273,62188101,62373226,62473173)Young Taishan Scholars Program of Shandong Province of China(tsqn202408206)+2 种基金a Project of Shandong Province Higher Educational Youth and Innovation Talent Introduction and Education Programthe Natural Science Foundation of Shandong Province,China(ZR2023QF072)China Postdoctoral Science Foundation(2022M721932)
文摘Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitations: They either fail to address more complex nonlinear phenomena, rely on hard-to-verify assumptions, or encounter difficulties in solving system parameters.Consequently, this paper aims to address these challenges by investigating distributed observers for nonlinear systems through the full-measured canonical form(FMCF), which is inspired by full-measured system(FMS) theory. To begin with, this study addresses the fact that the FMCF can only be obtained through the observable canonical form(OCF) in existing FMS theories.The paper demonstrates that a class of nonlinear systems can directly obtain FMCF through state space equations, independent of OCF. Also, a general method for solving FMCF in such systems is provided. Furthermore, based on the FMCF, A distributed observer is developed for nonlinear systems under two scenarios: Lipschitz conditions and open-loop bounded conditions.The paper establishes their asymptotic omniscience and demonstrates that the designed distributed observer in this study has fewer design parameters and is more convenient to construct than existing approaches. Finally, the effectiveness of the proposed methods is validated through simulation results on Van der Pol oscillators and microgrid systems.
基金supported by the National Key Research and Development Program of China(No.2022YFA1604703)the National Natural Science Foundation of China(No.12375189)the National Key Research and Development Program of China(No.2021YFA1601300)。
文摘Waveform generation and digitization play essential roles in numerous physics experiments.In traditional distributed systems for large-scale experiments,each frontend node contains an FPGA for data preprocessing,which interfaces with various data converters and exchanges data with a backend central processor.However,the streaming readout architecture has become a new paradigm for several experiments benefiting from advancements in data transmission and computing technologies.This paper proposes a scalable distributed waveform generation and digitization system that utilizes fiber optical connections for data transmission between frontend nodes and a central processor.By utilizing transparent transmission on top of the data link layer,the clock and data ports of the converters in the frontend nodes are directly mapped to the FPGA firmware at the backend.This streaming readout architecture reduces the complexity of frontend development and maintains the data conversion in proximity to the detector.Each frontend node uses a local clock for waveform digitization.To translate the timing information of events in each channel into the system clock domain within the backend central processing FPGA,a novel method is proposed and evaluated using a demonstrator system.
基金supported by NSF China(No.T2421002,62061146002,62020106005)。
文摘Distributed computing is an important topic in the field of wireless communications and networking,and its high efficiency in handling large amounts of data is particularly noteworthy.Although distributed computing benefits from its ability of processing data in parallel,the communication burden between different servers is incurred,thereby the computation process is detained.Recent researches have applied coding in distributed computing to reduce the communication burden,where repetitive computation is utilized to enable multicast opportunities so that the same coded information can be reused across different servers.To handle the computation tasks in practical heterogeneous systems,we propose a novel coding scheme to effectively mitigate the "straggling effect" in distributed computing.We assume that there are two types of servers in the system and the only difference between them is their computational capabilities,the servers with lower computational capabilities are called stragglers.Given any ratio of fast servers to slow servers and any gap of computational capabilities between them,we achieve approximately the same computation time for both fast and slow servers by assigning different amounts of computation tasks to them,thus reducing the overall computation time.Furthermore,we investigate the informationtheoretic lower bound of the inter-communication load and show that the lower bound is within a constant multiplicative gap to the upper bound achieved by our scheme.Various simulations also validate the effectiveness of the proposed scheme.
基金Supported by National Natural Science Foundation of China(Grant Nos.52072072,52025121,52394263).
文摘With the advent of in-wheel motors and corner modules,the structure of vehicle chassis subsystems has shifted from traditionally centralized to distributed.This review focuses on the distributed chassis system(DCS)equipped with corner modules.It first provides a comprehensive summary and description of the revolution of the structure and control methods of vehicle chassis systems(including driving,braking,suspension,and steering systems).Given that DCS integrates various chassis subsystems,this review moves beyond individual subsystem analysis and delves into the coordination of these subsystems at the vehicle level.It provides a detailed summary of the methods and architectures used for integrated coordination and control,ensuring that multiple subsystems can function seamlessly as an integrated whole.Finally,this review summarizes the latest distributed control architecture for DCS.It also examines current control theories in the fields of control and information technology for distributed systems,such as multi-agent systems and cyber-physical systems.Based on these two control approaches,a multi-domain cooperative control framework for DCS is proposed.
基金supported by the National Natural Science Foundation of China (Nos. 62276204, 62203343)。
文摘This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer multiple of the state update period. The focus is on scenarios where the correlations among Measurement Noises(MNs) from different sensors are unknown. Firstly, a non-augmented local estimator that applies to sampling cases is designed to provide unbiased Local Estimates(LEs) at the fusion points. Subsequently, a measurement-equivalent approach is then developed to parameterize the correlation structure between LEs and reformulate LEs into a unified form, thereby constraining the correlations arising from MNs to an admissible range. Simultaneously, a family of upper bounds on the joint error covariance matrix of LEs is derived based on the constrained correlations, avoiding the need to calculate the exact error cross-covariance matrix of LEs. Finally, a sequential fusion estimator is proposed in the sense of Weighted Minimum Mean Square Error(WMMSE), and it is proven to be unbiased, consistent, and more accurate than the well-known covariance intersection method. Simulation results illustrate the effectiveness of the proposed algorithm by highlighting improvements in consistency and accuracy.
基金supported by the National Natural Science Foundation of China(62073113,62003122,62303148)the Fundamental Research Funds for the Central Universities(MCCSE2023A01,JZ2023HGTA0201,JZ2023HGQA0109)the Anhui Provincial Natural Science Foundation(2308085QF204)
文摘Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under directed graph to estimate the relative information between each follower robot and the leader robot.Then the formation control problem is transformed into the tracking problem and a finite-time tracking controller is proposed based on the robot model feature.
基金supported by the National Natural Science Foundation of China(61673130).
文摘This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.
文摘The rapid development of artificial intelligence(AI)technology,particularly breakthroughs in branches such as deep learning,reinforcement learning,and federated learning,has provided powerful technical tools for addressing these core bottlenecks.This paper provides a systematic review of the research background,technological evolution,core systems,key challenges,and future directions of AI technology in the field of distributed photovoltaic power generation system optimization.At the same time,this paper analyzes the current technical bottlenecks and cutting-edge response strategies.Finally,it explores fusion innovation directions such as quantum-classical hybrid algorithms and neural symbolic systems,as well as business model expansion paths such as carbon finance integration and community energy autonomy.
基金supported in part by the National Key Research and Development Program of China under Grant 2022YFB3303900in part by the National Natural Science Foundation of China under Grants 62103277 and 62025305。
文摘In this paper,the distributed optimal formation control problem of heterogeneous Euler–Lagrange multi-agent systems with generic formation constraints and inequality constraints is investigated.Based on the primal–dual dynamics and the adaptive control technique,a distributed optimal formation controller consists of a velocity reference signal generator and a velocity tracking controller is proposed.By using the optimality condition,the relationship between the equilibrium point of the closed-loop system and the optimal solution of the optimization problem is established.Then,by utilizing Lyapunov stability analysis,it is rigorously proved that the optimal formation is reached with the proposed controller.Lastly,simulation examples are provided to substantiate the theoretical results.
基金supported in part by the National Natural Science Foundation of China(Nos.U23B2036,U2013201).
文摘In this paper, distributed event-triggered performance constraint control is proposed for Heterogeneous Multiagent Systems (HMASs) including quadrotor unmanned aerial vehicles and unmanned ground vehicles in the presence of unknown external disturbances. To tackle the problem of different dynamic characteristics and facilitate the controller design, the virtual variable is introduced in the z axis of the nonlinear model of unmanned ground vehicles. By using this approach, a universal model is established for the HMAS. Moreover, a distributed disturbance observer is established to cope with the adverse influence of the external disturbances. Then, an Appointed-Time Prescribed Performance Function (ATPPF) is designed to restrict the tracking error in the predefined regions. On this basis, the distributed performance constraint controller is proposed for the HMAS based on the ATPPF and the distributed disturbance observer. Furthermore, the improved event-triggered mechanism is proposed with a dynamic threshold, which depends on the distance between the tracking error and the boundary of the ATPPF. Finally, the effectiveness of the proposed control method is verified by the comparative experiments on an HMAS.
基金This research was funded by“Chunhui Program”Collaborative Scientific Research Project of the Ministry of Education of the People’s Republic of China(Project No.HZKY20220242)the S&T Program of Hebei(Project No.225676163GH).
文摘Rational distribution network planning optimizes power flow distribution,reduces grid stress,enhances voltage quality,promotes renewable energy utilization,and reduces costs.This study establishes a distribution network planning model incorporating distributed wind turbines(DWT),distributed photovoltaics(DPV),and energy storage systems(ESS).K-means++is employed to partition the distribution network based on electrical distance.Considering the spatiotemporal correlation of distributed generation(DG)outputs in the same region,a joint output model of DWT and DPV is developed using the Frank-Copula.Due to the model’s high dimensionality,multiple constraints,and mixed-integer characteristics,bilevel programming theory is utilized to structure the model.The model is solved using a mixed-integer particle swarmoptimization algorithm(MIPSO)to determine the optimal location and capacity of DG and ESS integrated into the distribution network to achieve the best economic benefits and operation quality.The proposed bilevel planning method for distribution networks is validated through simulations on the modified IEEE 33-bus system.The results demonstrate significant improvements,with the proposedmethod reducing the annual comprehensive cost by 41.65%and 13.98%,respectively,compared to scenarios without DG and ESS or with only DG integration.Furthermore,it reduces the daily average voltage deviation by 24.35%and 10.24%and daily network losses by 55.72%and 35.71%.
文摘Multicomputer systems(distributed memory computer systems) are becoming more and more popular and will be wildly used in scientific researches. In this paper, we present a parallel algorithm of Fourier Transform of a vector of complex numbers on multicomputer system and give its computing times and its speedup in parallel environment supported by EXPRESS system on the multicomputer system which consists of four SGI workstations. Our analysis shows that the results is ideal and this scheme is suitable to multicomputer systems.
基金The National Natural Science Foundation of China (59990470).
文摘Using remote method invocation (RMI) and a distributed object-oriented technique, this paper presents a systematic approach to developing a manufacturing execution system (MES) framework, which is open, modularized, distributed, configurable, interoperable and maintainable. Moreover, the design patterns for the framework .are developed and a variety of functional components are designed by inheriting appropriate patterns. And then an application is constructed by invoking corresponding methods of related components. An MES system implementing the framework and design patterns can be facilely integrated with other manufacturing applications, such as enterprise resource planning (ERP) and floor control system (FCS) .
基金The National Natural Science Foundation of China(No.51377021)the Science and Technology Project of State Grid Corporation of China(No.SGTJDK00DWJS1600014)
文摘To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model mainly consists of two parts, the determination of initial configuration schemes according to user preference and the selection of the optimal scheme. The comprehensive evaluation index(CEI), which is acquired through the analytic hierarchy process(AHP) weight calculation method, is adopted as the evaluation criterion to rank the initial schemes. The optimal scheme is obtained according to the ranking results. The proposed model takes the diversity of different equipment parameters and investment cost into consideration and can give relatively suitable and economical suggestions for system configuration.Additionally, unlike Homer Pro, the proposed model considers the complementation of different renewable energy resources, and thus the rationality of the multi-energy DG system is improved compared with the single evaluation criterion method which only considers the total cost.
基金Supported by the National Natural Science Foundation of China(91016017)the National Aviation Found of China(20115868009)~~
文摘The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.
基金The National Natural Science Foundation of China(No60496311)
文摘A remote antenna unit (RAU) selection model is presented, and two kinds of handoffs, intra-cell handoff (HO) and inter-cell HO, are defined in distributed mobile communications systems (DAS). After that, an inter-cell HO model is proposed, in which the average power of the active set (AS) is used to predict the position of the mobile station (MS). The total power of the AS and the handoff set (HOS) are utilized to determine whether an inter-cell HO is necessary. Furthermore, the relationship between HO parameters and performance metrics is studied in detail based on RAU selection. Simulation results show that both the intra-cell HO and the inter-cell HO can achieve oerfect performance by aoprooriate settings of HO parameters.