期刊文献+
共找到102篇文章
< 1 2 6 >
每页显示 20 50 100
Distributed Computation Models for Data Fusion System Simulation
1
作者 张岩 曾涛 +1 位作者 龙腾 崔智社 《Journal of Beijing Institute of Technology》 EI CAS 2001年第3期291-297,共7页
An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advan... An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advanced C3I systems. Two architectures are provided and verified: one is based on pure TCP/IP protocol and C/S model, and implemented with Winsock, the other is based on CORBA (common object request broker architecture). The performance of data fusion simulation system, i.e. reliability, flexibility and scalability, is improved and enhanced by two models. The study of them makes valuable explore on incorporating the distributed computation concepts into radar system simulation techniques. 展开更多
关键词 radar system computer network data fusion SIMULATION distributed computation
在线阅读 下载PDF
Coded Distributed Computing for System with Stragglers
2
作者 Xu Jiasheng Kang Huquan +5 位作者 Zhang Haonan Fu Luoyi Long Fei Cao Xinde Wang Xinbing Zhou Chenghu 《China Communications》 2025年第8期298-313,共16页
Distributed computing is an important topic in the field of wireless communications and networking,and its high efficiency in handling large amounts of data is particularly noteworthy.Although distributed computing be... Distributed computing is an important topic in the field of wireless communications and networking,and its high efficiency in handling large amounts of data is particularly noteworthy.Although distributed computing benefits from its ability of processing data in parallel,the communication burden between different servers is incurred,thereby the computation process is detained.Recent researches have applied coding in distributed computing to reduce the communication burden,where repetitive computation is utilized to enable multicast opportunities so that the same coded information can be reused across different servers.To handle the computation tasks in practical heterogeneous systems,we propose a novel coding scheme to effectively mitigate the "straggling effect" in distributed computing.We assume that there are two types of servers in the system and the only difference between them is their computational capabilities,the servers with lower computational capabilities are called stragglers.Given any ratio of fast servers to slow servers and any gap of computational capabilities between them,we achieve approximately the same computation time for both fast and slow servers by assigning different amounts of computation tasks to them,thus reducing the overall computation time.Furthermore,we investigate the informationtheoretic lower bound of the inter-communication load and show that the lower bound is within a constant multiplicative gap to the upper bound achieved by our scheme.Various simulations also validate the effectiveness of the proposed scheme. 展开更多
关键词 coded computation communication load distributed computing straggling effect
在线阅读 下载PDF
Distributed quantum circuit partitioning and optimization based on combined spectral clustering and search tree strategies
3
作者 Zilu Chen Zhijin Guan +1 位作者 Shuxian Zhao Xueyun Cheng 《Chinese Physics B》 2025年第5期237-248,共12页
In the current noisy intermediate-scale quantum(NISQ)era,a single quantum processing unit(QPU)is insufficient to implement large-scale quantum algorithms;this has driven extensive research into distributed quantum com... In the current noisy intermediate-scale quantum(NISQ)era,a single quantum processing unit(QPU)is insufficient to implement large-scale quantum algorithms;this has driven extensive research into distributed quantum computing(DQC).DQC involves the cooperative operation of multiple QPUs but is concurrently challenged by excessive communication complexity.To address this issue,this paper proposes a quantum circuit partitioning method based on spectral clustering.The approach transforms quantum circuits into weighted graphs and,through computation of the Laplacian matrix and clustering techniques,identifies candidate partition schemes that minimize the total weight of the cut.Additionally,a global gate search tree strategy is introduced to meticulously explore opportunities for merged transfer of global gates,thereby minimizing the transmission cost of distributed quantum circuits and selecting the optimal partition scheme from the candidates.Finally,the proposed method is evaluated through various comparative experiments.The experimental results demonstrate that spectral clustering-based partitioning exhibits robust stability and efficiency in runtime in quantum circuits of different scales.In experiments involving the quantum Fourier transform algorithm and Revlib quantum circuits,the transmission cost achieved by the global gate search tree strategy is significantly optimized. 展开更多
关键词 NISQ era distributed quantum computing quantum circuit partitioning transmission cost
原文传递
Distributed algorithm for solving variational inequalities over time-varying unbalanced digraphs
4
作者 Yichen Zhang Yutao Tang +1 位作者 Zhipeng Tu Yiguang Hong 《Control Theory and Technology》 EI CSCD 2024年第3期431-441,共11页
In this paper,we study a distributed model to cooperatively compute variational inequalities over time-varying directed graphs.Here,each agent has access to a part of the full mapping and holds a local view of the glo... In this paper,we study a distributed model to cooperatively compute variational inequalities over time-varying directed graphs.Here,each agent has access to a part of the full mapping and holds a local view of the global set constraint.By virtue of an auxiliary vector to compensate the graph imbalance,we propose a consensus-based distributed projection algorithm relying on local computation and communication at each agent.We show the convergence of this algorithm over uniformly jointly strongly connected unbalanced digraphs with nonidentical local constraints.We also provide a numerical example to illustrate the effectiveness of our algorithm. 展开更多
关键词 Variational inequality distributed computation Multi-agent system Weight-unbalanced graph
原文传递
Towards Progressive and Load Balancing Distributed Computation:A Case Study on Skyline Analysis 被引量:3
5
作者 黄晋 赵丰 +2 位作者 陈健 裴健 印鉴 《Journal of Computer Science & Technology》 SCIE EI CSCD 2010年第3期431-443,共13页
Many latest high performance distributed computational environments come with high bandwidth in commu- nication. Such high bandwidth distributed systems provide unprecedented opportunities for analyzing huge datasets,... Many latest high performance distributed computational environments come with high bandwidth in commu- nication. Such high bandwidth distributed systems provide unprecedented opportunities for analyzing huge datasets, but simultaneously posts new technical challenges. For users, progressive query answering is important. For utility of systems, load balancing is critical. How we can achieve progressive and load balancing distributed computation is an interesting and promising research direction. As skyline analysis has been shown very useful in many multi-criteria decision making applications, in this paper, we study the problem of progressive and load balancing distributed skyline analysis. We propose a simple yet scalable approach which comes with several nice properties for progressive and load balancing query answering. We conduct extensive experiments which demonstrate the feasibility and effectiveness of the proposed method. 展开更多
关键词 SKYLINE progressive query answering load balancing distributed computing
原文传递
Dynamic access task scheduling of LEO constellation based on space-based distributed computing
6
作者 LIU Wei JIN Yifeng +2 位作者 ZHANG Lei GAO Zihe TAO Ying 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期842-854,共13页
A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process u... A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA. 展开更多
关键词 beam resource allocation distributed computing low Earth obbit(LEO)constellation spacecraft access task scheduling
在线阅读 下载PDF
L_(1)-Smooth SVM with Distributed Adaptive Proximal Stochastic Gradient Descent with Momentum for Fast Brain Tumor Detection
7
作者 Chuandong Qin Yu Cao Liqun Meng 《Computers, Materials & Continua》 SCIE EI 2024年第5期1975-1994,共20页
Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for ga... Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes.Machine learning models have become key players in automating brain tumor detection.Gradient descent methods are the mainstream algorithms for solving machine learning models.In this paper,we propose a novel distributed proximal stochastic gradient descent approach to solve the L_(1)-Smooth Support Vector Machine(SVM)classifier for brain tumor detection.Firstly,the smooth hinge loss is introduced to be used as the loss function of SVM.It avoids the issue of nondifferentiability at the zero point encountered by the traditional hinge loss function during gradient descent optimization.Secondly,the L_(1) regularization method is employed to sparsify features and enhance the robustness of the model.Finally,adaptive proximal stochastic gradient descent(PGD)with momentum,and distributed adaptive PGDwithmomentum(DPGD)are proposed and applied to the L_(1)-Smooth SVM.Distributed computing is crucial in large-scale data analysis,with its value manifested in extending algorithms to distributed clusters,thus enabling more efficient processing ofmassive amounts of data.The DPGD algorithm leverages Spark,enabling full utilization of the computer’s multi-core resources.Due to its sparsity induced by L_(1) regularization on parameters,it exhibits significantly accelerated convergence speed.From the perspective of loss reduction,DPGD converges faster than PGD.The experimental results show that adaptive PGD withmomentumand its variants have achieved cutting-edge accuracy and efficiency in brain tumor detection.Frompre-trained models,both the PGD andDPGD outperform other models,boasting an accuracy of 95.21%. 展开更多
关键词 Support vector machine proximal stochastic gradient descent brain tumor detection distributed computing
暂未订购
Automatic architecture design for distributed quantum computing
8
作者 Ting-Yu Luo Yu-Zhen Zheng +1 位作者 Xiang Fu Yu-Xin Deng 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期45-59,共15页
In distributed quantum computing(DQC),quantum hardware design mainly focuses on providing as many as possible high-quality inter-chip connections.Meanwhile,quantum software tries its best to reduce the required number... In distributed quantum computing(DQC),quantum hardware design mainly focuses on providing as many as possible high-quality inter-chip connections.Meanwhile,quantum software tries its best to reduce the required number of remote quantum gates between chips.However,this“hardware first,software follows”methodology may not fully exploit the potential of DQC.Inspired by classical software-hardware co-design,this paper explores the design space of application-specific DQC architectures.More specifically,we propose Auto Arch,an automated quantum chip network(QCN)structure design tool.With qubits grouping followed by a customized QCN design,AutoArch can generate a near-optimal DQC architecture suitable for target quantum algorithms.Experimental results show that the DQC architecture generated by Auto Arch can outperform other general QCN architectures when executing target quantum algorithms. 展开更多
关键词 distributed quantum computing quantum architecture quantum circuit partitioning
原文传递
Distributed solver for linear matrix inequalities: an optimization perspective 被引量:1
9
作者 Weijian Li Wen Deng +1 位作者 Xianlin Zeng Yiguang Hong 《Control Theory and Technology》 EI CSCD 2021年第4期507-515,共9页
In this paper,we develop a distributed solver for a group of strict(non-strict)linear matrix inequalities over a multi-agent network,where each agent only knows one inequality,and all agents co-operate to reach a cons... In this paper,we develop a distributed solver for a group of strict(non-strict)linear matrix inequalities over a multi-agent network,where each agent only knows one inequality,and all agents co-operate to reach a consensus solution in the intersection of all the feasible regions.The formulation is transformed into a distributed optimization problem by introducing slack variables and consensus constraints.Then,by the primal–dual methods,a distributed algorithm is proposed with the help of projection operators and derivative feedback.Finally,the convergence of the algorithm is analyzed,followed by illustrative simulations. 展开更多
关键词 distributed computation distributed optimization Linear matrix inequalities Primal-dual method
原文传递
FedStrag:Straggler-aware federated learning for low resource devices
10
作者 Aditya Kumar Satish Narayana Srirama 《Digital Communications and Networks》 2025年第4期1213-1223,共11页
Federated Learning(FL)has become a popular training paradigm in recent years.However,stragglers are critical bottlenecks in an Internet of Things(IoT)network while training.These nodes produce stale updates to the ser... Federated Learning(FL)has become a popular training paradigm in recent years.However,stragglers are critical bottlenecks in an Internet of Things(IoT)network while training.These nodes produce stale updates to the server,which slow down the convergence.In this paper,we studied the impact of the stale updates on the global model,which is observed to be significant.To address this,we propose a weighted averaging scheme,FedStrag,that optimizes the training with stale updates.The work is focused on training a model in an IoT network that has multiple challenges,such as resource constraints,stragglers,network issues,device heterogeneity,etc.To this end,we developed a time-bounded asynchronous FL paradigm that can train a model on the continuous iflow of data in the edge-fog-cloud continuum.To test the FedStrag approach,a model is trained with multiple stragglers scenarios on both Independent and Identically Distributed(IID)and non-IID datasets on Raspberry Pis.The experiment results suggest that the FedStrag outperforms the baseline FedAvg in all possible cases. 展开更多
关键词 Internet of things Decentralized training Fog computing Federated learning distributed computing Straggler
在线阅读 下载PDF
A Survey of Spark Scheduling Strategy Optimization Techniques and Development Trends
11
作者 Chuan Li Xuanlin Wen 《Computers, Materials & Continua》 2025年第6期3843-3875,共33页
Spark performs excellently in large-scale data-parallel computing and iterative processing.However,with the increase in data size and program complexity,the default scheduling strategy has difficultymeeting the demand... Spark performs excellently in large-scale data-parallel computing and iterative processing.However,with the increase in data size and program complexity,the default scheduling strategy has difficultymeeting the demands of resource utilization and performance optimization.Scheduling strategy optimization,as a key direction for improving Spark’s execution efficiency,has attracted widespread attention.This paper first introduces the basic theories of Spark,compares several default scheduling strategies,and discusses common scheduling performance evaluation indicators and factors affecting scheduling efficiency.Subsequently,existing scheduling optimization schemes are summarized based on three scheduling modes:load characteristics,cluster characteristics,and matching of both,and representative algorithms are analyzed in terms of performance indicators and applicable scenarios,comparing the advantages and disadvantages of different scheduling modes.The article also explores in detail the integration of Spark scheduling strategies with specific application scenarios and the challenges in production environments.Finally,the limitations of the existing schemes are analyzed,and prospects are envisioned. 展开更多
关键词 SPARK scheduling optimization load balancing resource utilization distributed computing
在线阅读 下载PDF
FlowAware:A Feature-Aware Automated Model Parallelization Method for AI-for-Science Tasks
12
作者 ZENG Yan WU Baofu +8 位作者 YI Guangzheng HUANG Chengchuang QIU Yang CHEN Yue WAN Jian HU Fan JIN Sicong LIANG Jiajun LI Xin 《数据与计算发展前沿(中英文)》 2025年第5期65-87,共23页
[Objective]This study aims to address the inefficiency of AI-for-Science tasks caused by the design and implementation challenges of applying the distributed parallel computing strategies to deep learning models,as we... [Objective]This study aims to address the inefficiency of AI-for-Science tasks caused by the design and implementation challenges of applying the distributed parallel computing strategies to deep learning models,as well as their inefficient execution.[Methods]We propose an automatic distributed parallelization method for AI-for-Science tasks,called FlowAware.Based on the AI-for-Science framework JAX,this approach thoroughly analyzes task characteristics,operator structures,and data flow properties of deep learning models.By incorporating cluster topology information,it constructs a search space for distributed parallel computing strategies.Guided by load balancing and communication optimization objectives,FlowAware automatically identifies optimal distributed parallel computing strategies for AI models.[Results]Comparative experiments conducted on both GPU-like accelerator clusters and GPU clusters demonstrated that FlowAware achieves a throughput improvement of up to 7.8×compared to Alpa.[Conclusions]FlowAware effectively enhances the search efficiency of distributed parallel computing strategies for AI models in scientific computing tasks and significantly improves their computational performance. 展开更多
关键词 AI for Science deep learning distributed parallel computing
在线阅读 下载PDF
A Distributed Framework for Large-scale Protein-protein Interaction Data Analysis and Prediction Using MapReduce 被引量:3
13
作者 Lun Hu Shicheng Yang +3 位作者 Xin Luo Huaqiang Yuan Khaled Sedraoui MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期160-172,共13页
Protein-protein interactions are of great significance for human to understand the functional mechanisms of proteins.With the rapid development of high-throughput genomic technologies,massive protein-protein interacti... Protein-protein interactions are of great significance for human to understand the functional mechanisms of proteins.With the rapid development of high-throughput genomic technologies,massive protein-protein interaction(PPI)data have been generated,making it very difficult to analyze them efficiently.To address this problem,this paper presents a distributed framework by reimplementing one of state-of-the-art algorithms,i.e.,CoFex,using MapReduce.To do so,an in-depth analysis of its limitations is conducted from the perspectives of efficiency and memory consumption when applying it for large-scale PPI data analysis and prediction.Respective solutions are then devised to overcome these limitations.In particular,we adopt a novel tree-based data structure to reduce the heavy memory consumption caused by the huge sequence information of proteins.After that,its procedure is modified by following the MapReduce framework to take the prediction task distributively.A series of extensive experiments have been conducted to evaluate the performance of our framework in terms of both efficiency and accuracy.Experimental results well demonstrate that the proposed framework can considerably improve its computational efficiency by more than two orders of magnitude while retaining the same high accuracy. 展开更多
关键词 distributed computing large-scale prediction machine learning MAPREDUCE protein-protein interaction(PPI)
在线阅读 下载PDF
A Public Blockchain Consensus Mechanism for Fault-Tolerant Distributed Computing in LEO Satellite Communications 被引量:2
14
作者 Zhen Zhang Bing Guo +3 位作者 Lidong Zhu Yan Shen Chaoxia Qin Chengjie Li 《China Communications》 SCIE CSCD 2022年第7期110-123,共14页
In LEO(Low Earth Orbit)satellite communication systems,the satellite network is made up of a large number of satellites,the dynamically changing network environment affects the results of distributed computing.In orde... In LEO(Low Earth Orbit)satellite communication systems,the satellite network is made up of a large number of satellites,the dynamically changing network environment affects the results of distributed computing.In order to improve the fault tolerance rate,a novel public blockchain consensus mechanism that applies a distributed computing architecture in a public network is proposed.Redundant calculation of blockchain ensures the credibility of the results;and the transactions with calculation results of a task are stored distributed in sequence in Directed Acyclic Graphs(DAG).The transactions issued by nodes are connected to form a net.The net can quickly provide node reputation evaluation that does not rely on third parties.Simulations show that our proposed blockchain has the following advantages:1.The task processing speed of the blockchain can be close to that of the fastest node in the entire blockchain;2.When the tasks’arrival time intervals and demanded working nodes(WNs)meet certain conditions,the network can tolerate more than 50%of malicious devices;3.No matter the number of nodes in the blockchain is increased or reduced,the network can keep robustness by adjusting the task’s arrival time interval and demanded WNs. 展开更多
关键词 distributed computing public blockchain network consensus mechanism CREDIBILITY FAULTTOLERANCE
在线阅读 下载PDF
A Distributed Computing Framework Based on Lightweight Variance Reduction Method to Accelerate Machine Learning Training on Blockchain 被引量:1
15
作者 Zhen Huang Feng Liu +2 位作者 Mingxing Tang Jinyan Qiu Yuxing Peng 《China Communications》 SCIE CSCD 2020年第9期77-89,共13页
To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the ... To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the corresponding optimization solver algorithms converge slowly,which highly demand on computing and memory resources.To overcome the challenges,we propose a distributed computing framework for L-BFGS optimization algorithm based on variance reduction method,which is a lightweight,few additional cost and parallelized scheme for the model training process.To validate the claims,we have conducted several experiments on multiple classical datasets.Results show that our proposed computing framework can steadily accelerate the training process of solver in either local mode or distributed mode. 展开更多
关键词 machine learning optimization algorithm blockchain distributed computing variance reduction
在线阅读 下载PDF
A Mobile Agent-Based Prototype of HeterogeneousDistributed Virtual Environment Systems 被引量:1
16
作者 Ji Qingge(Dept. of Computer Science & Engineering, Harbin Institute of Technology, 150001, P. R. China)Wang Dongmu(Beijing Simulation Center, 100854, P. R. China)Hong Bingrong(Dept. of Computer Science & Engineering, Harbin Institute of Technology, 150001 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第2期61-65,共5页
Mobile agents provide a new method for the distributed computation. This paper presents the advantages of using mobile agents in a distributed virtual environment (DVE) system, and describes the architecture of hetero... Mobile agents provide a new method for the distributed computation. This paper presents the advantages of using mobile agents in a distributed virtual environment (DVE) system, and describes the architecture of heterogeneous computer's distributed virtual environment system (HCWES) designed to populate some mobile agents as well as stationary agents. Finally, the paper introduces how heterogeneous computer network communication is to be realized. 展开更多
关键词 distributed virtual environment Mobile agent distributed computing
在线阅读 下载PDF
Wireless distributed computing for cyclostationary feature detection 被引量:1
17
作者 Mohammed I.M. Alfaqawi Jalel Chebil +1 位作者 Mohamed Hadi Habaebi Dinesh Datla 《Digital Communications and Networks》 SCIE 2016年第1期46-55,共10页
Recently, wireless distributed computing (WDC) concept has emerged promising manifolds improvements to current wireless technotogies. Despite the various expected benefits of this concept, significant drawbacks were... Recently, wireless distributed computing (WDC) concept has emerged promising manifolds improvements to current wireless technotogies. Despite the various expected benefits of this concept, significant drawbacks were addressed in the open literature. One of WDC key challenges is the impact of wireless channel quality on the load of distributed computations. Therefore, this research investigates the wireless channel impact on WDC performance when the tatter is applied to spectrum sensing in cognitive radio (CR) technology. However, a trade- off is found between accuracy and computational complexity in spectrum sensing approaches. Increasing these approaches accuracy is accompanied by an increase in computational complexity. This results in greater power consumption and processing time. A novel WDC scheme for cyclostationary feature detection spectrum sensing approach is proposed in this paper and thoroughly investigated. The benefits of the proposed scheme are firstly presented. Then, the impact of the wireless channel of the proposed scheme is addressed considering two scenarios. In the first scenario, workload matrices are distributed over the wireless channel 展开更多
关键词 Cotnttive radio Spectrum sensing Cyclostattonary feature detection FFT time smoothing algorithms Wireless distributed computing
在线阅读 下载PDF
Quantum Chemistry Based Computational Study on the Conformational Population of a Neodymium Neodecanoate Complex 被引量:2
18
作者 项曙光 王继叶 孙晓岩 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第6期833-838,共6页
The title complex is widely used as an efficient key component of Ziegler-Natta catalyst for stereospecific polymerization of dienes to produce synthetic rubbers. However, the quantitative structure-activity relations... The title complex is widely used as an efficient key component of Ziegler-Natta catalyst for stereospecific polymerization of dienes to produce synthetic rubbers. However, the quantitative structure-activity relationship(QSAR) of this kind of complexes is still not clear mainly due to the difficulties to obtain their geometric molecular structures through laboratory experiments. An alternative solution is the quantum chemistry calculation in which the comformational population shall be determined. In this study, ten conformers of the title complex were obtained with the function of molecular dynamics conformational search in Gabedit 2.4.8, and their geometry optimization and thermodynamics calculation were made with a Sparkle/PM7 approach in MOPAC 2012. Their Gibbs free energies at 1 atm. and 298.15 K were calculated. Population of the conformers was further calculated out according to the theory of Boltzmann distribution, indicating that one of the ten conformers has a dominant population of 77.13%. 展开更多
关键词 conformational population neodymium neodecanoate complex quantum chemistry computation Boltzmann distribution
在线阅读 下载PDF
A Distributed LRTCO Algorithm in Large-Scale DVE Multimedia Systems
19
作者 Hangjun Zhou Guang Sun +3 位作者 Sha Fu Wangdong Jiang Tingting Xie Danqing Duan 《Computers, Materials & Continua》 SCIE EI 2018年第7期73-89,共17页
In the large-scale Distributed Virtual Environment(DVE)multimedia systems,one of key challenges is to distributedly preserve causal order delivery of messages in real time.Most of the existing causal order control app... In the large-scale Distributed Virtual Environment(DVE)multimedia systems,one of key challenges is to distributedly preserve causal order delivery of messages in real time.Most of the existing causal order control approaches with real-time constraints use vector time as causal control information which is closely coupled with system scales.As the scale expands,each message is attached a large amount of control information that introduces too much network transmission overhead to maintain the real-time causal order delivery.In this article,a novel Lightweight Real-Time Causal Order(LRTCO)algorithm is proposed for large-scale DVE multimedia systems.LRTCO predicts and compares the network transmission times of messages so as to select the proper causal control information of which the amount is dynamically adapted to the network latency variations and unconcerned with system scales.The control information in LRTCO is effective to preserve causal order delivery of messages and lightweight to maintain the real-time property of DVE systems.Experimental results demonstrate that LRTCO costs low transmission overhead and communication bandwidth,reduces causal order violations efficiently,and improves the scalability of DVE systems. 展开更多
关键词 distributed computing distributed virtual environment multimedia system causality violation causal order delivery real time
在线阅读 下载PDF
Study on the Medical Image Distributed Dynamic Processing Method
20
作者 Zhang Quanhai & Shi PengfeiInstitute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai 200030, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第4期69-76,共8页
To meet the challenge of implementing rapidly advanced, time-consuming medical image processing algorithms, it is necessary to develop a medical image processing technology to process a 2D or 3D medical image dynamica... To meet the challenge of implementing rapidly advanced, time-consuming medical image processing algorithms, it is necessary to develop a medical image processing technology to process a 2D or 3D medical image dynamically on the web. But in a premier system, only static image processing can be provided with the limitation of web technology. The development of Java and CORBA (common object request broker architecture) overcomes the shortcoming of the web static application and makes the dynamic processing of medical images on the web available. To develop an open solution of distributed computing, we integrate the Java, and web with the CORBA and present a web-based medical image dynamic processing methed, which adopts Java technology as the language to program application and components of the web and utilies the CORBA architecture to cope with heterogeneous property of a complex distributed system. The method also provides a platform-independent, transparent processing architecture to implement the advanced image routines and enable users to access large dataset and resources according to the requirements of medical applications. The experiment in this paper shows that the medical image dynamic processing method implemented on the web by using Java and the CORBA is feasible. 展开更多
关键词 medical image dynamic processing based on web distributed computing INTEROPERATION CORBA.
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部