期刊文献+
共找到12,199篇文章
< 1 2 250 >
每页显示 20 50 100
Obstacle avoidance for multi-missile network via distributed coordination algorithm 被引量:14
1
作者 Zhao Jiang Zhou Rui 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第2期441-447,共7页
A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a... A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a simple form that consists of three individual components for tar- get capture, time coordination and obstacle avoidance. The distributed coordination algorithm enables a group of interceptor missiles to reach the target simultaneously, even if some member in the multi-missile network can only collect the information from nearest neighbors. The simula- tion results show that the guidance strategy provides a feasible tool to implement obstacle avoid- ance for the multi-missile network with satisfactory accuracy of target capture. The effects of the gain parameters are also discussed to evaluate the proposed approach. 展开更多
关键词 Cooperative guidance distributed algorithms Impact time Missile guidance Multiple missiles Obstacle avoidance Proportional navigation
原文传递
Spatial Grasp Model for Distributed Management and Its Comparison With Traditional Algorithms 被引量:1
2
作者 Peter Simon Sapaty 《International Relations and Diplomacy》 2025年第3期164-179,共16页
The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level m... The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications. 展开更多
关键词 spatial awareness spatial control spatial consciousness Spatial Grasp Technology Spatial Grasp Language spatial scenarios cyber attacks distributed algorithms mobile agents
在线阅读 下载PDF
An Iterated Greedy Algorithm with Memory and Learning Mechanisms for the Distributed Permutation Flow Shop Scheduling Problem
3
作者 Binhui Wang Hongfeng Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期371-388,共18页
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o... The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling. 展开更多
关键词 distributed permutation flow shop scheduling MAKESPAN iterated greedy algorithm memory mechanism cooperative reinforcement learning
在线阅读 下载PDF
Hash-based FDI attack-resilient distributed self-triggered secondary frequency control for islanded microgrids
4
作者 Xing Huang Yulin Chen +4 位作者 Donglian Qi Yunfeng Yan Shaohua Yang Ying Weng Xianbo Wang 《Global Energy Interconnection》 2025年第1期1-12,共12页
Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sam... Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks. 展开更多
关键词 MICROGRIDS distributed secondary control Self-triggered control Hash algorithms False data injection attack
在线阅读 下载PDF
A Q-Learning-Assisted Co-Evolutionary Algorithm for Distributed Assembly Flexible Job Shop Scheduling Problems
5
作者 Song Gao Shixin Liu 《Computers, Materials & Continua》 2025年第6期5623-5641,共19页
With the development of economic globalization,distributedmanufacturing is becomingmore andmore prevalent.Recently,integrated scheduling of distributed production and assembly has captured much concern.This research s... With the development of economic globalization,distributedmanufacturing is becomingmore andmore prevalent.Recently,integrated scheduling of distributed production and assembly has captured much concern.This research studies a distributed flexible job shop scheduling problem with assembly operations.Firstly,a mixed integer programming model is formulated to minimize the maximum completion time.Secondly,a Q-learning-assisted coevolutionary algorithmis presented to solve themodel:(1)Multiple populations are developed to seek required decisions simultaneously;(2)An encoding and decoding method based on problem features is applied to represent individuals;(3)A hybrid approach of heuristic rules and random methods is employed to acquire a high-quality population;(4)Three evolutionary strategies having crossover and mutation methods are adopted to enhance exploration capabilities;(5)Three neighborhood structures based on problem features are constructed,and a Q-learning-based iterative local search method is devised to improve exploitation abilities.The Q-learning approach is applied to intelligently select better neighborhood structures.Finally,a group of instances is constructed to perform comparison experiments.The effectiveness of the Q-learning approach is verified by comparing the developed algorithm with its variant without the Q-learning method.Three renowned meta-heuristic algorithms are used in comparison with the developed algorithm.The comparison results demonstrate that the designed method exhibits better performance in coping with the formulated problem. 展开更多
关键词 distributed manufacturing flexible job shop scheduling problem assembly operation co-evolutionary algorithm Q-learning method
在线阅读 下载PDF
Distributed Economic Dispatch Algorithms of Microgrids Integrating Grid-Connected and Isolated Modes
6
作者 Zhongxin Liu Yanmeng Zhang +1 位作者 Yalin Zhang Fuyong Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期86-98,共13页
The economic dispatch problem(EDP) of microgrids operating in both grid-connected and isolated modes within an energy internet framework is addressed in this paper. The multi-agent leader-following consensus algorithm... The economic dispatch problem(EDP) of microgrids operating in both grid-connected and isolated modes within an energy internet framework is addressed in this paper. The multi-agent leader-following consensus algorithm is employed to address the EDP of microgrids in grid-connected mode, while the push-pull algorithm with a fixed step size is introduced for the isolated mode. The proposed algorithm of isolated mode is proven to converge to the optimum when the interaction digraph of microgrids is strongly connected. A unified algorithmic framework is proposed to handle the two modes of operation of microgrids simultaneously, enabling our algorithm to achieve optimal power allocation and maintain the balance between power supply and demand in any mode and any mode switching. Due to the push-pull structure of the algorithm and the use of fixed step size,the proposed algorithm can better handle the case of unbalanced graphs, and the convergence speed is improved. It is documented that when the transmission topology is strongly connected and there is bi-directional communication between the energy router and its neighbors, the proposed algorithm in composite mode achieves economic dispatch even with arbitrary mode switching.Finally, we demonstrate the effectiveness and superiority of our algorithm through numerical simulations. 展开更多
关键词 Consensus algorithm distributed optimization economic dispatch(ED) energy router(ER) multi-agent systems
在线阅读 下载PDF
Adaptive Multisensor Tracking Fusion Algorithm for Air-borne Distributed Passive Sensor Network
7
作者 Zhen Ding Hongcai Zhang & Guanzhong Dai (Department of Automatic Control, Northwestern Polytechnical UniversityShaanxi, Xi’an 710072, P.R.China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第3期15-23,共9页
Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new... Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new error analysis method for two passive sensor tracking system is presented and the error equations are deduced in detail. Based on the equations, we carry out theoretical computation and Monte Carlo computer simulation. The results show the correctness of our error computation equations. With the error equations, we present multiple 'two station'fusion algorithm using adaptive pseudo measurement equations. This greatly enhances the tracking performance and makes the algorithm convergent very fast and not sensitive to initial conditions.Simulation results prove the correctness of our new algorithm. 展开更多
关键词 Passive tracking system Error analysis Fusion algorithm distributed passive sensornetwork distributed estimation.
在线阅读 下载PDF
Enhancing subsurface seismic profiling with distributed acoustic sensing and optimization algorithms
8
作者 Jing Wang Hong-Hu Zhu +4 位作者 Gang Cheng Tao Wang Xu-Long Gong Dao-Yuan Tan Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3632-3643,共12页
The distribution of shear-wave velocities in the subsurface is generally used to assess the potential forseismic liquefaction and soil amplification effects and to classify seismic sites. Newly developeddistributed ac... The distribution of shear-wave velocities in the subsurface is generally used to assess the potential forseismic liquefaction and soil amplification effects and to classify seismic sites. Newly developeddistributed acoustic sensing (DAS) technology enables estimation of the shear-wave distribution as ahigh-density seismic observation system. This technology is characterized by low maintenance costs,high-resolution outputs, and real-time data transmission capabilities, albeit with the challenge ofmanaging massive data generation. Rapid and efficient interpretation of data is the key to advancingapplication of the DAS technology. In this study, field tests were carried out to record ambient noise overa short period using DAS technology, from which the surface-wave dispersion curves were extracted. Inorder to reduce the influence of directional effects on the results, an unsupervised clustering method isused to select appropriate clusters to extract the Green's function. A combination of a genetic algorithmand Monte Carlo (GA-MC) simulation is proposed to invert the subsurface velocity structure. Thestratigraphic profiles obtained by the GA-MC method are in agreement with the borehole profiles.Compared to other methods, the proposed optimization method not only improves the solution qualitybut also reduces the solution time. 展开更多
关键词 Shallow subsurface velocity Site classification Ambient noise imaging distributed acoustic sensing(daS) Genetic algorithms and Monte Carlo simulation
在线阅读 下载PDF
Stability analysis of distributed Kalman filtering algorithm for stochastic regression model
9
作者 Siyu Xie Die Gan Zhixin Liu 《Control Theory and Technology》 2025年第2期161-175,共15页
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi... The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example. 展开更多
关键词 distributed Kalman filtering algorithm Stochastic cooperative information condition Sensor networks (L_(p))-exponential stability Stochastic regression model
原文传递
Distributed C-Means Algorithm for Big Data Image Segmentation on a Massively Parallel and Distributed Virtual Machine Based on Cooperative Mobile Agents
10
作者 Fatéma Zahra Benchara Mohamed Youssfi +2 位作者 Omar Bouattane Hassan Ouajji Mohammed Ouadi Bensalah 《Journal of Software Engineering and Applications》 2015年第3期103-113,共11页
The aim of this paper is to present a distributed algorithm for big data classification, and its application for Magnetic Resonance Images (MRI) segmentation. We choose the well-known classification method which is th... The aim of this paper is to present a distributed algorithm for big data classification, and its application for Magnetic Resonance Images (MRI) segmentation. We choose the well-known classification method which is the c-means method. The proposed method is introduced in order to perform a cognitive program which is assigned to be implemented on a parallel and distributed machine based on mobile agents. The main idea of the proposed algorithm is to execute the c-means classification procedure by the Mobile Classification Agents (Team Workers) on different nodes on their data at the same time and provide the results to their Mobile Host Agent (Team Leader) which computes the global results and orchestrates the classification until the convergence condition is achieved and the output segmented images will be provided from the Mobile Classification Agents. The data in our case are the big data MRI image of size (m × n) which is splitted into (m × n) elementary images one per mobile classification agent to perform the classification procedure. The experimental results show that the use of the distributed architecture improves significantly the big data segmentation efficiency. 展开更多
关键词 Multi-Agent System distributed algorithm BIG data IMAGE Segmentation MRI IMAGE C-MEANS algorithm Mobile Agent
在线阅读 下载PDF
Adaptive Butterfly Optimization Algorithm(ABOA)Based Feature Selection and Deep Neural Network(DNN)for Detection of Distributed Denial-of-Service(DDoS)Attacks in Cloud
11
作者 S.Sureshkumar G.K.D.Prasanna Venkatesan R.Santhosh 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1109-1123,共15页
Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualiz... Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches. 展开更多
关键词 Cloud computing distributed denial of service intrusion detection system adaptive butterfly optimization algorithm deep neural network
在线阅读 下载PDF
Analysis of Distributed and Adaptive Genetic Algorithm for Mining Interesting Classification Rules
12
作者 YI Yunfei LIN Fang QIN Jun 《现代电子技术》 2008年第10期132-135,138,共5页
Distributed genetic algorithm can be combined with the adaptive genetic algorithm for mining the interesting and comprehensible classification rules.The paper gives the method to encode for the rules,the fitness funct... Distributed genetic algorithm can be combined with the adaptive genetic algorithm for mining the interesting and comprehensible classification rules.The paper gives the method to encode for the rules,the fitness function,the selecting,crossover,mutation and migration operator for the DAGA at the same time are designed. 展开更多
关键词 分析方法 分类规则 计算方法 编码 智能系统
在线阅读 下载PDF
Distributed three-dimensional cooperative guidance via receding horizon control 被引量:11
13
作者 Zhao Jiang Zhou Rui 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第4期972-983,共12页
The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against ... The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against the stationary target. The framework of a distributed RHC scheme is developed, in which each interceptor missile is assigned its own finite-horizon optimal control problem (FHOCP) and only shares the information with its neighbors. The solution of the local FHOCP is obtained by the constrained particle swarm optimization (PSO) method that is integrated into the distributed RHC framework with enhanced equality and inequality constraints. The numerical simulations show that the proposed guidance approach is feasible to implement the cooperative engagement with satisfied accuracy of target capture. Finally, the computation efficiency of the distributed RHC scheme is discussed in consideration of the PSO parameters, control update period and prediction horizon. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. 展开更多
关键词 distributed algorithms Impact time Missile guidance Multiple missiles Particle swarm optimization (PSO) Receding horizon control (RHC) Three-dimensional (3D)
原文传递
A Fully Distributed Approach to Optimal Energy Scheduling of Users and Generators Considering a Novel Combined Neurodynamic Algorithm in Smart Grid 被引量:6
14
作者 Chentao Xu Xing He 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第7期1325-1335,共11页
A fully distributed microgrid system model is presented in this paper.In the user side,two types of load and plug-in electric vehicles are considered to schedule energy for more benefits.The charging and discharging s... A fully distributed microgrid system model is presented in this paper.In the user side,two types of load and plug-in electric vehicles are considered to schedule energy for more benefits.The charging and discharging states of the electric vehicles are represented by the zero-one variables with more flexibility.To solve the nonconvex optimization problem of the users,a novel neurodynamic algorithm which combines the neural network algorithm with the differential evolution algorithm is designed and its convergence speed is faster.A distributed algorithm with a new approach to deal with the inequality constraints is used to solve the convex optimization problem of the generators which can protect their privacy.Simulation results and comparative experiments show that the model and algorithms are effective. 展开更多
关键词 Differential evolution algorithm distributed algorithm electric vehicle neural network zero-one variable.
在线阅读 下载PDF
Distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm 被引量:4
15
作者 Yaozhong Zhang Lei Zhang Zhiqiang Du 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1236-1243,共8页
A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple... A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple decision-makers (DMs) can collaboratively solve the tasks-platforms allocation scheduling problems dynamically through the coordinator. This methodo- logy combined with NGA maximizes tasks execution accuracy, also minimizes the weighted total workload of the DM which is measured in terms of intra-DM and inter-DM coordination. The intra-DM employs an optimization-based scheduling algorithm to match the tasks-platforms assignment request with its own platforms. The inter-DM coordinates the exchange of collaborative request information and platforms among DMs using the blackboard architecture. The numerical result shows that the proposed black- board DM framework based on NGA can obtain a near-optimal solution for the tasks-platforms collaborative planning problem. The assignment of platforms-tasks and the patterns of coordination can achieve a nice trade-off between intra-DM and inter-DM coordination workload. 展开更多
关键词 distributed collaborative planning BLACKBOARD decision maker (DM) nested genetic algorithm (NGA).
在线阅读 下载PDF
A Discrete-Time Traffic and Topology Adaptive Routing Algorithm for LEO Satellite Networks 被引量:7
16
作者 Wenjuan Jiang Peng Zong 《International Journal of Communications, Network and System Sciences》 2011年第1期42-52,共11页
“Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information an... “Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information and processing delays of inter-satellite links. For this purpose, a new discrete-time traffic and topology adap-tive routing (DT-TTAR) algorithm is proposed in this paper. This routing algorithm incorporates both inher-ent dynamics of network topology and variations of traffic load in inter-satellite links. The next hop decision is made by the adaptive link cost metric, depending on arrival rates, time slots and locations of source-destination pairs. Through comprehensive analysis, we derive computation formulas of the main per-formance indexes. Meanwhile, the performances are evaluated through a set of simulations, and compared with other static and adaptive routing mechanisms as a reference. The results show that the proposed DT-TTAR algorithm has better performance of end-to-end delay than other algorithms, especially in high traffic areas. 展开更多
关键词 LEO Satellite Network DISCRETE-TIME TRAFFIC and Topology Adaptive Routing (DT-TTAR) algorithm END-TO-END Delay TRAFFIC Distribution SNAPSHOT
在线阅读 下载PDF
A Primal-Dual SGD Algorithm for Distributed Nonconvex Optimization 被引量:7
17
作者 Xinlei Yi Shengjun Zhang +2 位作者 Tao Yang Tianyou Chai Karl Henrik Johansson 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第5期812-833,共22页
The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of... The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of many machine learning techniques with data parallelism,such as deep learning and federated learning.We propose a distributed primal-dual stochastic gradient descent(SGD)algorithm,suitable for arbitrarily connected communication networks and any smooth(possibly nonconvex)cost functions.We show that the proposed algorithm achieves the linear speedup convergence rate O(1/(√nT))for general nonconvex cost functions and the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies the Polyak-Lojasiewicz(P-L)condition,where T is the total number of iterations.We also show that the output of the proposed algorithm with constant parameters linearly converges to a neighborhood of a global optimum.We demonstrate through numerical experiments the efficiency of our algorithm in comparison with the baseline centralized SGD and recently proposed distributed SGD algorithms. 展开更多
关键词 distributed nonconvex optimization linear speedup Polyak-Lojasiewicz(P-L)condition primal-dual algorithm stochastic gradient descent
在线阅读 下载PDF
基于ResNet-UNet模型的DAS矸石浆体充填堵管监测技术
18
作者 柴敬 王梓名 +7 位作者 马晨阳 张丁丁 李至 周森 秋丰岐 吴玉意 冀汶莉 赵鹏翔 《西安科技大学学报》 北大核心 2025年第4期650-662,共13页
煤矸石浆体输送管道在输送过程中易产生堵塞、腐蚀等多种问题。目前针对浆体管道输送中存在的堵塞问题,精准定位仍面临着巨大挑战。基于此,提出了一种以分布式声波传感技术(DAS)为监测手段,结合图像降噪与ResNet-UNet复合网络对堵塞点... 煤矸石浆体输送管道在输送过程中易产生堵塞、腐蚀等多种问题。目前针对浆体管道输送中存在的堵塞问题,精准定位仍面临着巨大挑战。基于此,提出了一种以分布式声波传感技术(DAS)为监测手段,结合图像降噪与ResNet-UNet复合网络对堵塞点位进行监测和识别的方法;为评估所提出的技术方案,建立了15.14 m的环管模型,并进行注浆堵塞模拟试验。结果表明:相比于传统的UNet及ResNet网络,ResNet-UNet网络模型可在有效避免梯度爆炸问题的基础上,较为精准地对堵塞点位图像进行识别,堵塞点定位的准确率为97.83%,精确率为97.76%,召回率为94.80%,F1分数为0.958 9。该研究在全覆盖式监测矸石输送管道的基础上,有效解决了DAS传感监测时,由于其高灵敏度所带来的噪声处理难题,较为精确地实现了堵塞点的定位效果,研究为矸石浆体输送管道监测及堵塞点的定位问题提供了智能化的解决方案。 展开更多
关键词 分布式声波传感技术 矸石浆体管道输送 降噪算法 ResNet-UNet模型 图像识别 堵塞定位
在线阅读 下载PDF
GF-3 data real-time processing method based on multi-satellite distributed data processing system 被引量:7
19
作者 YANG Jun CAO Yan-dong +2 位作者 SUN Guang-cai XING Meng-dao GUO Liang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期842-852,共11页
Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process... Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified. 展开更多
关键词 synthetic aperture radar full-track utilization rate distributed data processing CS imaging algorithm field programmable gate array Gaofen-3
在线阅读 下载PDF
A Whale Optimization Algorithm with Distributed Collaboration and Reverse Learning Ability 被引量:4
20
作者 Zhedong Xu Yongbo Su +1 位作者 Fang Yang Ming Zhang 《Computers, Materials & Continua》 SCIE EI 2023年第6期5965-5986,共22页
Due to the development of digital transformation,intelligent algorithms are getting more and more attention.The whale optimization algorithm(WOA)is one of swarm intelligence optimization algorithms and is widely used ... Due to the development of digital transformation,intelligent algorithms are getting more and more attention.The whale optimization algorithm(WOA)is one of swarm intelligence optimization algorithms and is widely used to solve practical engineering optimization problems.However,with the increased dimensions,higher requirements are put forward for algorithm performance.The double population whale optimization algorithm with distributed collaboration and reverse learning ability(DCRWOA)is proposed to solve the slow convergence speed and unstable search accuracy of the WOA algorithm in optimization problems.In the DCRWOA algorithm,the novel double population search strategy is constructed.Meanwhile,the reverse learning strategy is adopted in the population search process to help individuals quickly jump out of the non-ideal search area.Numerical experi-ments are carried out using standard test functions with different dimensions(10,50,100,200).The optimization case of shield construction parameters is also used to test the practical application performance of the proposed algo-rithm.The results show that the DCRWOA algorithm has higher optimization accuracy and stability,and the convergence speed is significantly improved.Therefore,the proposed DCRWOA algorithm provides a better method for solving practical optimization problems. 展开更多
关键词 Whale optimization algorithm double population cooperation DISTRIBUTION reverse learning convergence speed
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部