Combined Heat and Power Economic Dispatch(CHPED)is an important problem in the energy field,and it is beneficial for improving the utilization efficiency of power and heat energies.This paper proposes a Modified Genet...Combined Heat and Power Economic Dispatch(CHPED)is an important problem in the energy field,and it is beneficial for improving the utilization efficiency of power and heat energies.This paper proposes a Modified Genetic Algorithm(MGA)to determine the power and heat outputs of three kinds of units for CHPED.First,MGA replaces the simulated binary crossover by a new one based on the uniform and guassian distributions,and its convergence can be enhanced.Second,MGA modi-fies the mutation operator by introducing a disturbance coefficient based on guassian distribution,which can decrease the risk of being trapped into local optima.Eight instances with or without prohibited operating zones are used to investigate the efficiencies of MGA and other four genetic algorithms for CHPED.In comparison with the other algorithms,MGA has reduced generation costs by at least 562.73$,1068.7$,522.68$and 1016.24$,respectively,for instances 3,4,7 and 8,and it has reduced generation costs by at most 848.22$,3642.85$,897.63$and 3812.65$,respectively,for instances 3,4,7 and 8.Therefore,MGA has desirable convergence and stability for CHPED in comparison with the other four genetic algorithms.展开更多
This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic alg...This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic algorithm (GA) and local search (LS), where it maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on the concept of ε-dominance. To improve the solution quality, local search technique was applied as neighborhood search engine, where it intends to explore the less-crowded area in the current archive to possibly obtain more non-dominated solutions. TOPSIS technique can incorporate relative weights of criterion importance, which has been implemented to identify best compromise solution, which will satisfy the different goals to some extent. Several optimization runs of the proposed approach are carried out on the standard IEEE 30-bus 6-genrator test system. The comparison demonstrates the superiority of the proposed approach and confirms its potential to solve the multiobjective EELD problem.展开更多
This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) pr...This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided.展开更多
In the recent restructured power system scenario and complex market strategy, operation at absolute minimum cost is no longer the only criterion for dispatching electric power. The economic load dispatch (ELD) problem...In the recent restructured power system scenario and complex market strategy, operation at absolute minimum cost is no longer the only criterion for dispatching electric power. The economic load dispatch (ELD) problem which accounts for minimization of both generation cost and power loss is itself a multiple conflicting objective function problem. In this paper, a modified shuffled frog-leaping algorithm (MSFLA), which is an improved version of memetic algorithm, is proposed for solving the ELD problem. It is a relatively new evolutionary method where local search is applied during the evolutionary cycle. The idea of memetic algorithm comes from memes, which unlike genes can adapt themselves. The performance of MSFLA has been shown more efficient than traditional evolutionary algorithms for such type of ELD problem. The application and validity of the proposed algorithm are demonstrated for IEEE 30 bus test system as well as a practical power network of 203 bus 264 lines 23 machines system.展开更多
The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving...The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving ELD problems. The goal of this study was to examine the performance of DP and GA while they were applied to ELD. We established numerical experiments to conduct performance comparisons between DP and GA with two given schemes. The schemes included comparing the CPU time of the algorithms when they had the same solution quality, and comparing the solution quality when they had the same CPU time. The numerical experiments were applied to the Three Gorges Reservoir in China, which is equipped with 26 hydro generation units. We found the relation between the performance of algorithms and the number of units through experiments. Results show that GA is adept at searching for optimal solutions in low-dimensional cases. In some cases, such as with a number of units of less than 10, GA's performance is superior to that of a coarse-grid DP. However, GA loses its superiority in high-dimensional cases. DP is powerful in obtaining stable and high-quality solutions. Its performance can be maintained even while searching over a large solution space. Nevertheless, due to its exhaustive enumerating nature, it costs excess time in low-dimensional cases.展开更多
It is important to distribute the load efficiently to minimize the cost of the economic dispatch of electrical power system. The uncertainty and volatility of wind energy make the economic dispatch much more complex w...It is important to distribute the load efficiently to minimize the cost of the economic dispatch of electrical power system. The uncertainty and volatility of wind energy make the economic dispatch much more complex when the general power systems are combined with wind farms. The short term wind power prediction method was discussed in this paper. The method was based on the empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD). Furthermore,the effect of wind farms on the traditional economic dispatch of electrical power system was analyzed. The mathematical model of the economic dispatch was established considering the environmental factors and extra spinning reserve cost. The multi-objective co-evolutionary algorithm was used to figure out the model. And the results were compared with the NSGA-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ) to verify its feasibility.展开更多
The electric power generation system has always the significant location in the power system, and it should have an efficient and economic operation. This consists of the generating unit’s allocation with minimum fue...The electric power generation system has always the significant location in the power system, and it should have an efficient and economic operation. This consists of the generating unit’s allocation with minimum fuel cost and also considers the emission cost. In this paper we have intended to propose a hybrid technique to optimize the economic and emission dispatch problem in power system. The hybrid technique is used to minimize the cost function of generating units and emission cost by balancing the total load demand and to decrease the power loss. This proposed technique employs Particle Swarm Optimization (PSO) and Neural Network (NN). PSO is one of the computational techniques that use a searching process to obtain an optimal solution and neural network is used to predict the load demand. Prior to performing this, the neural network training method is used to train all the generating power with respect to the load demand. The economic and emission dispatch problem will be solved by the optimized generating power and predicted load demand. The proposed hybrid intelligent technique is implemented in MATLAB platform and its performance is evaluated.展开更多
在综合能源系统(Integrated energy systems,IESs)经济调度问题的分布式优化框架中,节点协同机制的拓扑设计必然受到信息交互方式的约束。现有研究主要分为两类通信协议、同步通信和异步通信。然而,同步通信需要满足时序一致性,等待各...在综合能源系统(Integrated energy systems,IESs)经济调度问题的分布式优化框架中,节点协同机制的拓扑设计必然受到信息交互方式的约束。现有研究主要分为两类通信协议、同步通信和异步通信。然而,同步通信需要满足时序一致性,等待各通信者之间达成同步响应或确认后才能执行后续操作,这在大规模网络环境中很难实现。该文首先基于Gossip算法的异步特点,提出了一种基于Gossip的异步通信分布式经济调度算法。利用矩阵扰动理论和特征值定理,严格证明了算法的收敛性。进一步地,考虑了两种典型的网络攻击模型,拒绝服务攻击(denial of service,DoS)和虚假数据攻击(false data injection,FDI),设计了一种弹性安全策略以缓解网络攻击对最优经济调度的影响。最后,基于IEEE39-32节点的IES进行算例分析,结合不同的调度场景、攻击者的表现以及同步通信方式的对比,从多个角度验证了所提策略在通信方式和网络安全方面的有效性和优越性。展开更多
针对传统灰狼优化(grey wolf optimization,GWO)算法在求解并网模式下微电网优化调度模型时存在种群分布不均以及易陷入局部最优等问题,对传统灰狼优化算法进行改进。首先,在传统灰狼优化算法基础上引入Tent混沌映射进行种群多样性初始...针对传统灰狼优化(grey wolf optimization,GWO)算法在求解并网模式下微电网优化调度模型时存在种群分布不均以及易陷入局部最优等问题,对传统灰狼优化算法进行改进。首先,在传统灰狼优化算法基础上引入Tent混沌映射进行种群多样性初始化,克服随机初始化导致的搜索空间覆盖不均的问题;其次,结合余弦函数在[0,π/2]的函数变化特点,提出基于余弦函数的非线性收敛因子调节策略,采用具有全局探索与局部开发能力的平衡算法提升寻优精度。针对储能系统频繁充放电导致寿命衰减的问题,通过量化储能系统频繁充放电造成的寿命损耗成本,建立计及光伏维护成本、电网交互成本及储能寿命损耗折算成本的经济优化调度模型。利用改进灰狼优化算法求解优化调度模型,并与其他优化算法进行对比,仿真结果表明:相较于传统定时充放电策略和常规能量分配方案,所提方法在晴天和阴天场景下均展现出更优的经济性,验证了所提的改进灰狼优化算法能够更好地实现并网模式下交流微电网灵活经济运行,为高比例可再生能源接入的微电网系统提供了兼顾经济性与实用性的优化调度新思路。展开更多
基金supported by the National Natural Science Foundation of China(NSFC)under Grant 61873272,62073327in part by the Natural Science Foundation of Jiangsu Province under Grant BK20200086,BK20200631.
文摘Combined Heat and Power Economic Dispatch(CHPED)is an important problem in the energy field,and it is beneficial for improving the utilization efficiency of power and heat energies.This paper proposes a Modified Genetic Algorithm(MGA)to determine the power and heat outputs of three kinds of units for CHPED.First,MGA replaces the simulated binary crossover by a new one based on the uniform and guassian distributions,and its convergence can be enhanced.Second,MGA modi-fies the mutation operator by introducing a disturbance coefficient based on guassian distribution,which can decrease the risk of being trapped into local optima.Eight instances with or without prohibited operating zones are used to investigate the efficiencies of MGA and other four genetic algorithms for CHPED.In comparison with the other algorithms,MGA has reduced generation costs by at least 562.73$,1068.7$,522.68$and 1016.24$,respectively,for instances 3,4,7 and 8,and it has reduced generation costs by at most 848.22$,3642.85$,897.63$and 3812.65$,respectively,for instances 3,4,7 and 8.Therefore,MGA has desirable convergence and stability for CHPED in comparison with the other four genetic algorithms.
文摘This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic algorithm (GA) and local search (LS), where it maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on the concept of ε-dominance. To improve the solution quality, local search technique was applied as neighborhood search engine, where it intends to explore the less-crowded area in the current archive to possibly obtain more non-dominated solutions. TOPSIS technique can incorporate relative weights of criterion importance, which has been implemented to identify best compromise solution, which will satisfy the different goals to some extent. Several optimization runs of the proposed approach are carried out on the standard IEEE 30-bus 6-genrator test system. The comparison demonstrates the superiority of the proposed approach and confirms its potential to solve the multiobjective EELD problem.
文摘This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided.
文摘In the recent restructured power system scenario and complex market strategy, operation at absolute minimum cost is no longer the only criterion for dispatching electric power. The economic load dispatch (ELD) problem which accounts for minimization of both generation cost and power loss is itself a multiple conflicting objective function problem. In this paper, a modified shuffled frog-leaping algorithm (MSFLA), which is an improved version of memetic algorithm, is proposed for solving the ELD problem. It is a relatively new evolutionary method where local search is applied during the evolutionary cycle. The idea of memetic algorithm comes from memes, which unlike genes can adapt themselves. The performance of MSFLA has been shown more efficient than traditional evolutionary algorithms for such type of ELD problem. The application and validity of the proposed algorithm are demonstrated for IEEE 30 bus test system as well as a practical power network of 203 bus 264 lines 23 machines system.
基金supported by the National Basic Research Program of China(973 Program,Grant No.2013CB036406)the National Natural Science Foundation of China(Grant No.51179044)the Research Innovation Program for College Graduates in Jiangsu Province of China(Grant No.CXZZ12-0242)
文摘The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving ELD problems. The goal of this study was to examine the performance of DP and GA while they were applied to ELD. We established numerical experiments to conduct performance comparisons between DP and GA with two given schemes. The schemes included comparing the CPU time of the algorithms when they had the same solution quality, and comparing the solution quality when they had the same CPU time. The numerical experiments were applied to the Three Gorges Reservoir in China, which is equipped with 26 hydro generation units. We found the relation between the performance of algorithms and the number of units through experiments. Results show that GA is adept at searching for optimal solutions in low-dimensional cases. In some cases, such as with a number of units of less than 10, GA's performance is superior to that of a coarse-grid DP. However, GA loses its superiority in high-dimensional cases. DP is powerful in obtaining stable and high-quality solutions. Its performance can be maintained even while searching over a large solution space. Nevertheless, due to its exhaustive enumerating nature, it costs excess time in low-dimensional cases.
基金Innovation Program of Shanghai Municipal Education Commission,China(No.13YZ139)Climbing Peak Discipline Project of Shanghai Dianji University,China(No.15DFXK01)
文摘It is important to distribute the load efficiently to minimize the cost of the economic dispatch of electrical power system. The uncertainty and volatility of wind energy make the economic dispatch much more complex when the general power systems are combined with wind farms. The short term wind power prediction method was discussed in this paper. The method was based on the empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD). Furthermore,the effect of wind farms on the traditional economic dispatch of electrical power system was analyzed. The mathematical model of the economic dispatch was established considering the environmental factors and extra spinning reserve cost. The multi-objective co-evolutionary algorithm was used to figure out the model. And the results were compared with the NSGA-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ) to verify its feasibility.
文摘The electric power generation system has always the significant location in the power system, and it should have an efficient and economic operation. This consists of the generating unit’s allocation with minimum fuel cost and also considers the emission cost. In this paper we have intended to propose a hybrid technique to optimize the economic and emission dispatch problem in power system. The hybrid technique is used to minimize the cost function of generating units and emission cost by balancing the total load demand and to decrease the power loss. This proposed technique employs Particle Swarm Optimization (PSO) and Neural Network (NN). PSO is one of the computational techniques that use a searching process to obtain an optimal solution and neural network is used to predict the load demand. Prior to performing this, the neural network training method is used to train all the generating power with respect to the load demand. The economic and emission dispatch problem will be solved by the optimized generating power and predicted load demand. The proposed hybrid intelligent technique is implemented in MATLAB platform and its performance is evaluated.
文摘在综合能源系统(Integrated energy systems,IESs)经济调度问题的分布式优化框架中,节点协同机制的拓扑设计必然受到信息交互方式的约束。现有研究主要分为两类通信协议、同步通信和异步通信。然而,同步通信需要满足时序一致性,等待各通信者之间达成同步响应或确认后才能执行后续操作,这在大规模网络环境中很难实现。该文首先基于Gossip算法的异步特点,提出了一种基于Gossip的异步通信分布式经济调度算法。利用矩阵扰动理论和特征值定理,严格证明了算法的收敛性。进一步地,考虑了两种典型的网络攻击模型,拒绝服务攻击(denial of service,DoS)和虚假数据攻击(false data injection,FDI),设计了一种弹性安全策略以缓解网络攻击对最优经济调度的影响。最后,基于IEEE39-32节点的IES进行算例分析,结合不同的调度场景、攻击者的表现以及同步通信方式的对比,从多个角度验证了所提策略在通信方式和网络安全方面的有效性和优越性。
文摘针对传统灰狼优化(grey wolf optimization,GWO)算法在求解并网模式下微电网优化调度模型时存在种群分布不均以及易陷入局部最优等问题,对传统灰狼优化算法进行改进。首先,在传统灰狼优化算法基础上引入Tent混沌映射进行种群多样性初始化,克服随机初始化导致的搜索空间覆盖不均的问题;其次,结合余弦函数在[0,π/2]的函数变化特点,提出基于余弦函数的非线性收敛因子调节策略,采用具有全局探索与局部开发能力的平衡算法提升寻优精度。针对储能系统频繁充放电导致寿命衰减的问题,通过量化储能系统频繁充放电造成的寿命损耗成本,建立计及光伏维护成本、电网交互成本及储能寿命损耗折算成本的经济优化调度模型。利用改进灰狼优化算法求解优化调度模型,并与其他优化算法进行对比,仿真结果表明:相较于传统定时充放电策略和常规能量分配方案,所提方法在晴天和阴天场景下均展现出更优的经济性,验证了所提的改进灰狼优化算法能够更好地实现并网模式下交流微电网灵活经济运行,为高比例可再生能源接入的微电网系统提供了兼顾经济性与实用性的优化调度新思路。