Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass tran...Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories.展开更多
Understanding the relation between spatial heterogeneity and structural rejuvenation is one of the hottest topics in the field of metallic glasses(MGs).In this work,molecular dynamics(MD)simulation is implemented to d...Understanding the relation between spatial heterogeneity and structural rejuvenation is one of the hottest topics in the field of metallic glasses(MGs).In this work,molecular dynamics(MD)simulation is implemented to discover the effects of initial spatial heterogeneity on the level of rejuvenation in the Ni_(80)P_(20)MGs.For this purpose,the samples are prepared with cooling rates of 10^(10) K/s-10^(12) K/s to make glassy alloys with different atomic configurations.Firstly,it is found that the increase in the cooling rate leads the Gaussian-type shear modulus distribution to widen,indicating the aggregations in both elastically soft and hard regions.After the primary evaluations,the elastostatic loading is also used to transform structural rejuvenation into the atomic configurations.The results indicate that the sample with intermediate structural heterogeneity prepared with 10^(11) K/s exhibits the maximum structural rejuvenation which is due to the fact that the atomic configuration in an intermediate structure contains more potential sites for generating the maximum atomic rearrangement and loosely packed regions under an external excitation.The features of atomic rearrangement and structural changes under the rejuvenation process are discussed in detail.展开更多
The zincblende ternary alloys Tl_xGa_(1-x) As(0 〈 x 〈 1) are studied by numerical analysis based on the plane wave pseudopotential method within the density functional theory and the local density approximation....The zincblende ternary alloys Tl_xGa_(1-x) As(0 〈 x 〈 1) are studied by numerical analysis based on the plane wave pseudopotential method within the density functional theory and the local density approximation. To model the alloys,16-atom supercells with the 2 × 2 × 2 dimensions are used and the dependency of the lattice parameter, bulk modulus,electronic structure, energy band gap, and optical bowing on the concentration x are analyzed. The results indicate that the ternary Tl_xGa_(1-x) As alloys have an average band gap bowing parameter of 4.48 eV for semiconductor alloys and 2.412 eV for semimetals. It is found that the band gap bowing strongly depends on composition and alloying a small Tl content with GaAs produces important modifications in the band structures of the alloys.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11175121,11675110,and U1432111)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110073120073)
文摘Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories.
文摘Understanding the relation between spatial heterogeneity and structural rejuvenation is one of the hottest topics in the field of metallic glasses(MGs).In this work,molecular dynamics(MD)simulation is implemented to discover the effects of initial spatial heterogeneity on the level of rejuvenation in the Ni_(80)P_(20)MGs.For this purpose,the samples are prepared with cooling rates of 10^(10) K/s-10^(12) K/s to make glassy alloys with different atomic configurations.Firstly,it is found that the increase in the cooling rate leads the Gaussian-type shear modulus distribution to widen,indicating the aggregations in both elastically soft and hard regions.After the primary evaluations,the elastostatic loading is also used to transform structural rejuvenation into the atomic configurations.The results indicate that the sample with intermediate structural heterogeneity prepared with 10^(11) K/s exhibits the maximum structural rejuvenation which is due to the fact that the atomic configuration in an intermediate structure contains more potential sites for generating the maximum atomic rearrangement and loosely packed regions under an external excitation.The features of atomic rearrangement and structural changes under the rejuvenation process are discussed in detail.
文摘The zincblende ternary alloys Tl_xGa_(1-x) As(0 〈 x 〈 1) are studied by numerical analysis based on the plane wave pseudopotential method within the density functional theory and the local density approximation. To model the alloys,16-atom supercells with the 2 × 2 × 2 dimensions are used and the dependency of the lattice parameter, bulk modulus,electronic structure, energy band gap, and optical bowing on the concentration x are analyzed. The results indicate that the ternary Tl_xGa_(1-x) As alloys have an average band gap bowing parameter of 4.48 eV for semiconductor alloys and 2.412 eV for semimetals. It is found that the band gap bowing strongly depends on composition and alloying a small Tl content with GaAs produces important modifications in the band structures of the alloys.