Hot compressive behaviors of Ti-6Al-2Zr-1Mo-1V alloy at 800℃, as well as the evolution of microstructure during deformation process, were investigated. The experimental results show that flow stress increases to a pe...Hot compressive behaviors of Ti-6Al-2Zr-1Mo-1V alloy at 800℃, as well as the evolution of microstructure during deformation process, were investigated. The experimental results show that flow stress increases to a peak stress followed by a decease with increasing strain, and finally forms a stable stage. Dislocations are generated at the interface of αβ phase, and the phase interface and dislocation loops play an important role in impeding the movement of dislocation. As strain increasing, micro-deformation bands with high-density dislocation are formed, and dynamic recrystallizaton occurs finally. XRD Fourier analysis reveals that dislocation density increases followed by a decrease during compressive deformation, and falls into the range from 10^10 to 10^11 cm^-2.展开更多
The high performance of Ni single crystal superalloys during high temperature low stress creep service,is intrinsically determined by the combined effects of microstructural evolution and the dislocation behaviour.In ...The high performance of Ni single crystal superalloys during high temperature low stress creep service,is intrinsically determined by the combined effects of microstructural evolution and the dislocation behaviour.In the field of the evolution of dislocation network,two main recovery mechanism based on dislocation migration dominate the process.One is superdislocations shearing intoγ’rafts through a two-superpartials-assisted approach.Another is the compact dislocations migrating alongγ/γ’interface.These two mechanisms are similarly climb-rate-controlled process.In this work,a model for the minimum creep rate based on thermodynamic and kinetic calculations and using an existing detailed dislocation dynamics model has been built by taking the dislocation migration behaviours as well as the rafted microstructure into consideration,which can well reproduce the([100]tensile)creep properties of existing Ni superalloy grades,without the need to make the dislocation parameter values composition dependent.展开更多
Geophysical inversion for earthquake dislocation source model from the observed crustal deformation field is a nonlinear multimodal problem. Although a lot of nonlinear algorithms have been developed, scientists are p...Geophysical inversion for earthquake dislocation source model from the observed crustal deformation field is a nonlinear multimodal problem. Although a lot of nonlinear algorithms have been developed, scientists are pursuing a rapid and accurate method to achieve more stable inversion solutions. Differential evolution, an improved Genetic Evolution algorithm, is implemented to solve the problem. The algorithm is fulfilled by Python 2.7 and tested for the 2004 Mw6.0 Parkfield earthquake, the 2009 Mw6.3 L' aquila earthquake, and a virtual MwT.3 earthquake. The inversion results demonstrate that the differential evolution algorithm is not only simple and straightforward to implement, but also robust with impressive precision even if all the 9 model parameters are loosely constrained.展开更多
Cooled in water after the isothermal relaxation of deformed austenite for different times, a Nb-bearing microalloyed steel always exhibits the synthetic microstructure in which bainitic ferrite dominates. Strain-induc...Cooled in water after the isothermal relaxation of deformed austenite for different times, a Nb-bearing microalloyed steel always exhibits the synthetic microstructure in which bainitic ferrite dominates. Strain-induced precipitates do not occur in an unrelaxed sample while they distribute outside dislocations in the sample relaxed for long time. Most of the strain induced precipitates distribute along dislocations in the sample relaxed for proper time. After bainitic transformation, the dislocations formed in the deformed austenite remain to be pinned by the precipitates so that the thermostability of the bainitic ferrite is improved. Coarsening of the precipitates accompanied by their distribution density change has caused the first hardness peak of bainite during reheating. The second hardness peak is attributed to the precipitates, which nucleate in bainite. Dislocations inside the laths getting rid of the pinning of precipitates and their polygonization play the precursor to the evolution of microstructures during reheating.展开更多
In recent years, materials with ultrafine grain size(UFG) have attracted much attention. By using severe plastic deformation(SPD) techniques, materials with fine grain size as small as 200250 nm have been obtained. Ho...In recent years, materials with ultrafine grain size(UFG) have attracted much attention. By using severe plastic deformation(SPD) techniques, materials with fine grain size as small as 200250 nm have been obtained. However, the nature of the grain boundaries has not been theoretically understood. It is still an unsolved question whether or not finer grain sizes down to 100 nm could be reached. A semi-quantitative model for the evolution of dislocation cells in plastic deformation was proposed. The linear stability analysis of this model leads to some interesting results, which facilitate the understanding of the formation of cell structures and of the factors determining the lower limit of the cell size of SPD materials.展开更多
Interrupted and ruptured creep tests were conducted on single crystal superalloy DD9 at 980℃/250 MPa and 1100℃/137 MPa conditions.Microstructure evolution during creep was analyzed through scanning electron microsco...Interrupted and ruptured creep tests were conducted on single crystal superalloy DD9 at 980℃/250 MPa and 1100℃/137 MPa conditions.Microstructure evolution during creep was analyzed through scanning electron microscope and transmission electron microscope.Results show that the microstructure evolutions are similar under the creep conditions of 980℃/250 MPa and 1100℃/137 MPa.Cubicalγ′phase,which is dispersedly distributed in theγmatrix,gradually evolves into a layered structure perpendicular to the stress direction.The width of theγmatrix channel along the direction parallel to the stress increases.The relationship between the increase in width of theγmatrix channel and the strain satisfies linear relationship in logarithmic form,indicating that the width of theγmatrix can be deduced via the strain under creep state.This may provide an approach to investigate the width ofγmatrix in single crystal superalloys during creep under high temperature and low stress conditions.In the early creep stage,dislocations formed in theγphase generate mutually perpendicular networks through cross-slip at theγ/γ′interface.Then,stable hexagonal dislocation networks form as a result of the coupling effects of external stress and mismatch stress at high temperatures.In the later period of creep,dislocations shear theγ′phase,ultimately causing the fracture.展开更多
The microstructure evolution and deformation mechanism of a DZ125 superalloy during high-temperature creep were studied by means of microstructure observation and creep-property tests.The results show that at the init...The microstructure evolution and deformation mechanism of a DZ125 superalloy during high-temperature creep were studied by means of microstructure observation and creep-property tests.The results show that at the initial stage of high-temperature creep,two sets of dislocations with different Burgers vectors move and meet inγmatrix channels,and react to form a quadrilateral dislocation network.Andγ′phases with raft-like microstructure are generated after the formation of dislocation networks.As creep progresses,the quadrilateral dislocation network is gradually transformed into hexagonal and quadrilateral dislocation networks.During steady stage of creep,the superalloy undergoes deformation with the mechanism that a great number of dislocations slip and climb in the matrix across the raft-likeγ′phases.At the later stage of creep,the raft-likeγ′phases are sheared by dislocations at the breakage of dislocation networks,and then alternate slip occurs,which distorts and breaks the raft-likeγ′/γphases,resulting in the accumulation of micropores at the raft-likeγ′/γinterfaces and the formation of microcracks.As creep continues,the microcracks continue to expand until creep fracture occurs,which is the damage and fracture mechanism of the alloy at the later stage of creep at high temperature.展开更多
Despite the promising prospects of body-centered cubic iron(BCC Fe)in aerospace,energy transportation,and nuclear applications,the effects of extreme environments on its mechanical behaviors and deformation mechanisms...Despite the promising prospects of body-centered cubic iron(BCC Fe)in aerospace,energy transportation,and nuclear applications,the effects of extreme environments on its mechanical behaviors and deformation mechanisms remain elusive to date.In this work,the mechanical responses and deformation behaviors of BCC Fe single crystals under extreme loading conditions are investigated by performing the three-dimensional discrete dislocation dynamics simulations.It turns out that the yield strength(oy)of BCC Fe can be enhanced by increasing the strain rate()and/or decreasing the deformation temperature(T).With the strain rate increasing from=10^(2)s^(-1)to 106 s^(-1),the yield strength at 300 K rises fromσy=51.14 MPa to 1114.57 MPa.When the strain rate exceeds 10^(3)s^(-1),an elastic overshoot phenomenon appears because the applied stress and the low initial dislocation density at the early tensile stage cannot drive the plastic deformation immediately.With the temperature increasing from T=100 K to 800 K,the yield strength atσ_(y)=10^(3)3 s^(-1)decreases fromσε=64.97 MPa to 59.50 MPa.Such temperature and strain rate sensitivity of deformation behaviors are clarified from variations in the configurations of dislocation evolution and dislocation density fluxes.It is demonstrated that at low strain rate(ε≤10^(3)s^(-1))conditions,the deformation behaviors of BCC Fe are dominated by the dislocation multi-slip mechanism.With increasing strain rate to e.g.,>10^(3)s^(-1),the deformation behaviors are governed by the dislocation single-slip.Our investigation on the temperature and strain rate sensitivity of deformation behaviors provides insightful guidance for optimizing the mechanical performances of BCC Fe based ferritic steels.展开更多
The recently established theory has built clear connections between hardness and toughness and electron structure involving both valence electron concentration(VEC)and core electron count(CEC)in transition metal nitri...The recently established theory has built clear connections between hardness and toughness and electron structure involving both valence electron concentration(VEC)and core electron count(CEC)in transition metal nitride(TMN)ceramics.However,the underlying deformation mechanisms remain unclear.Herein,we conduct in-depth analysis on microstructure evolution during deformation of the high VEC-CEC solution TiMoN coatings having desired combination of high hardness and toughness.The effects of solid solution,preferred orientation linked with symbiotic compressive stress,grain size and dislocations are systematically discussed.We discover that numerous dislocations have been implanted into the nanocrystals of the TiMoN coating during the high-ionization arc deposition.Using two-beam bright-field imaging,we count the dislocation density and confirm occurrence of dislocation multiplication to form effective plastic deformation,which contributes to significant strain hardening,comparable to solid solution hardening,fine-grain hardening and compressive stress hardening.The improved dislocation activities also play a crucial role in enhancing the toughness by providing extra energy dissipation paths.This work gains new insights into the origins of mechanical properties of ceramic coatings and possibility to tune them via defects.展开更多
What effect does electric current do on dislocation evolution of metals keeps being a confusing question to be answered and proved. To this end, the dislocation evolution of a superalloy with electric current was dire...What effect does electric current do on dislocation evolution of metals keeps being a confusing question to be answered and proved. To this end, the dislocation evolution of a superalloy with electric current was directly observed by electrical in-situ transmission electron microscopy in this work. Dislocations annihilation at first and then regeneration was found for the first time, which directly proves the existence of electron force during the electrically-assisted manufacturing. Dislocations regeneration would be driven by the electron force and the resistance softening by the local Joule heating effect. Resultantly,a base could be provided for future electrically-assisted research.展开更多
The superplastic behavior has been found in Fe 3Al and FeAl alloys with grain sizes of 100~600 μm. The large grained Fe 3Al and FeAl alloys exhibit all deformation characteristics of conventional fine grain size sup...The superplastic behavior has been found in Fe 3Al and FeAl alloys with grain sizes of 100~600 μm. The large grained Fe 3Al and FeAl alloys exhibit all deformation characteristics of conventional fine grain size superplastic alloys. However, superplastic behavior was found in large grained iron aluminides without the usual prerequisites for the superplasticity of a fine grain size and grain boundary sliding. The metallographic examinations have shown that average grain size of large grained iron aluminides decreased during superplastic deformation. Transmission electron microscopy (TEM) observations have shown that there were a great number of subgrain boundaries which formed a network and among which the proportion of low and high angle boundaries increased with the increase of strain. The observed superplastic phenomenon is explained by continuous recovery and recrystallization. During superplastic deformation, an unstable subgrain network forms and these subboundaries absorb gliding dislocations and transform into low and high angle grain boundaries. A dislocation gliding and climb process accommodated by subboundary sliding, migration and rotation, allows the superplastic flow to proceed.展开更多
The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffract...The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffraction(EBSD).Based on the K-M dislocation density model,a two-stage K-M dislocation density model of 7A85 aluminum alloy was established.The results reveal that dynamic recovery(DRV)and dynamic recrystallization(DRX)are the main mechanisms of microstructure evolution during thermal deformation of 7A85 aluminum alloy.350−400°C is the transformation zone from dynamic recovery to dynamic recrystallization.At low temperature(≤350°C),DRV is the main mechanism,while DRX mostly occurs at high temperature(≥400°C).At this point,the sensitivity of microstructure evolution to temperature is relatively high.As the temperature increased,the average misorientation angle(θˉ_(c))increased significantly,ranging from 0.93°to 7.13°.Meanwhile,the f_(LAGBs) decreased with the highest decrease of 24%.展开更多
The microstructural evolution of AA7055 aluminum alloy under dynamic impact loading with the strain rate of 1.3 × 10^4 s^-1 controlled by a split Hopkinson pressure bar was investigated, and compared with that un...The microstructural evolution of AA7055 aluminum alloy under dynamic impact loading with the strain rate of 1.3 × 10^4 s^-1 controlled by a split Hopkinson pressure bar was investigated, and compared with that under quasi-static mechanical loading in compression with strain rate of 1.0 × 10^-3 s^-1. The quasi-static-compressed sample exhibited equiaxed dislocation cells, which were different from the elongated and incomplete dislocation cells for the alloy undergoing dynamic compression. The high strain-rate compression also induced the formation of localized shear bands in which the recrystallizations characterized as fine equiaxed grains were observed. The microstructural evolutions under both quasi-static and dynamic compressions are rationalized in terms of the dislocation cell model combined with the dislocation kinetics, in addition to the adiabatic temperature rise in shear bands at high strain rate.展开更多
Substructure evolution significantly influences the flow behavior of titanium alloys in isothermal hot compression. This paper presents a physical experiment(isothermal hot compression and electron backscatter difrac...Substructure evolution significantly influences the flow behavior of titanium alloys in isothermal hot compression. This paper presents a physical experiment(isothermal hot compression and electron backscatter difraction, EBSD) and a cellular automaton(CA) method to investigate the substructure evolution of a near-α titanium alloy Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the α + β two-phase region. In the CA model, the subgrain growth, the transformation of low angle boundaries(LABs) to high angle boundaries(HABs) and the dislocation density evolution were considered. The dislocation density accumulating around the subgrain boundaries provided a driving force and made the transformation of the LABs to HABs. The CA model was employed to predict the substructure evolution, dislocation density evolution and flow stress. In addition, the efects of strain, strain rate and temperature on the relative frequency of the HABs were analyzed and discussed. To verify the CA model, the predicted results including the relative frequency of the HABs and the flow stress were compared with the experimental values.展开更多
The slip behavior and mechanism of large-size Mo-3Nb single crystal have been investigated and disclosed comprehensively at room temperature by quasi-static compression with various strains.With the increase of deform...The slip behavior and mechanism of large-size Mo-3Nb single crystal have been investigated and disclosed comprehensively at room temperature by quasi-static compression with various strains.With the increase of deformation,the slip traces change from shallow non-uniform slip lines to dense and uniform slip bands.Different slip traces in the same deformation condition were observed,suggesting that the slip traces in the single crystal are controlled by different types and arrangement mechanisms of mobile dislocation.To clarify the relationship between slip behavior and dislocation arrangement,TEM and AFM analyses were performed.Significant discrepancy between the mobility of screw segments and edge segments caused by double cross-slip multiplication mechanism is the reason why different slip features were witnessed.During the whole slip deformation process,screw dislocations play a dominant role and they are inclined to form wall-substructures by interaction and entanglement.With the development of dislocation accumulation,the entangled dislocation walls evolve into dislocation cells with higher stability.展开更多
The microstructure evolution in hot forming will affect the mechanical properties of the formed product. However, the microstructure is sensitive to the process variables in deformation process of metals and alloys. A...The microstructure evolution in hot forming will affect the mechanical properties of the formed product. However, the microstructure is sensitive to the process variables in deformation process of metals and alloys. A microstructure evolution model of a titanium alloy in hot forming, which included dislocation density rate and primary α phase grain size, was presented according to the deformation mechanism and driving forces, in which the effect of the dislocation density rate on the grain growth was studied firstly. Applying the model to the high temperature deformation process of a TC6 alloy with deformation temperature of 11331223K, strain rate of 0.0150s^-1 and height reduction of 30%, 40% and 50%, the material constants in the present model were calculated by the genetic algorithm(GA) based objective optimization techniques. The calculated results of a TC6 alloy are in good agreement with the experimental ones.展开更多
Grain boundary(GB),as a kind of lattice defect,widely exists in two-dimensional transition metal dichalcogenides(2D TMDs),which has complex and diverse influences on the physical/chemical properties of 2D TMDs.GBs are...Grain boundary(GB),as a kind of lattice defect,widely exists in two-dimensional transition metal dichalcogenides(2D TMDs),which has complex and diverse influences on the physical/chemical properties of 2D TMDs.GBs are universally considered to be a double-edged sword,although some electrical and mechanical properties of 2D TMDs would be adversely affected leading to the reduced overall quality,certain structure-oriented applications could be realized based on its unique properties.In this review,we first detailed the atomic structure characteristics of GBs and the corresponding techniques,then we systematically summarized the methods of introducing GBs into 2D TMDs.Next,we expounded unique electrical,mechanical,and chemical properties of the GBs in 2D TMDs and clarified its internal relationship with the atomic structure.Moreover,the application of GB structure in hydrogen evolution reaction(HER)is also discussed.In the end,we make a conclusion and put forward outlooks,hoping to further promote the basic research of GB and boost the wide application of 2D TMDs.展开更多
In this study, we used the stop-action technique to experimentally investigate the material flow and microstructural evolution of alclad 2A12-T4 aluminum alloy during refill friction stir spot welding.There are two ma...In this study, we used the stop-action technique to experimentally investigate the material flow and microstructural evolution of alclad 2A12-T4 aluminum alloy during refill friction stir spot welding.There are two material flow components, i.e., the inward-or outward-directed spiral flow on the horizontal plane and the upward-or downward-directed flow on the vertical plane.In the plunge stage, the flow of plasticized metal into the cavity is similar to that of a stack, whereby the upper layer is pushed upward by the lower layer.In the refill stage, this is process reversed.As such, there is no obvious vertical plasticized metal flow between adjacent layers.Welding leads to the coarsening of S(Al2CuMg) in the thermo-mechanically affected zone and the diminishing of S in the stir zone.Continuous dynamic recrystallization results in the formation of fine equiaxed grains in the stir zone, but this process becomes difficult in the thermo-mechanically affected zone due to the lower deformation rate and the pinning action of S precipitates on the dislocations and sub-grain boundaries, which leads to a high fraction of low-angle grain boundaries in this zone.展开更多
I_(1)stacking faults(SFs)in Mg alloys are regarded as the nucleation sites of<c+a>dislocations that are critical for these alloys to achieve high ductility.Previously it was proposed that the formation of I_(1)S...I_(1)stacking faults(SFs)in Mg alloys are regarded as the nucleation sites of<c+a>dislocations that are critical for these alloys to achieve high ductility.Previously it was proposed that the formation of I_(1)SFs requires the accumulations of a large number of vacancies,which are difficult to achieve at low temperatures.In this study,molecular dynamics(MD)and molecular statics(MS)simulations based on empirical interatomic potentials were applied to investigate the deformation defect evolutions from the symmetric tilt grain boundaries(GBs)in Mg and Mg-Y alloys under external loading along<c>-axis.The results show the planar faults(PFs)on Pyramidal I planes first appear due to the nucleation and glide of(1/2 c+p)partial dislocations from GBs,where p=1/3(1010).These partial dislocations with pyramidal PFs interact with other defects,including pyramidal PFs themselves,GBs,and ppartial dislocations,generating a large amount of I_(1)SFs.Detailed analyses show the nucleation and growth of I_(1)SFs are achieved by atomic shuffle events and deformation defect reactions without the requirements of vacancy diffusion.Our simulations also suggest the Y clusters at GBs can reduce the critical stress for the formation of pyramidal PFs and I_(1)SFs,which provide a possible reason for the experimental observations that Y promotes the<c+a>dislocation activities.展开更多
文摘Hot compressive behaviors of Ti-6Al-2Zr-1Mo-1V alloy at 800℃, as well as the evolution of microstructure during deformation process, were investigated. The experimental results show that flow stress increases to a peak stress followed by a decease with increasing strain, and finally forms a stable stage. Dislocations are generated at the interface of αβ phase, and the phase interface and dislocation loops play an important role in impeding the movement of dislocation. As strain increasing, micro-deformation bands with high-density dislocation are formed, and dynamic recrystallizaton occurs finally. XRD Fourier analysis reveals that dislocation density increases followed by a decrease during compressive deformation, and falls into the range from 10^10 to 10^11 cm^-2.
基金the National Natural Science Foundation of China(No.51722101)the Key Research and Development Project(No.2017YFB0703001)。
文摘The high performance of Ni single crystal superalloys during high temperature low stress creep service,is intrinsically determined by the combined effects of microstructural evolution and the dislocation behaviour.In the field of the evolution of dislocation network,two main recovery mechanism based on dislocation migration dominate the process.One is superdislocations shearing intoγ’rafts through a two-superpartials-assisted approach.Another is the compact dislocations migrating alongγ/γ’interface.These two mechanisms are similarly climb-rate-controlled process.In this work,a model for the minimum creep rate based on thermodynamic and kinetic calculations and using an existing detailed dislocation dynamics model has been built by taking the dislocation migration behaviours as well as the rafted microstructure into consideration,which can well reproduce the([100]tensile)creep properties of existing Ni superalloy grades,without the need to make the dislocation parameter values composition dependent.
基金supported by Institute of Seismology Foundation(201156068)the National Natural Science Foundation of China(41274027)
文摘Geophysical inversion for earthquake dislocation source model from the observed crustal deformation field is a nonlinear multimodal problem. Although a lot of nonlinear algorithms have been developed, scientists are pursuing a rapid and accurate method to achieve more stable inversion solutions. Differential evolution, an improved Genetic Evolution algorithm, is implemented to solve the problem. The algorithm is fulfilled by Python 2.7 and tested for the 2004 Mw6.0 Parkfield earthquake, the 2009 Mw6.3 L' aquila earthquake, and a virtual MwT.3 earthquake. The inversion results demonstrate that the differential evolution algorithm is not only simple and straightforward to implement, but also robust with impressive precision even if all the 9 model parameters are loosely constrained.
文摘Cooled in water after the isothermal relaxation of deformed austenite for different times, a Nb-bearing microalloyed steel always exhibits the synthetic microstructure in which bainitic ferrite dominates. Strain-induced precipitates do not occur in an unrelaxed sample while they distribute outside dislocations in the sample relaxed for long time. Most of the strain induced precipitates distribute along dislocations in the sample relaxed for proper time. After bainitic transformation, the dislocations formed in the deformed austenite remain to be pinned by the precipitates so that the thermostability of the bainitic ferrite is improved. Coarsening of the precipitates accompanied by their distribution density change has caused the first hardness peak of bainite during reheating. The second hardness peak is attributed to the precipitates, which nucleate in bainite. Dislocations inside the laths getting rid of the pinning of precipitates and their polygonization play the precursor to the evolution of microstructures during reheating.
基金Project supported by the Foundation of Education Ministry for Returned Scholars Project supported by the Foundationof Northeastern University for Returned Doctors Project(2003033372) supported by the National Postdoctoral Foundation of China
文摘In recent years, materials with ultrafine grain size(UFG) have attracted much attention. By using severe plastic deformation(SPD) techniques, materials with fine grain size as small as 200250 nm have been obtained. However, the nature of the grain boundaries has not been theoretically understood. It is still an unsolved question whether or not finer grain sizes down to 100 nm could be reached. A semi-quantitative model for the evolution of dislocation cells in plastic deformation was proposed. The linear stability analysis of this model leads to some interesting results, which facilitate the understanding of the formation of cell structures and of the factors determining the lower limit of the cell size of SPD materials.
文摘Interrupted and ruptured creep tests were conducted on single crystal superalloy DD9 at 980℃/250 MPa and 1100℃/137 MPa conditions.Microstructure evolution during creep was analyzed through scanning electron microscope and transmission electron microscope.Results show that the microstructure evolutions are similar under the creep conditions of 980℃/250 MPa and 1100℃/137 MPa.Cubicalγ′phase,which is dispersedly distributed in theγmatrix,gradually evolves into a layered structure perpendicular to the stress direction.The width of theγmatrix channel along the direction parallel to the stress increases.The relationship between the increase in width of theγmatrix channel and the strain satisfies linear relationship in logarithmic form,indicating that the width of theγmatrix can be deduced via the strain under creep state.This may provide an approach to investigate the width ofγmatrix in single crystal superalloys during creep under high temperature and low stress conditions.In the early creep stage,dislocations formed in theγphase generate mutually perpendicular networks through cross-slip at theγ/γ′interface.Then,stable hexagonal dislocation networks form as a result of the coupling effects of external stress and mismatch stress at high temperatures.In the later period of creep,dislocations shear theγ′phase,ultimately causing the fracture.
基金Guizhou Province Science and Technology Plan Project(QKHJC-ZK[2024]yiban604)Guizhou Province Science and Technology Plan Project(CXTD[2021]008)+4 种基金Bijie City Science and Technology Project(BKLH[2023]9)Technology Project of Bijie City(BKLH[2023]36)Natural Science Research Project of Guizhou Higher Education Institutions of China(QJJ[2023]047)Science and Technology Project of Guizhou Department of Transportation(2022-121-011)Sanmenxia City Science and Technology Bureau Science and Technology Research Project(2022002005)。
文摘The microstructure evolution and deformation mechanism of a DZ125 superalloy during high-temperature creep were studied by means of microstructure observation and creep-property tests.The results show that at the initial stage of high-temperature creep,two sets of dislocations with different Burgers vectors move and meet inγmatrix channels,and react to form a quadrilateral dislocation network.Andγ′phases with raft-like microstructure are generated after the formation of dislocation networks.As creep progresses,the quadrilateral dislocation network is gradually transformed into hexagonal and quadrilateral dislocation networks.During steady stage of creep,the superalloy undergoes deformation with the mechanism that a great number of dislocations slip and climb in the matrix across the raft-likeγ′phases.At the later stage of creep,the raft-likeγ′phases are sheared by dislocations at the breakage of dislocation networks,and then alternate slip occurs,which distorts and breaks the raft-likeγ′/γphases,resulting in the accumulation of micropores at the raft-likeγ′/γinterfaces and the formation of microcracks.As creep continues,the microcracks continue to expand until creep fracture occurs,which is the damage and fracture mechanism of the alloy at the later stage of creep at high temperature.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171013 and 52130110)the Key Research and Development Program of Shaanxi(Grant No.2025CY-YBXM-127)+1 种基金the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX0369)the Research Fund of the State Key Laboratory of Solidification Processing(NPU)China(Grant No.2023-QZ-03)。
文摘Despite the promising prospects of body-centered cubic iron(BCC Fe)in aerospace,energy transportation,and nuclear applications,the effects of extreme environments on its mechanical behaviors and deformation mechanisms remain elusive to date.In this work,the mechanical responses and deformation behaviors of BCC Fe single crystals under extreme loading conditions are investigated by performing the three-dimensional discrete dislocation dynamics simulations.It turns out that the yield strength(oy)of BCC Fe can be enhanced by increasing the strain rate()and/or decreasing the deformation temperature(T).With the strain rate increasing from=10^(2)s^(-1)to 106 s^(-1),the yield strength at 300 K rises fromσy=51.14 MPa to 1114.57 MPa.When the strain rate exceeds 10^(3)s^(-1),an elastic overshoot phenomenon appears because the applied stress and the low initial dislocation density at the early tensile stage cannot drive the plastic deformation immediately.With the temperature increasing from T=100 K to 800 K,the yield strength atσ_(y)=10^(3)3 s^(-1)decreases fromσε=64.97 MPa to 59.50 MPa.Such temperature and strain rate sensitivity of deformation behaviors are clarified from variations in the configurations of dislocation evolution and dislocation density fluxes.It is demonstrated that at low strain rate(ε≤10^(3)s^(-1))conditions,the deformation behaviors of BCC Fe are dominated by the dislocation multi-slip mechanism.With increasing strain rate to e.g.,>10^(3)s^(-1),the deformation behaviors are governed by the dislocation single-slip.Our investigation on the temperature and strain rate sensitivity of deformation behaviors provides insightful guidance for optimizing the mechanical performances of BCC Fe based ferritic steels.
基金supported by the Distinguished Young Scholars of China(No.52025014)Natural Science Foundation of Zhejiang Province(No.LQ23E010002)Innovation 2025 Major Project of Ningbo(Nos.2022Z011 and 2023Z022).
文摘The recently established theory has built clear connections between hardness and toughness and electron structure involving both valence electron concentration(VEC)and core electron count(CEC)in transition metal nitride(TMN)ceramics.However,the underlying deformation mechanisms remain unclear.Herein,we conduct in-depth analysis on microstructure evolution during deformation of the high VEC-CEC solution TiMoN coatings having desired combination of high hardness and toughness.The effects of solid solution,preferred orientation linked with symbiotic compressive stress,grain size and dislocations are systematically discussed.We discover that numerous dislocations have been implanted into the nanocrystals of the TiMoN coating during the high-ionization arc deposition.Using two-beam bright-field imaging,we count the dislocation density and confirm occurrence of dislocation multiplication to form effective plastic deformation,which contributes to significant strain hardening,comparable to solid solution hardening,fine-grain hardening and compressive stress hardening.The improved dislocation activities also play a crucial role in enhancing the toughness by providing extra energy dissipation paths.This work gains new insights into the origins of mechanical properties of ceramic coatings and possibility to tune them via defects.
基金financially supported by the National Natural Science Foundation of China(Nos.U1737212 and U1637102)the Natural Science Foundation for Distinguished Young Scholars of Shaanxi Province(No.2019JC-09)。
文摘What effect does electric current do on dislocation evolution of metals keeps being a confusing question to be answered and proved. To this end, the dislocation evolution of a superalloy with electric current was directly observed by electrical in-situ transmission electron microscopy in this work. Dislocations annihilation at first and then regeneration was found for the first time, which directly proves the existence of electron force during the electrically-assisted manufacturing. Dislocations regeneration would be driven by the electron force and the resistance softening by the local Joule heating effect. Resultantly,a base could be provided for future electrically-assisted research.
文摘The superplastic behavior has been found in Fe 3Al and FeAl alloys with grain sizes of 100~600 μm. The large grained Fe 3Al and FeAl alloys exhibit all deformation characteristics of conventional fine grain size superplastic alloys. However, superplastic behavior was found in large grained iron aluminides without the usual prerequisites for the superplasticity of a fine grain size and grain boundary sliding. The metallographic examinations have shown that average grain size of large grained iron aluminides decreased during superplastic deformation. Transmission electron microscopy (TEM) observations have shown that there were a great number of subgrain boundaries which formed a network and among which the proportion of low and high angle boundaries increased with the increase of strain. The observed superplastic phenomenon is explained by continuous recovery and recrystallization. During superplastic deformation, an unstable subgrain network forms and these subboundaries absorb gliding dislocations and transform into low and high angle grain boundaries. A dislocation gliding and climb process accommodated by subboundary sliding, migration and rotation, allows the superplastic flow to proceed.
基金Project(51675465)supported by the National Natural Science Foundation of ChinaProject(E2019203075)supported by the Natural Science Foundation of Hebei Province,China+1 种基金Project(BJ2019001)supported by the Top Young Talents Project of the Education Department of Hebei Province,ChinaProject(Kfkt2017-07)supported by the State Key Laboratory Program of High Performance Complex Manufacturing,China。
文摘The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffraction(EBSD).Based on the K-M dislocation density model,a two-stage K-M dislocation density model of 7A85 aluminum alloy was established.The results reveal that dynamic recovery(DRV)and dynamic recrystallization(DRX)are the main mechanisms of microstructure evolution during thermal deformation of 7A85 aluminum alloy.350−400°C is the transformation zone from dynamic recovery to dynamic recrystallization.At low temperature(≤350°C),DRV is the main mechanism,while DRX mostly occurs at high temperature(≥400°C).At this point,the sensitivity of microstructure evolution to temperature is relatively high.As the temperature increased,the average misorientation angle(θˉ_(c))increased significantly,ranging from 0.93°to 7.13°.Meanwhile,the f_(LAGBs) decreased with the highest decrease of 24%.
基金financially supported by the National Basic Research Program of China (No.G2011CB012806)
文摘The microstructural evolution of AA7055 aluminum alloy under dynamic impact loading with the strain rate of 1.3 × 10^4 s^-1 controlled by a split Hopkinson pressure bar was investigated, and compared with that under quasi-static mechanical loading in compression with strain rate of 1.0 × 10^-3 s^-1. The quasi-static-compressed sample exhibited equiaxed dislocation cells, which were different from the elongated and incomplete dislocation cells for the alloy undergoing dynamic compression. The high strain-rate compression also induced the formation of localized shear bands in which the recrystallizations characterized as fine equiaxed grains were observed. The microstructural evolutions under both quasi-static and dynamic compressions are rationalized in terms of the dislocation cell model combined with the dislocation kinetics, in addition to the adiabatic temperature rise in shear bands at high strain rate.
基金supported by the National Basic Research Program of China (No. 2010CB731701)the National Natural Science Foundation of China (Nos. 50935007 and 51175428)+1 种基金Foundation for Fundamental Research of Northwestern Polytechnical University in China (No. NPU-FFR-JC20100229)the 111 Project (No. B08040)
文摘Substructure evolution significantly influences the flow behavior of titanium alloys in isothermal hot compression. This paper presents a physical experiment(isothermal hot compression and electron backscatter difraction, EBSD) and a cellular automaton(CA) method to investigate the substructure evolution of a near-α titanium alloy Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the α + β two-phase region. In the CA model, the subgrain growth, the transformation of low angle boundaries(LABs) to high angle boundaries(HABs) and the dislocation density evolution were considered. The dislocation density accumulating around the subgrain boundaries provided a driving force and made the transformation of the LABs to HABs. The CA model was employed to predict the substructure evolution, dislocation density evolution and flow stress. In addition, the efects of strain, strain rate and temperature on the relative frequency of the HABs were analyzed and discussed. To verify the CA model, the predicted results including the relative frequency of the HABs and the flow stress were compared with the experimental values.
基金financially supported by the Major Science and Technology Project of Shaanxi Province,China(No.2020zdzx04-02-02)the Key Research and Development Program of Shaanxi,China(Nos.2019ZDLGY05-04 and 2019ZDLGY05-06)the National key Research and Development Program(No.2017YFB0306003)。
文摘The slip behavior and mechanism of large-size Mo-3Nb single crystal have been investigated and disclosed comprehensively at room temperature by quasi-static compression with various strains.With the increase of deformation,the slip traces change from shallow non-uniform slip lines to dense and uniform slip bands.Different slip traces in the same deformation condition were observed,suggesting that the slip traces in the single crystal are controlled by different types and arrangement mechanisms of mobile dislocation.To clarify the relationship between slip behavior and dislocation arrangement,TEM and AFM analyses were performed.Significant discrepancy between the mobility of screw segments and edge segments caused by double cross-slip multiplication mechanism is the reason why different slip features were witnessed.During the whole slip deformation process,screw dislocations play a dominant role and they are inclined to form wall-substructures by interaction and entanglement.With the development of dislocation accumulation,the entangled dislocation walls evolve into dislocation cells with higher stability.
基金Project(G2000067206) supported by the National Basic Research Programof China Project supported by Teaching andResearch Award Fundfor Outstanding Young Teachersin Higher EducationInstitutions of Ministry of Education +1 种基金Project(50475144) sup-ported by the National Natural Science Foundation of China Project( CX200305) supported by the Doctorate Creation Foundation ofNorthwestern Polytechnical University
文摘The microstructure evolution in hot forming will affect the mechanical properties of the formed product. However, the microstructure is sensitive to the process variables in deformation process of metals and alloys. A microstructure evolution model of a titanium alloy in hot forming, which included dislocation density rate and primary α phase grain size, was presented according to the deformation mechanism and driving forces, in which the effect of the dislocation density rate on the grain growth was studied firstly. Applying the model to the high temperature deformation process of a TC6 alloy with deformation temperature of 11331223K, strain rate of 0.0150s^-1 and height reduction of 30%, 40% and 50%, the material constants in the present model were calculated by the genetic algorithm(GA) based objective optimization techniques. The calculated results of a TC6 alloy are in good agreement with the experimental ones.
基金financially supported by the Natural Science Foundation of China(No.51902101)Natural Science Foundation of Jiangsu Province(No.BK20201381)+1 种基金Science Foundation of Nanjing University of Posts and Telecommunications(No.NY219144)the National College Student Innovation and Entrepreneurship Training Program(No.202210293171K).
文摘Grain boundary(GB),as a kind of lattice defect,widely exists in two-dimensional transition metal dichalcogenides(2D TMDs),which has complex and diverse influences on the physical/chemical properties of 2D TMDs.GBs are universally considered to be a double-edged sword,although some electrical and mechanical properties of 2D TMDs would be adversely affected leading to the reduced overall quality,certain structure-oriented applications could be realized based on its unique properties.In this review,we first detailed the atomic structure characteristics of GBs and the corresponding techniques,then we systematically summarized the methods of introducing GBs into 2D TMDs.Next,we expounded unique electrical,mechanical,and chemical properties of the GBs in 2D TMDs and clarified its internal relationship with the atomic structure.Moreover,the application of GB structure in hydrogen evolution reaction(HER)is also discussed.In the end,we make a conclusion and put forward outlooks,hoping to further promote the basic research of GB and boost the wide application of 2D TMDs.
基金financially supported by the National Science and Technology Major Project of China (No.2017ZX04005001)the Key Research & Development program of Shandong Province (2018GGX103053)。
文摘In this study, we used the stop-action technique to experimentally investigate the material flow and microstructural evolution of alclad 2A12-T4 aluminum alloy during refill friction stir spot welding.There are two material flow components, i.e., the inward-or outward-directed spiral flow on the horizontal plane and the upward-or downward-directed flow on the vertical plane.In the plunge stage, the flow of plasticized metal into the cavity is similar to that of a stack, whereby the upper layer is pushed upward by the lower layer.In the refill stage, this is process reversed.As such, there is no obvious vertical plasticized metal flow between adjacent layers.Welding leads to the coarsening of S(Al2CuMg) in the thermo-mechanically affected zone and the diminishing of S in the stir zone.Continuous dynamic recrystallization results in the formation of fine equiaxed grains in the stir zone, but this process becomes difficult in the thermo-mechanically affected zone due to the lower deformation rate and the pinning action of S precipitates on the dislocations and sub-grain boundaries, which leads to a high fraction of low-angle grain boundaries in this zone.
基金supported by the U.S.Department of Energy,Office of Basic Energy Sciences,Division of Materials Sciences and Engineering under Award DE-SC0008637 as part of the Center for PRedictive Integrated Structural Materials Science(PRISMS Center)at University of Michigan。
文摘I_(1)stacking faults(SFs)in Mg alloys are regarded as the nucleation sites of<c+a>dislocations that are critical for these alloys to achieve high ductility.Previously it was proposed that the formation of I_(1)SFs requires the accumulations of a large number of vacancies,which are difficult to achieve at low temperatures.In this study,molecular dynamics(MD)and molecular statics(MS)simulations based on empirical interatomic potentials were applied to investigate the deformation defect evolutions from the symmetric tilt grain boundaries(GBs)in Mg and Mg-Y alloys under external loading along<c>-axis.The results show the planar faults(PFs)on Pyramidal I planes first appear due to the nucleation and glide of(1/2 c+p)partial dislocations from GBs,where p=1/3(1010).These partial dislocations with pyramidal PFs interact with other defects,including pyramidal PFs themselves,GBs,and ppartial dislocations,generating a large amount of I_(1)SFs.Detailed analyses show the nucleation and growth of I_(1)SFs are achieved by atomic shuffle events and deformation defect reactions without the requirements of vacancy diffusion.Our simulations also suggest the Y clusters at GBs can reduce the critical stress for the formation of pyramidal PFs and I_(1)SFs,which provide a possible reason for the experimental observations that Y promotes the<c+a>dislocation activities.