The algorithm is based on constructing a disjoin kg t set of the minimal paths in a network system.In this paper, cubic notation was used to describe the logic function of a network in a well-balanced state,and then t...The algorithm is based on constructing a disjoin kg t set of the minimal paths in a network system.In this paper, cubic notation was used to describe the logic function of a network in a well-balanced state,and then the sharp-product operation was used to construct the disjoint minimal path set of the network.A computer program has been developed,and when combined with decomposition technology,the reliability of a general lifeline network can be effectively and automatically calculated.展开更多
Direct soil temperature(ST)measurement is time-consuming and costly;thus,the use of simple and cost-effective machine learning(ML)tools is helpful.In this study,ML approaches,including KStar,instance-based K-nearest l...Direct soil temperature(ST)measurement is time-consuming and costly;thus,the use of simple and cost-effective machine learning(ML)tools is helpful.In this study,ML approaches,including KStar,instance-based K-nearest learning(IBK),and locally weighted learning(LWL),coupled with resampling algorithms of bagging(BA)and dagging(DA)(BA-IBK,BA-KStar,BA-LWL,DA-IBK,DA-KStar,and DA-LWL)were developed and tested for multi-step ahead(3,6,and 9 d ahead)ST forecasting.In addition,a linear regression(LR)model was used as a benchmark to evaluate the results.A dataset was established,with daily ST time-series at 5 and 50 cm soil depths in a farmland as models’output and meteorological data as models’input,including mean(T_(mean)),minimum(Tmin),and maximum(T_(max))air temperatures,evaporation(Eva),sunshine hours(SSH),and solar radiation(SR),which were collected at Isfahan Synoptic Station(Iran)for 13 years(1992–2005).Six different input combination scenarios were selected based on Pearson’s correlation coefficients between inputs and outputs and fed into the models.We used 70%of the data to train the models,with the remaining 30%used for model evaluation via multiple visual and quantitative metrics.Our?ndings showed that T_(mean)was the most effective input variable for ST forecasting in most of the developed models,while in some cases the combinations of variables,including T_(mean)and T_(max)and T_(mean),T_(max),Tmin,Eva,and SSH proved to be the best input combinations.Among the evaluated models,BA-KStar showed greater compatibility,while in most cases,BA-IBK and-LWL provided more accurate results,depending on soil depth.For the 5 cm soil depth,BA-KStar had superior performance(i.e.,Nash-Sutcliffe efficiency(NSE)=0.90,0.87,and 0.85 for 3,6,and 9 d ahead forecasting,respectively);for the 50 cm soil depth,DA-KStar outperformed the other models(i.e.,NSE=0.88,0.89,and 0.89 for 3,6,and 9 d ahead forecasting,respectively).The results con?rmed that all hybrid models had higher prediction capabilities than the LR model.展开更多
The seismic reliability evaluation of lifeline networks has received considerable attention and been widely studied. In this paper, on the basis of an original recursive decomposition algorithm, an improved analytical...The seismic reliability evaluation of lifeline networks has received considerable attention and been widely studied. In this paper, on the basis of an original recursive decomposition algorithm, an improved analytical approach to evaluate the seismic reliability of large lifeline systems is presented. The proposed algorithm takes the shortest path from the source to the sink of a network as decomposition policy. Using the Boolean laws of set operation and the probabilistic operation principal, a recursive decomposition process is constructed in which the disjoint minimal path set and the disjoint minimal cut set are simultaneously enumerated. As the result, a probabilistic inequality can be used to provide results that satisfy a prescribed error bound. During the decomposition process, different from the original recursive decomposition algorithm which only removes edges to simplify the network, the proposed algorithm simplifies the network by merging nodes into sources and removing edges. As a result, the proposed algorithm can obtain simpler networks. Moreover, for a network owning s-independent components in its component set, two network reduction techniques are introduced to speed up the proposed algorithm. A series of case studies, including an actual water distribution network and a large urban gas system, are calculated using the proposed algorithm. The results indicate that the proposed algorithm provides a useful probabilistic analysis method for the seismic reliability evaluation of lifeline networks.展开更多
基金Key Project of Science and Technology from the State Plan Committee.No.101-9914003
文摘The algorithm is based on constructing a disjoin kg t set of the minimal paths in a network system.In this paper, cubic notation was used to describe the logic function of a network in a well-balanced state,and then the sharp-product operation was used to construct the disjoint minimal path set of the network.A computer program has been developed,and when combined with decomposition technology,the reliability of a general lifeline network can be effectively and automatically calculated.
文摘Direct soil temperature(ST)measurement is time-consuming and costly;thus,the use of simple and cost-effective machine learning(ML)tools is helpful.In this study,ML approaches,including KStar,instance-based K-nearest learning(IBK),and locally weighted learning(LWL),coupled with resampling algorithms of bagging(BA)and dagging(DA)(BA-IBK,BA-KStar,BA-LWL,DA-IBK,DA-KStar,and DA-LWL)were developed and tested for multi-step ahead(3,6,and 9 d ahead)ST forecasting.In addition,a linear regression(LR)model was used as a benchmark to evaluate the results.A dataset was established,with daily ST time-series at 5 and 50 cm soil depths in a farmland as models’output and meteorological data as models’input,including mean(T_(mean)),minimum(Tmin),and maximum(T_(max))air temperatures,evaporation(Eva),sunshine hours(SSH),and solar radiation(SR),which were collected at Isfahan Synoptic Station(Iran)for 13 years(1992–2005).Six different input combination scenarios were selected based on Pearson’s correlation coefficients between inputs and outputs and fed into the models.We used 70%of the data to train the models,with the remaining 30%used for model evaluation via multiple visual and quantitative metrics.Our?ndings showed that T_(mean)was the most effective input variable for ST forecasting in most of the developed models,while in some cases the combinations of variables,including T_(mean)and T_(max)and T_(mean),T_(max),Tmin,Eva,and SSH proved to be the best input combinations.Among the evaluated models,BA-KStar showed greater compatibility,while in most cases,BA-IBK and-LWL provided more accurate results,depending on soil depth.For the 5 cm soil depth,BA-KStar had superior performance(i.e.,Nash-Sutcliffe efficiency(NSE)=0.90,0.87,and 0.85 for 3,6,and 9 d ahead forecasting,respectively);for the 50 cm soil depth,DA-KStar outperformed the other models(i.e.,NSE=0.88,0.89,and 0.89 for 3,6,and 9 d ahead forecasting,respectively).The results con?rmed that all hybrid models had higher prediction capabilities than the LR model.
基金Natural Science Funds for the Innovative Research Group of China Under Grant No.50621062
文摘The seismic reliability evaluation of lifeline networks has received considerable attention and been widely studied. In this paper, on the basis of an original recursive decomposition algorithm, an improved analytical approach to evaluate the seismic reliability of large lifeline systems is presented. The proposed algorithm takes the shortest path from the source to the sink of a network as decomposition policy. Using the Boolean laws of set operation and the probabilistic operation principal, a recursive decomposition process is constructed in which the disjoint minimal path set and the disjoint minimal cut set are simultaneously enumerated. As the result, a probabilistic inequality can be used to provide results that satisfy a prescribed error bound. During the decomposition process, different from the original recursive decomposition algorithm which only removes edges to simplify the network, the proposed algorithm simplifies the network by merging nodes into sources and removing edges. As a result, the proposed algorithm can obtain simpler networks. Moreover, for a network owning s-independent components in its component set, two network reduction techniques are introduced to speed up the proposed algorithm. A series of case studies, including an actual water distribution network and a large urban gas system, are calculated using the proposed algorithm. The results indicate that the proposed algorithm provides a useful probabilistic analysis method for the seismic reliability evaluation of lifeline networks.