期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Micropillar compression using discrete dislocation dynamics and machine learning
1
作者 Jin Tao Dean Wei +3 位作者 Junshi Yu Qianhua Kan Guozheng Kang Xu Zhang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期39-47,共9页
Discrete dislocation dynamics(DDD)simulations reveal the evolution of dislocation structures and the interaction of dislocations.This study investigated the compression behavior of single-crystal copper micropillars u... Discrete dislocation dynamics(DDD)simulations reveal the evolution of dislocation structures and the interaction of dislocations.This study investigated the compression behavior of single-crystal copper micropillars using fewshot machine learning with data provided by DDD simulations.Two types of features are considered:external features comprising specimen size and loading orientation and internal features involving dislocation source length,Schmid factor,the orientation of the most easily activated dislocations and their distance from the free boundary.The yielding stress and stress-strain curves of single-crystal copper micropillar are predicted well by incorporating both external and internal features of the sample as separate or combined inputs.It is found that the machine learning accuracy predictions for single-crystal micropillar compression can be improved by incorporating easily activated dislocation features with external features.However,the effect of easily activated dislocation on yielding is less important compared to the effects of specimen size and Schmid factor which includes information of orientation but becomes more evident in small-sized micropillars.Overall,incorporating internal features,especially the information of most easily activated dislocations,improves predictive capabilities across diverse sample sizes and orientations. 展开更多
关键词 discrete dislocation dynamics simulations Machine learning Size effects Orientation effects Microstructural features
在线阅读 下载PDF
CYCLIC HARDENING BEHAVIOR OF POLYCRYSTALS WITH PENETRABLE GRAIN BOUNDARIES:TWO-DIMENSIONAL DISCRETE DISLOCATION DYNAMICS SIMULATION 被引量:3
2
作者 Chuantao Hou Zhenhuan Li Minsheng Huang Chaojun Ouyang 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第4期295-306,共12页
A two-dimensional discrete dislocation dynamics (DDD) technology by Giessen and Needleman (1995), which has been extended by integrating a dislocation-grain boundary interaction model, is used to computationally a... A two-dimensional discrete dislocation dynamics (DDD) technology by Giessen and Needleman (1995), which has been extended by integrating a dislocation-grain boundary interaction model, is used to computationally analyze the micro-cyclic plastic response of polycrystals containing micron-sized grains, with special attentions to significant influence of dislocationpenetrable grain boundaries (GBs) on the micro-plastic cyclic responses of polycrystals and underlying dislocation mechanism. Toward this end, a typical polycrystalline rectangular specimen under simple tension-compression loading is considered. Results show that, with the increase of cycle accumulative strain, continual dislocation accumulation and enhanced dislocation-dislocation interactions induce the cyclic hardening behavior; however, when a dynamic balance among dislocation nucleation, penetration through GB and dislocation annihilation is approximately established, cyclic stress gradually tends to saturate. In addition, other factors, including the grain size, cyclic strain amplitude and its history, also have considerable influences on the cyclic hardening and saturation. 展开更多
关键词 discrete dislocation dynamics simulation cyclic micro-plasticity size effect POLYCRYSTALS grain boundary penetrability
在线阅读 下载PDF
Effect of Hydrogen on Dislocation Nucleation and Motion:Nanoindentation Experiment and Discrete Dislocation Dynamics Simulation 被引量:1
3
作者 Jian Wang Lv Zhao +2 位作者 Minsheng Huang Yaxin Zhu Zhenhuan Li 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第1期1-14,共14页
The hydrogen effect on the nucleation and motion of dislocations in single-crystal bcc Fe with(110)surface was investigated by both nanoindentation experiments and discrete dislocation dynamics(DDD)simulation.The resu... The hydrogen effect on the nucleation and motion of dislocations in single-crystal bcc Fe with(110)surface was investigated by both nanoindentation experiments and discrete dislocation dynamics(DDD)simulation.The results of nanoindentation experiments showed that the pop-in load decreased evidently for the electrochemical hydrogen charging specimen,indicating that the dislocation nucleation strength might be reduced by hydrogen.In addition,the decrease of hardness due to hydrogen charging was also captured,implying that the dislocation motion might be promoted by hydrogen.By incorporating the effect of hydrogen on dislocation core energy,a DDD model was specifically proposed to investigate the influence of hydrogen on dislocation nucleation and motion.The results of DDD simulation revealed that under the effect of hydrogen,the dislocation nucleation strength is decreased and the motion of dislocation is promoted. 展开更多
关键词 HYDROGEN NANOINDENTATION Homogeneous dislocation nucleation discrete dislocation dynamics
原文传递
A hierarchical dislocation-grain boundary interaction model based on 3D discrete dislocation dynamics and molecular dynamics 被引量:4
4
作者 GAO Yuan ZHUANG Zhuo YOU XiaoChuan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第4期625-632,共8页
We develop a new hierarchical dislocation-grain boundary (GB) interaction model to predict the mechanical behavior of poly- crystalline metals at micro and submicro scales by coupling 3D Discrete Dislocation Dynami... We develop a new hierarchical dislocation-grain boundary (GB) interaction model to predict the mechanical behavior of poly- crystalline metals at micro and submicro scales by coupling 3D Discrete Dislocation Dynamics (DDD) simulation with the Molecular Dynamics (MD) simulation. At the microscales, the DDD simulations are responsible for capturing the evolution of dislocation structures; at the nanoscales, the MD simulations are responsible for obtaining the GB energy and ISF energy which are then transferred hierarchically to the DDD level. In the present model, four kinds of dislocafion-GB interactions, i.e. transmission, absorption, re-emission and reflection, are all considered. By this methodology, the compression of a Cu mi- cro-sized bi-crystal pillar is studied. We investigate the characteristic mechanical behavior of the bi-crystal compared with that of the single-crystal. Moreover, the comparison between the present penetrable model of GB and the conventional impenetrable model also shows the accuracy and efficiency of the present model. 展开更多
关键词 Grain boundary Multiscale simulation discrete dislocation dynamics Bi-crystal compression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部