期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Robotic Knee Tracking Control to Mimic the Intact Human Knee Profile Based on Actor-Critic Reinforcement Learning 被引量:2
1
作者 Ruofan Wu Zhikai Yao +1 位作者 Jennie Si He(Helen)Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期19-30,共12页
We address a state-of-the-art reinforcement learning(RL)control approach to automatically configure robotic pros-thesis impedance parameters to enable end-to-end,continuous locomotion intended for transfemoral amputee... We address a state-of-the-art reinforcement learning(RL)control approach to automatically configure robotic pros-thesis impedance parameters to enable end-to-end,continuous locomotion intended for transfemoral amputee subjects.Specifically,our actor-critic based RL provides tracking control of a robotic knee prosthesis to mimic the intact knee profile.This is a significant advance from our previous RL based automatic tuning of prosthesis control parameters which have centered on regulation control with a designer prescribed robotic knee profile as the target.In addition to presenting the tracking control algorithm based on direct heuristic dynamic programming(dHDP),we provide a control performance guarantee including the case of constrained inputs.We show that our proposed tracking control possesses several important properties,such as weight convergence of the learning networks,Bellman(sub)optimality of the cost-to-go value function and control input,and practical stability of the human-robot system.We further provide a systematic simulation of the proposed tracking control using a realistic human-robot system simulator,the OpenSim,to emulate how the dHDP enables level ground walking,walking on different terrains and at different paces.These results show that our proposed dHDP based tracking control is not only theoretically suitable,but also practically useful. 展开更多
关键词 Automatic tracking of intact knee configuration of robotic knee prosthesis direct heuristic dynamic programming(dHDP) reinforcement learning control
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部