Stewart platform(SP) is a promising choice for large component alignment, and interactive force measurements are a novel and significant approach for high-precision assemblies. The designed position and orientation(P&...Stewart platform(SP) is a promising choice for large component alignment, and interactive force measurements are a novel and significant approach for high-precision assemblies. The designed position and orientation(P&O) adjusting platform, based on an SP for force/torquedriven(F/T-driven) alignment, can dynamically measure interactive forces. This paper presents an analytical algorithm of measuring six-dimensional F/T based on the screw theory for accurate determination of external forces during alignment. Dynamic gravity deviations were taken into consideration and a compensation model was developed. The P&O number was optimized as well.Given the specific appearance of repeated six-dimensional F/T measurements, an approximate cone shape was used for spatial precision analysis. The magnitudes and directions of measured F/Ts can be evaluated by a set of standards, in terms of accuracy and repeatability. Experiments were also performed using a known applied load, and the proposed analytical algorithm was able to accurately predict the F/T. A comparison between precision analysis experiments with or without assembly fixtures was performed. Experimental results show that the measurement accuracy varies under different P&O sets and higher loads lead to poorer accuracy of dynamic gravity compensation. In addition, the preferable operation range has been discussed for high-precision assemblies with smaller deviations.展开更多
为了实现主船体大板架中纵向强力构件的三维模型快速创建,提升一体化三维数字设计的效率,压缩船舶设计周期,提出二维图纸信息读取技术和二维驱动三维参数化建模技术,通过对AutoCAD与Smart3D的二次开发,建立从二维图纸数据到三维模型快...为了实现主船体大板架中纵向强力构件的三维模型快速创建,提升一体化三维数字设计的效率,压缩船舶设计周期,提出二维图纸信息读取技术和二维驱动三维参数化建模技术,通过对AutoCAD与Smart3D的二次开发,建立从二维图纸数据到三维模型快速创建的设计流程,开发出主船体纵向强力构件快速建模工具。以30万t超大型油船(Very Large Crude Carrier,VLCC)作为实例进行验证,通过与传统参数化设计工具及软件自带设计模块的对比分析,验证了该工具的准确性与高效性。所开发的快速建模工具对压缩船舶设计周期、提高船舶设计效率具有显著作用,可为船舶三维数字设计提供有力支持。展开更多
基金co-supported by the National Defense Basic Scientific Research (No. A2120132007)the Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing (No. SAMC14-JS-15-055)
文摘Stewart platform(SP) is a promising choice for large component alignment, and interactive force measurements are a novel and significant approach for high-precision assemblies. The designed position and orientation(P&O) adjusting platform, based on an SP for force/torquedriven(F/T-driven) alignment, can dynamically measure interactive forces. This paper presents an analytical algorithm of measuring six-dimensional F/T based on the screw theory for accurate determination of external forces during alignment. Dynamic gravity deviations were taken into consideration and a compensation model was developed. The P&O number was optimized as well.Given the specific appearance of repeated six-dimensional F/T measurements, an approximate cone shape was used for spatial precision analysis. The magnitudes and directions of measured F/Ts can be evaluated by a set of standards, in terms of accuracy and repeatability. Experiments were also performed using a known applied load, and the proposed analytical algorithm was able to accurately predict the F/T. A comparison between precision analysis experiments with or without assembly fixtures was performed. Experimental results show that the measurement accuracy varies under different P&O sets and higher loads lead to poorer accuracy of dynamic gravity compensation. In addition, the preferable operation range has been discussed for high-precision assemblies with smaller deviations.
文摘为了实现主船体大板架中纵向强力构件的三维模型快速创建,提升一体化三维数字设计的效率,压缩船舶设计周期,提出二维图纸信息读取技术和二维驱动三维参数化建模技术,通过对AutoCAD与Smart3D的二次开发,建立从二维图纸数据到三维模型快速创建的设计流程,开发出主船体纵向强力构件快速建模工具。以30万t超大型油船(Very Large Crude Carrier,VLCC)作为实例进行验证,通过与传统参数化设计工具及软件自带设计模块的对比分析,验证了该工具的准确性与高效性。所开发的快速建模工具对压缩船舶设计周期、提高船舶设计效率具有显著作用,可为船舶三维数字设计提供有力支持。