Electronic 3D printing possesses a remarkable molding ability and convenience in integrated circuits,flexible wearables,and individual automobile requirements.However,traditional 3D printing technology still struggles...Electronic 3D printing possesses a remarkable molding ability and convenience in integrated circuits,flexible wearables,and individual automobile requirements.However,traditional 3D printing technology still struggles to meet the demands of high precision and high efficiency in the process of fabricating a curved surface circuit,particularly achieving precise silver circuit molding on irregular substrates.Here,a high-precision and muti-scaled conformal manufacturing method for silver circuits is presented through the digital light processing(DLP)of ultraviolet-curable silver paste(UV-SP)with adjustable photocuring properties,enabling the successful preparation of micro-scaled conductive structure on the sharply skewed hook face.The minimum modeling depth and width of the cured silver paste can be well controlled to 10 and 88µm,respectively.Compared with traditional printing technology,the printing efficiency of complex patterns has increased by over 70%.The printed silver circuit demonstrates an exceptionally high electrical conductivity,reaching as high as 1.16×10^(7) S/m.Additionally,the UV-SP exhibits significant manufacturing efficiency and superior molding resolution compared to conventional direct ink writing and inkjet printing techniques,thereby contributing to the attainment of high precision and efficiency of conformal and micro-molding manufacturing in sensors,communication antennas,and other electronic devices based on curved substrates.展开更多
The heavy-ion accelerator facility(HIAF)under construction in China will produce various stable and intense radioactive beams with energies ranging from MeV/u to GeV/u.The ion-linac(iLinac)accelerator,which will serve...The heavy-ion accelerator facility(HIAF)under construction in China will produce various stable and intense radioactive beams with energies ranging from MeV/u to GeV/u.The ion-linac(iLinac)accelerator,which will serve as the injector for the HIAF,is a superconducting heavy-ion accelerator containing 13 cryomodules.It will operate in either continuous wave mode or pulsed mode,with a beam current ranging from 0.01 to 1 emA.The beam position monitor(BPM)is crucial for this high-beam-power machine,which requires precise beam control and a very small beam loss of less than 1 W/m,especially inside the cryomodules of this unique beam instrument.Nearly 70 BPMs will be installed on the iLinac.New digital beam position and phase measurement(DBPPM)electronics based on a heterogeneous multiprocessing platform system-on-chip(MPSoC)has been developed to provide accurate beam trajectory and phase measurements as well as beam interlocking signals for a fast machine protection system(MPS).The DBPPM comprises an analog front-end(AFE)board in field programmable gate array(FPGA)mezzanine-connector(FMC)form factor,along with a digital signal processing board housed within a “2U 19”chassis.To mitigate radio frequency(RF)leakage effects from high-power RF systems in certain scenarios,beam signals undergo simultaneous processing at both fundamental and second-harmonic frequencies.A dynamic range from-65 dBm to 0 dBm was established to accommodate both weak beam commissioning and high-intensity operational demands.Laboratory tests demonstrated that at input power levels exceeding-45 d Bm,the phase resolution surpasses 0.05°,and the position resolution exceeds 5μm.These results align well with the stipulated measurement requirements.Moreover,the newly developed DBPPM has self-testing and self-calibration functions that are highly helpful for the systematic evaluation of numerous electronic components and fault diagnosis equipment.In addition,the DBPPM electronics implements a 2D nonlinear polynomial correction on the FPGA and can collect accurate real-time position measurements at large beam offsets.This newly developed DBPPM electronics has been applied to several Linac machines,and the results from beam measurements show high performance,good long-term stability,and high reliability.In this paper,a detailed overview of the architecture,performance,and proof-of-principle measurement of the beams is presented.展开更多
Chaotic optical communication has shown large potential as a hardware encryption method in the physical layer.As an important figure of merit,the bit rate–distance product of chaotic optical communication has been co...Chaotic optical communication has shown large potential as a hardware encryption method in the physical layer.As an important figure of merit,the bit rate–distance product of chaotic optical communication has been continually improved to 30 Gb/s×340 km,but it is still far from the requirement for a deployed optical fiber communication system,which is beyond 100 Gb/s×1000 km.A chaotic carrier can be considered as an analog signal and suffers from fiber channel impairments,limiting the transmission distance of high-speed chaotic optical communications.To break the limit,we propose and experimentally demonstrate a pilot-based digital signal processing scheme for coherent chaotic optical communication combined with deep-learning-based chaotic synchronization.Both transmission impairment recovery and chaotic synchronization are realized in the digital domain.The frequency offset of the lasers is accurately estimated and compensated by determining the location of the pilot tone in the frequency domain,and the equalization and phase noise compensation are jointly performed by the least mean square algorithm through the time domain pilot symbols.Using the proposed method,100 Gb∕s chaotically encrypted quadrature phase-shift keying(QPSK)signal over 800 km single-mode fiber(SMF)transmission is experimentally demonstrated.In order to enhance security,40 Gb∕s real-time chaotically encrypted QPSK signal over 800 km SMF transmission is realized by inserting pilot symbols and tone in a field-programmable gate array.This method provides a feasible approach to promote the practical application of chaotic optical communications and guarantees the high security of chaotic encryption.展开更多
The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is a...The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.展开更多
Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biolo...Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biological properties of the scaffold(i.e.,degradability and cell growth rate).Lattice structure is a kind of periodic porous structure,which has some advantages of light weight and high strength,and is widely used in the preparation of bioceramic scaffolders.For the structure of the scaffold,high porosity and large pore size are important for bone growth,bone integration and promoting good mechanical interlocking between neighboring bones and the scaffold.However,scaffolds with a high porosity often lack mechanical strength.In addition,different parts of the bone have different structural requirements.In this paper,scaffolds with a non-uniform structure or a hierarchical structure were designed,with loose and porous exterior to facilitate cell adhesion,osteogenic differentiation and vascularization as well as relatively dense interior to provide sufficient mechanical support for bone repair.Methods In this work,composite ceramics scaffolds with 10%akermanite content were prepared by DLP technology.The scaffold had a high porosity outside to promote the growth of bone tissue,and a low porosity inside to withstand external forces.The compressive strength,fracture form,in-vitro degradation performance and bioactivity of graded bioceramic scaffolds were investigated.The models of scaffolds were imported into the DLP printer with a 405 nm light.The samples were printed with the intensity of 8 mJ/cm^(2)and a layer thickness of 50μm.Finally,the ceramic samples were sintered at 1100℃.The degradability of the hierarchical gyroid bioceramic scaffolds was evaluated through immersion in Tris-HCl solution and SBF solution at a ratio of 200 mL/g.The bioactivity of bioceramic was obtained via immersing them in SBF solution for two weeks.The concentrations of calcium,phosphate,silicon,and magnesium ions in the soaking solution were determined by an inductively coupled plasma optical emission spectrometer.Results and discussion In this work,a hierarchical Gyroid structure HA-AK10 scaffold(sintered at 1100℃)with a radial internal porosity of 50%and an external porosity of 70%is prepared,and the influence of structural form on the compressive strength and degradation performance of the scaffold is investigated.The biological activity of the bioceramics in vitro is also verified.The mechanical simulation results show that the stress distribution corresponds to the porosity distribution of the structure,and the low porosity is larger and the overall stress concentration phenomenon does not appear.After soaking in SBF solution,Si—OH is firstly formed on the surface of bioceramics,and then silicon gel layer is produced due to the presence of calcium and silicon ions.The silicon gel layer is dissociated into negatively charged groups under alkaline environment secondary adsorption of calcium ions and phosphate ions,forming amorphous calcium phosphate,and finally amorphous calcium phosphate crystals and adsorption of carbonate ions,forming carbonate hydroxyapatite.This indicates that the composite bioceramics have a good biological activity in-vitro and can provide a good environment for the growth of bone cells.A hierarchical Gyroid ceramic scaffold with a bone geometry is prepared via applying the hierarchical structure to the bone contour scaffold.The maximum load capacity of the hierarchical Gyroid ceramic scaffold is 8 times that of the uniform structure.Conclusions The hierarchical structure scaffold designed had good overall compressive performance,good degradation performance,and still maintained a good mechanical stability during degradation.In addition,in-vitro biological experimental results showed that the surface graded composite scaffold could have a good in-vitro biological activity and provide a good environment for bone cells.Compared to the heterosexual structure,the graded scaffold had greater mechanical properties.展开更多
Ceramic cores fabricated by stereolithography exhibit great potential in casting turbine blades.Previous research on ceramic core molding was primarily conducted using vertical printing techniques,which not only resul...Ceramic cores fabricated by stereolithography exhibit great potential in casting turbine blades.Previous research on ceramic core molding was primarily conducted using vertical printing techniques,which not only resulted in lengthy molding durations but also compromised the mechanical strength.In this work,silica(SiO--_2)ceramic cores,with fine complex geometric shapes,were fabricated using 65vol.%ceramic slurry by digital light processing(DLP)with different printing angles.Printing angles significantly impact the surface accuracy,shrinkage,printing efficiency of green bodies,as well as the microstructure and mechanical properties of sintered ceramic core samples.As the printing angle in the green body increases,the bonding area decreases,surface roughness on the XY plane worsens,shrinkage in the Z direction becomes more pronounced,and the printing efficiency declines.Similarly,an increase in the printing angle in the sintered body leads to a reduction in bending strength.At a printing angle of 30°,the printing time is reduced to half of that at 90°,which improves the molding efficiency.Meanwhile,the obtained bulk density of 1.71 g·cm~(-3),open porosity of 24%,and fiexural strength of 10.6±1 MPa can meet the requirements of sintered ceramic cores.Therefore,designing and optimizing the printing angles can achieve the balance between shrinkage,printing efficiency,and fiexural strength.展开更多
This study explored the dynamic behaviors and fracturing mechanisms of flawed granite under split-Hopkinson pressure bar testing,focusing on factors like grain size and flaw dimensions.By means of digital image proces...This study explored the dynamic behaviors and fracturing mechanisms of flawed granite under split-Hopkinson pressure bar testing,focusing on factors like grain size and flaw dimensions.By means of digital image processing and the discrete element method,Particle Flow Code 2D(PFC2D)models were constructed based on real granite samples,effectively overcoming the limitations of prior studies that mainly relied on randomized parameters.The results illustrate that the crack distribution of granite is significantly influenced by grain size and flaw dimensions.Tension cracks predominate and mineral boundaries,such as between feldspar and quartz,become primary crack sites.Both flaw length and width critically affect the crack density,distribution,and dynamic strength of granite.Specifically,dynamic strength tends to decrease with the enlargement of flaws and increase with an increase in flaw angles up to 90°.展开更多
Sparse representation has been highly successful in various tasks related to image processing and computer vision.For ancient mural image inpainting,traditional group sparse representation models usually lead to struc...Sparse representation has been highly successful in various tasks related to image processing and computer vision.For ancient mural image inpainting,traditional group sparse representation models usually lead to structure blur and line discontinuity due to the construction of similarity group solely based on the Euclidean distance and the randomness of dictionary initialization.To address the aforementioned issues,an improved curvature Gabor transform and group sparse representation(CGabor-GSR)model for ancient Dunhuang mural inpainting is proposed.To begin with,mutual information is introduced to weight the Euclidean distance,and then the weighted Euclidean distance acts as a new standard of similarity group.Subsequently,to mitigate the randomness of dictionary initialization,a curvature Gabor wavelet transform is proposed to extract the features and initialize the feature dictionary with dimension reduction based on principal component analysis(PCA).Ultimately,singular value decomposition(SVD)and split Bregman iteration(SBI)can be used to resolve the CGabor-GSR model to reconstruct the mural images.Experimental results on Dunhuang mural inpainting demonstrate tha the proposed CGabor-GSR achieves a better performance than compared algorithms in both objective and visual evaluation.展开更多
The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significan...The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significance to accurately characterize the actual microstructures and their influence on stress and damage evolution inside the rocks. In this study, an image-based fast Fourier transform (FFT) method is developed for reconstructing the actual rock microstructures by combining it with the digital image processing (DIP) technique. A series of experimental investigations were conducted to acquire information regarding the actual microstructure and the mechanical properties. Based on these experimental evidences, the processed microstructure information, in conjunction with the proposed micromechanical model, is incorporated into the numerical calculation. The proposed image-based FFT method was firstly validated through uniaxial compression tests. Subsequently, it was employed to predict and analyze the influence of microstructure on macroscopic mechanical behaviors, local stress distribution and the internal crack evolution process in brittle rocks. The distribution of feldspar is considerably more heterogeneous and scattered than that of quartz, which results in a greater propensity for the formation of cracks in feldspar. It is observed that initial cracks and new cracks, including intragranular and boundary ones, ultimately coalesce and connect as the primary through cracks, which are predominantly distributed along the boundary of the feldspar. This phenomenon is also predicted by the proposed numerical method. The results indicate that the proposed numerical method provides an effective approach for analyzing, understanding and predicting the nonlinear mechanical and cracking behaviors of brittle rocks by taking into account the actual microstructure characteristics.展开更多
An adaptive dispersion estimation(ADE)is proposed to compensate dispersion and estimate the transfer function of the fiber channel with GerchbergSaxton(G-S)algorithm,using the stochastic gradient descent(SGD)method in...An adaptive dispersion estimation(ADE)is proposed to compensate dispersion and estimate the transfer function of the fiber channel with GerchbergSaxton(G-S)algorithm,using the stochastic gradient descent(SGD)method in the intensity-modulation and direct-detection(IM-DD)system,improving the tolerance of the algorithm to chromatic dispersion(CD).In order to address the divergence arising from the perturbation in the amplitude of the received signal caused by the filtering effect of the non-ideal channels,a channel-compensation equalizer(CCE)derived from the back-to-back(BTB)scenario is employed at the transmitter to make the amplitude of the received signal depicting the CD effect more accurately.The simulation results demonstrate the essentiality of CCE for the convergence and performance improvement of the G-S algorithm.Results show that it supports 112Gb/s four-level pulse amplitude modulation(PAM4)over 100 km standard single-mode fiber(SSMF)transmission under the 7%forward error correction(FEC)threshold of 3.8E-3.Besides,ADE improves the tolerance to wavelength drift from about 4 nm to 42 nm,and there is a better tolerance for fiber distance perturbation,indicating the G-S algorithm and its derived algorithms with the ADE scheme exhibit superior robustness to the perturbation in the system.展开更多
In complex industrial scenes,it is difficult to acquire high-precision non-cooperative target pose under monocular visual servo control.This paper presents a new method of target extraction and high-precision edge fit...In complex industrial scenes,it is difficult to acquire high-precision non-cooperative target pose under monocular visual servo control.This paper presents a new method of target extraction and high-precision edge fitting for the wheel of the sintering trolley in steel production,which fuses multiple target extraction algorithms adapting to the working environment of the target.Firstly,based on obvious difference between the pixels of the target image and the non-target image in the gray histogram,these pixels were classified and then segmented in intraclass,removing interference factors and remaining the target image.Then,multiple segmentation results were merged and a final target image was obtained after small connected regions were eliminated.In the edge fitting stage,the edge fitting method with best-circumscribed rectangle was proposed to accurately fit the circular target edge.Finally,PnP algorithm was adopted for pose measurement of the target.The experimental results showed that the average estimation error of pose angleγwith respect to the z-axis rotation was 0.2346°,the average measurement error of pose angleαwith respect to the x-axis rotation was 0.1703°,and the average measurement error of pose angle β with respect to the y-axis rotation was 0.2275°.The proposed method has practical application value.展开更多
Background As the global population increases,the demand for protein sources is expected to increase,driving the demand for cell-based cultivated meat.This study aimed to enhance the productivity of cultivated meat th...Background As the global population increases,the demand for protein sources is expected to increase,driving the demand for cell-based cultivated meat.This study aimed to enhance the productivity of cultivated meat through optimization of the cell source and organization process.Results We engineered fibroblasts into myogenic cells via non-viral introduction of the MYOD1 gene,avoiding viral methods for safety.After confirming the stable derivation of myogenic cells,we combined knockout(KO)of MSTN,a negative regulator of myogenesis,with MYOD1-mediated myogenesis to improve cultivated meat production.Primary cells from MSTN KO cattle exhibited enhanced myogenic potential.Additionally,when tested in immortalized fibroblasts,myostatin treatment reduced MYOD1-induced myogenesis in two-dimensional cultures,while MSTN knockout increased it.To achieve muscle-like cell alignment,we employed digital light processing(DLP)-based three-dimensional(3D)bioprinting to organize cells into 3D groove-shaped hydrogels.These bioactive hydrogels supported stable cell proliferation and significantly improved muscle cell alignment.Upon differentiation into myotubes,the cells demonstrated an ordered alignment,particularly the MSTN KO cells,which showed highly efficient differentiation.Conclusions The integration of genetic modification and advanced DLP 3D bioprinting with groove-patterned hydrogels provides an effective strategy for producing high-quality,muscle-aligned cultivated meat.展开更多
Aim To study the parking management in the condition of vehicles' increasing. Methods The methods of pattern recognition and image processing were used to analyze the eigenvalues of parking lot images. Results ...Aim To study the parking management in the condition of vehicles' increasing. Methods The methods of pattern recognition and image processing were used to analyze the eigenvalues of parking lot images. Results The automatic identification of every parking place in the parking plot was realized. The automatic measuring of parked vehicle count and parking lot utilization was completed. Conclusion It can complete the real time recognition, and has some practicabilities.展开更多
The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of tal...The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.展开更多
This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(...This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.展开更多
The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although vari...The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although various modifications of heat sources in the aspect of absorption process of laser by materials have been purposed, the distribution of laser power density(DLPD) in MHS is still modeled theoretically. However, in the actual situations of laser processing, the DLPD is definitely different from the ideal models. So, it is indispensable to build MHS using actual DLPD to improve the accuracy of simulation results. Besides, an automatic modeling method will be benefit to simplify the tedious pre-processing of simulations. This paper presents a modeling method and corresponding algorithm to model heat source using measured DLPD. This algorithm automatically processes original data to get modeling parameters and provides a step MHS combining with absorption models. Simulations and experiments of heat transfer in steel plates irradiated by laser prove the mothed and the step MHS. Moreover, the investigations of laser induced thermal-crack propagation in glass highlight the signification of modeling heat source based on actual DLPD and demonstrate the enormous application of this method in the simulation of laser processing.展开更多
Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasti...Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.展开更多
Traffic monitoring is of major importance for enforcing traffic management policies.To accomplish this task,the detection of vehicle can be achieved by exploiting image analysis techniques.In this paper,a solution is ...Traffic monitoring is of major importance for enforcing traffic management policies.To accomplish this task,the detection of vehicle can be achieved by exploiting image analysis techniques.In this paper,a solution is presented to obtain various traffic parameters through vehicular video detection system(VVDS).VVDS exploits the algorithm based on virtual loops to detect moving vehicle in real time.This algorithm uses the background differencing method,and vehicles can be detected through luminance difference of pixels between background image and current image.Furthermore a novel technology named as spatio-temporal image sequences analysis is applied to background differencing to improve detection accuracy.Then a hardware implementation of a digital signal processing (DSP) based board is described in detail and the board can simultaneously process four-channel video from different cameras. The benefit of usage of DSP is that images of a roadway can be processed at frame rate due to DSP′s high performance.In the end,VVDS is tested on real-world scenes and experiment results show that the system is both fast and robust to the surveillance of transportation.展开更多
To characterize the shape of sand particles for concrete,a new method is proposed based on digital image processing(known as the DIP method).By analyzing sand particles projection,the length,width and thickness of san...To characterize the shape of sand particles for concrete,a new method is proposed based on digital image processing(known as the DIP method).By analyzing sand particles projection,the length,width and thickness of sand were measured to characterize particle form.The area and perimeter were measured to characterize particle angularity.The results of the DIP method and Vernier caliper were compared to examine the accuracy of the DIP method.The sample size test was conducted to show the statistical significance of shape results measured by the DIP method.The practicality of the DIP method was verified by instance analysis.The results show that aspect ratios and roundness measured by the DIP method are equal to ones by the Vernier caliper.Results by DIP are dependent on the sand particle number,and at least 350 particles should be measured to represent the overall shape property of sand.The results show that the DIP method is able to distinguish the differences in the shape of sand particles.It achieves the direct measurement of sand particle thickness,and the characterization results of sand aspect ratios and roundness are accurate,statistically significant and practical.Therefore,the DIP method is suitable for sand particle shape characterization.展开更多
The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of a...The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of atomic functions (AF) are presented. The numerical experiments of digital time series processing and physical analysis of the results confirm the efficiency of the proposed transforms.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51972079 and 52302062)the National Key Research and Development Program of China(Nos.2022YFB370630202 and 2022YFB3706305).
文摘Electronic 3D printing possesses a remarkable molding ability and convenience in integrated circuits,flexible wearables,and individual automobile requirements.However,traditional 3D printing technology still struggles to meet the demands of high precision and high efficiency in the process of fabricating a curved surface circuit,particularly achieving precise silver circuit molding on irregular substrates.Here,a high-precision and muti-scaled conformal manufacturing method for silver circuits is presented through the digital light processing(DLP)of ultraviolet-curable silver paste(UV-SP)with adjustable photocuring properties,enabling the successful preparation of micro-scaled conductive structure on the sharply skewed hook face.The minimum modeling depth and width of the cured silver paste can be well controlled to 10 and 88µm,respectively.Compared with traditional printing technology,the printing efficiency of complex patterns has increased by over 70%.The printed silver circuit demonstrates an exceptionally high electrical conductivity,reaching as high as 1.16×10^(7) S/m.Additionally,the UV-SP exhibits significant manufacturing efficiency and superior molding resolution compared to conventional direct ink writing and inkjet printing techniques,thereby contributing to the attainment of high precision and efficiency of conformal and micro-molding manufacturing in sensors,communication antennas,and other electronic devices based on curved substrates.
基金supported by the National Natural Science Foundation of China(No.11975290)。
文摘The heavy-ion accelerator facility(HIAF)under construction in China will produce various stable and intense radioactive beams with energies ranging from MeV/u to GeV/u.The ion-linac(iLinac)accelerator,which will serve as the injector for the HIAF,is a superconducting heavy-ion accelerator containing 13 cryomodules.It will operate in either continuous wave mode or pulsed mode,with a beam current ranging from 0.01 to 1 emA.The beam position monitor(BPM)is crucial for this high-beam-power machine,which requires precise beam control and a very small beam loss of less than 1 W/m,especially inside the cryomodules of this unique beam instrument.Nearly 70 BPMs will be installed on the iLinac.New digital beam position and phase measurement(DBPPM)electronics based on a heterogeneous multiprocessing platform system-on-chip(MPSoC)has been developed to provide accurate beam trajectory and phase measurements as well as beam interlocking signals for a fast machine protection system(MPS).The DBPPM comprises an analog front-end(AFE)board in field programmable gate array(FPGA)mezzanine-connector(FMC)form factor,along with a digital signal processing board housed within a “2U 19”chassis.To mitigate radio frequency(RF)leakage effects from high-power RF systems in certain scenarios,beam signals undergo simultaneous processing at both fundamental and second-harmonic frequencies.A dynamic range from-65 dBm to 0 dBm was established to accommodate both weak beam commissioning and high-intensity operational demands.Laboratory tests demonstrated that at input power levels exceeding-45 d Bm,the phase resolution surpasses 0.05°,and the position resolution exceeds 5μm.These results align well with the stipulated measurement requirements.Moreover,the newly developed DBPPM has self-testing and self-calibration functions that are highly helpful for the systematic evaluation of numerous electronic components and fault diagnosis equipment.In addition,the DBPPM electronics implements a 2D nonlinear polynomial correction on the FPGA and can collect accurate real-time position measurements at large beam offsets.This newly developed DBPPM electronics has been applied to several Linac machines,and the results from beam measurements show high performance,good long-term stability,and high reliability.In this paper,a detailed overview of the architecture,performance,and proof-of-principle measurement of the beams is presented.
基金supported by the National Nature Science Foundation of China (Grant No.62025503).
文摘Chaotic optical communication has shown large potential as a hardware encryption method in the physical layer.As an important figure of merit,the bit rate–distance product of chaotic optical communication has been continually improved to 30 Gb/s×340 km,but it is still far from the requirement for a deployed optical fiber communication system,which is beyond 100 Gb/s×1000 km.A chaotic carrier can be considered as an analog signal and suffers from fiber channel impairments,limiting the transmission distance of high-speed chaotic optical communications.To break the limit,we propose and experimentally demonstrate a pilot-based digital signal processing scheme for coherent chaotic optical communication combined with deep-learning-based chaotic synchronization.Both transmission impairment recovery and chaotic synchronization are realized in the digital domain.The frequency offset of the lasers is accurately estimated and compensated by determining the location of the pilot tone in the frequency domain,and the equalization and phase noise compensation are jointly performed by the least mean square algorithm through the time domain pilot symbols.Using the proposed method,100 Gb∕s chaotically encrypted quadrature phase-shift keying(QPSK)signal over 800 km single-mode fiber(SMF)transmission is experimentally demonstrated.In order to enhance security,40 Gb∕s real-time chaotically encrypted QPSK signal over 800 km SMF transmission is realized by inserting pilot symbols and tone in a field-programmable gate array.This method provides a feasible approach to promote the practical application of chaotic optical communications and guarantees the high security of chaotic encryption.
基金supported by the National Science Foundation of China(10972015,11172015)the Beijing Natural Science Foundation(8162008).
文摘The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.
文摘Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biological properties of the scaffold(i.e.,degradability and cell growth rate).Lattice structure is a kind of periodic porous structure,which has some advantages of light weight and high strength,and is widely used in the preparation of bioceramic scaffolders.For the structure of the scaffold,high porosity and large pore size are important for bone growth,bone integration and promoting good mechanical interlocking between neighboring bones and the scaffold.However,scaffolds with a high porosity often lack mechanical strength.In addition,different parts of the bone have different structural requirements.In this paper,scaffolds with a non-uniform structure or a hierarchical structure were designed,with loose and porous exterior to facilitate cell adhesion,osteogenic differentiation and vascularization as well as relatively dense interior to provide sufficient mechanical support for bone repair.Methods In this work,composite ceramics scaffolds with 10%akermanite content were prepared by DLP technology.The scaffold had a high porosity outside to promote the growth of bone tissue,and a low porosity inside to withstand external forces.The compressive strength,fracture form,in-vitro degradation performance and bioactivity of graded bioceramic scaffolds were investigated.The models of scaffolds were imported into the DLP printer with a 405 nm light.The samples were printed with the intensity of 8 mJ/cm^(2)and a layer thickness of 50μm.Finally,the ceramic samples were sintered at 1100℃.The degradability of the hierarchical gyroid bioceramic scaffolds was evaluated through immersion in Tris-HCl solution and SBF solution at a ratio of 200 mL/g.The bioactivity of bioceramic was obtained via immersing them in SBF solution for two weeks.The concentrations of calcium,phosphate,silicon,and magnesium ions in the soaking solution were determined by an inductively coupled plasma optical emission spectrometer.Results and discussion In this work,a hierarchical Gyroid structure HA-AK10 scaffold(sintered at 1100℃)with a radial internal porosity of 50%and an external porosity of 70%is prepared,and the influence of structural form on the compressive strength and degradation performance of the scaffold is investigated.The biological activity of the bioceramics in vitro is also verified.The mechanical simulation results show that the stress distribution corresponds to the porosity distribution of the structure,and the low porosity is larger and the overall stress concentration phenomenon does not appear.After soaking in SBF solution,Si—OH is firstly formed on the surface of bioceramics,and then silicon gel layer is produced due to the presence of calcium and silicon ions.The silicon gel layer is dissociated into negatively charged groups under alkaline environment secondary adsorption of calcium ions and phosphate ions,forming amorphous calcium phosphate,and finally amorphous calcium phosphate crystals and adsorption of carbonate ions,forming carbonate hydroxyapatite.This indicates that the composite bioceramics have a good biological activity in-vitro and can provide a good environment for the growth of bone cells.A hierarchical Gyroid ceramic scaffold with a bone geometry is prepared via applying the hierarchical structure to the bone contour scaffold.The maximum load capacity of the hierarchical Gyroid ceramic scaffold is 8 times that of the uniform structure.Conclusions The hierarchical structure scaffold designed had good overall compressive performance,good degradation performance,and still maintained a good mechanical stability during degradation.In addition,in-vitro biological experimental results showed that the surface graded composite scaffold could have a good in-vitro biological activity and provide a good environment for bone cells.Compared to the heterosexual structure,the graded scaffold had greater mechanical properties.
基金the Youth Innovation Promotion Association of Chinese Academy of Science(No.2021160)the National Natural Science Foundation of China(No.51802319)the Technology and Engineering Center for Space(No.CSU-QZKT-2019-04)。
文摘Ceramic cores fabricated by stereolithography exhibit great potential in casting turbine blades.Previous research on ceramic core molding was primarily conducted using vertical printing techniques,which not only resulted in lengthy molding durations but also compromised the mechanical strength.In this work,silica(SiO--_2)ceramic cores,with fine complex geometric shapes,were fabricated using 65vol.%ceramic slurry by digital light processing(DLP)with different printing angles.Printing angles significantly impact the surface accuracy,shrinkage,printing efficiency of green bodies,as well as the microstructure and mechanical properties of sintered ceramic core samples.As the printing angle in the green body increases,the bonding area decreases,surface roughness on the XY plane worsens,shrinkage in the Z direction becomes more pronounced,and the printing efficiency declines.Similarly,an increase in the printing angle in the sintered body leads to a reduction in bending strength.At a printing angle of 30°,the printing time is reduced to half of that at 90°,which improves the molding efficiency.Meanwhile,the obtained bulk density of 1.71 g·cm~(-3),open porosity of 24%,and fiexural strength of 10.6±1 MPa can meet the requirements of sintered ceramic cores.Therefore,designing and optimizing the printing angles can achieve the balance between shrinkage,printing efficiency,and fiexural strength.
基金National Natural Science Foundation of China,Grant/Award Number:52274131General Project of China Postdoctoral Science Foundation,Grant/Award Number:2023M742141Talent Introduction Project of Shandong University of Science and Technology,Grant/Award Number:0104060540171。
文摘This study explored the dynamic behaviors and fracturing mechanisms of flawed granite under split-Hopkinson pressure bar testing,focusing on factors like grain size and flaw dimensions.By means of digital image processing and the discrete element method,Particle Flow Code 2D(PFC2D)models were constructed based on real granite samples,effectively overcoming the limitations of prior studies that mainly relied on randomized parameters.The results illustrate that the crack distribution of granite is significantly influenced by grain size and flaw dimensions.Tension cracks predominate and mineral boundaries,such as between feldspar and quartz,become primary crack sites.Both flaw length and width critically affect the crack density,distribution,and dynamic strength of granite.Specifically,dynamic strength tends to decrease with the enlargement of flaws and increase with an increase in flaw angles up to 90°.
基金supported by National Natural Science Foundation of China(No.61963023)Humanities and Social Sciences Youth Foundation of Ministry of Education(No.19YJC760012)Lanzhou Jiaotong University Basic Top-Notch Personnel Project(No.2022JC36).
文摘Sparse representation has been highly successful in various tasks related to image processing and computer vision.For ancient mural image inpainting,traditional group sparse representation models usually lead to structure blur and line discontinuity due to the construction of similarity group solely based on the Euclidean distance and the randomness of dictionary initialization.To address the aforementioned issues,an improved curvature Gabor transform and group sparse representation(CGabor-GSR)model for ancient Dunhuang mural inpainting is proposed.To begin with,mutual information is introduced to weight the Euclidean distance,and then the weighted Euclidean distance acts as a new standard of similarity group.Subsequently,to mitigate the randomness of dictionary initialization,a curvature Gabor wavelet transform is proposed to extract the features and initialize the feature dictionary with dimension reduction based on principal component analysis(PCA).Ultimately,singular value decomposition(SVD)and split Bregman iteration(SBI)can be used to resolve the CGabor-GSR model to reconstruct the mural images.Experimental results on Dunhuang mural inpainting demonstrate tha the proposed CGabor-GSR achieves a better performance than compared algorithms in both objective and visual evaluation.
基金supported by the National Natural Science Foundation of China(Grant No.11802332)the China Scholarship Council(Grant No.202206435003)the Fundamental Research Funds for the Central Universities(Grant No.2024ZKPYLJ03).
文摘The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significance to accurately characterize the actual microstructures and their influence on stress and damage evolution inside the rocks. In this study, an image-based fast Fourier transform (FFT) method is developed for reconstructing the actual rock microstructures by combining it with the digital image processing (DIP) technique. A series of experimental investigations were conducted to acquire information regarding the actual microstructure and the mechanical properties. Based on these experimental evidences, the processed microstructure information, in conjunction with the proposed micromechanical model, is incorporated into the numerical calculation. The proposed image-based FFT method was firstly validated through uniaxial compression tests. Subsequently, it was employed to predict and analyze the influence of microstructure on macroscopic mechanical behaviors, local stress distribution and the internal crack evolution process in brittle rocks. The distribution of feldspar is considerably more heterogeneous and scattered than that of quartz, which results in a greater propensity for the formation of cracks in feldspar. It is observed that initial cracks and new cracks, including intragranular and boundary ones, ultimately coalesce and connect as the primary through cracks, which are predominantly distributed along the boundary of the feldspar. This phenomenon is also predicted by the proposed numerical method. The results indicate that the proposed numerical method provides an effective approach for analyzing, understanding and predicting the nonlinear mechanical and cracking behaviors of brittle rocks by taking into account the actual microstructure characteristics.
基金funded by the National Natural Science Foundation of China NSFC,U22A2005 and 62201033theYoung Elite Scientists Sponsorship Program of CIC 2021QNRC001。
文摘An adaptive dispersion estimation(ADE)is proposed to compensate dispersion and estimate the transfer function of the fiber channel with GerchbergSaxton(G-S)algorithm,using the stochastic gradient descent(SGD)method in the intensity-modulation and direct-detection(IM-DD)system,improving the tolerance of the algorithm to chromatic dispersion(CD).In order to address the divergence arising from the perturbation in the amplitude of the received signal caused by the filtering effect of the non-ideal channels,a channel-compensation equalizer(CCE)derived from the back-to-back(BTB)scenario is employed at the transmitter to make the amplitude of the received signal depicting the CD effect more accurately.The simulation results demonstrate the essentiality of CCE for the convergence and performance improvement of the G-S algorithm.Results show that it supports 112Gb/s four-level pulse amplitude modulation(PAM4)over 100 km standard single-mode fiber(SSMF)transmission under the 7%forward error correction(FEC)threshold of 3.8E-3.Besides,ADE improves the tolerance to wavelength drift from about 4 nm to 42 nm,and there is a better tolerance for fiber distance perturbation,indicating the G-S algorithm and its derived algorithms with the ADE scheme exhibit superior robustness to the perturbation in the system.
基金supported by Key Research and Development Projects in Shaanxi Province (No. 2021GY-265)Xi’an University Talent Service Enterprise Project (No.2020KJRC0049)。
文摘In complex industrial scenes,it is difficult to acquire high-precision non-cooperative target pose under monocular visual servo control.This paper presents a new method of target extraction and high-precision edge fitting for the wheel of the sintering trolley in steel production,which fuses multiple target extraction algorithms adapting to the working environment of the target.Firstly,based on obvious difference between the pixels of the target image and the non-target image in the gray histogram,these pixels were classified and then segmented in intraclass,removing interference factors and remaining the target image.Then,multiple segmentation results were merged and a final target image was obtained after small connected regions were eliminated.In the edge fitting stage,the edge fitting method with best-circumscribed rectangle was proposed to accurately fit the circular target edge.Finally,PnP algorithm was adopted for pose measurement of the target.The experimental results showed that the average estimation error of pose angleγwith respect to the z-axis rotation was 0.2346°,the average measurement error of pose angleαwith respect to the x-axis rotation was 0.1703°,and the average measurement error of pose angle β with respect to the y-axis rotation was 0.2275°.The proposed method has practical application value.
基金financially supported by the Korea Institute of Planning and Evaluation for Technology in Food,Agriculture and Forestry(IPET-RS-2024–00402320)by the Meterials/Parts Technology Development Pro-gram(1415187291,Development of composite formulation with a sustained release(gene)for the treatment of companion animal sarcopenia)funded By the Ministry of Trade,Industry&Energy(MOTIE,Korea)。
文摘Background As the global population increases,the demand for protein sources is expected to increase,driving the demand for cell-based cultivated meat.This study aimed to enhance the productivity of cultivated meat through optimization of the cell source and organization process.Results We engineered fibroblasts into myogenic cells via non-viral introduction of the MYOD1 gene,avoiding viral methods for safety.After confirming the stable derivation of myogenic cells,we combined knockout(KO)of MSTN,a negative regulator of myogenesis,with MYOD1-mediated myogenesis to improve cultivated meat production.Primary cells from MSTN KO cattle exhibited enhanced myogenic potential.Additionally,when tested in immortalized fibroblasts,myostatin treatment reduced MYOD1-induced myogenesis in two-dimensional cultures,while MSTN knockout increased it.To achieve muscle-like cell alignment,we employed digital light processing(DLP)-based three-dimensional(3D)bioprinting to organize cells into 3D groove-shaped hydrogels.These bioactive hydrogels supported stable cell proliferation and significantly improved muscle cell alignment.Upon differentiation into myotubes,the cells demonstrated an ordered alignment,particularly the MSTN KO cells,which showed highly efficient differentiation.Conclusions The integration of genetic modification and advanced DLP 3D bioprinting with groove-patterned hydrogels provides an effective strategy for producing high-quality,muscle-aligned cultivated meat.
文摘Aim To study the parking management in the condition of vehicles' increasing. Methods The methods of pattern recognition and image processing were used to analyze the eigenvalues of parking lot images. Results The automatic identification of every parking place in the parking plot was realized. The automatic measuring of parked vehicle count and parking lot utilization was completed. Conclusion It can complete the real time recognition, and has some practicabilities.
基金Project(2013BAB06B00) supported by the National Key Technology R&D Programof ChinaProject(2011CB013504) supported by the National Basic Research Program of ChinaProject(50911130366) supported by the National Natural Science Foundation of China
文摘The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.
基金This research was supported by the Department of Mining Engineering at the University of Utah.In addition,the lead author wishes to acknowledge the financial support received from the Talent Introduction Project,part of the Elite Program of Shandong University of Science and Technology(No.0104060540171).
文摘This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.
基金Project(2021YFF0500200) supported by the National Key R&D Program of ChinaProject(52105437) supported by the National Natural Science Foundation of China+1 种基金Project(202006120184) supported by the Heilongjiang Provincial Postdoctoral Science Foundation,ChinaProject(LBH-Z20054) supported by the China Scholarship Council。
文摘The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although various modifications of heat sources in the aspect of absorption process of laser by materials have been purposed, the distribution of laser power density(DLPD) in MHS is still modeled theoretically. However, in the actual situations of laser processing, the DLPD is definitely different from the ideal models. So, it is indispensable to build MHS using actual DLPD to improve the accuracy of simulation results. Besides, an automatic modeling method will be benefit to simplify the tedious pre-processing of simulations. This paper presents a modeling method and corresponding algorithm to model heat source using measured DLPD. This algorithm automatically processes original data to get modeling parameters and provides a step MHS combining with absorption models. Simulations and experiments of heat transfer in steel plates irradiated by laser prove the mothed and the step MHS. Moreover, the investigations of laser induced thermal-crack propagation in glass highlight the signification of modeling heat source based on actual DLPD and demonstrate the enormous application of this method in the simulation of laser processing.
基金Project supported by the Fundamental Research Funds for the Central Universities,China
文摘Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.
文摘Traffic monitoring is of major importance for enforcing traffic management policies.To accomplish this task,the detection of vehicle can be achieved by exploiting image analysis techniques.In this paper,a solution is presented to obtain various traffic parameters through vehicular video detection system(VVDS).VVDS exploits the algorithm based on virtual loops to detect moving vehicle in real time.This algorithm uses the background differencing method,and vehicles can be detected through luminance difference of pixels between background image and current image.Furthermore a novel technology named as spatio-temporal image sequences analysis is applied to background differencing to improve detection accuracy.Then a hardware implementation of a digital signal processing (DSP) based board is described in detail and the board can simultaneously process four-channel video from different cameras. The benefit of usage of DSP is that images of a roadway can be processed at frame rate due to DSP′s high performance.In the end,VVDS is tested on real-world scenes and experiment results show that the system is both fast and robust to the surveillance of transportation.
基金The National Key Research and Development Program of China(No.2017YFB0310100)the National Natural Science Foundation of China(No.51978318)。
文摘To characterize the shape of sand particles for concrete,a new method is proposed based on digital image processing(known as the DIP method).By analyzing sand particles projection,the length,width and thickness of sand were measured to characterize particle form.The area and perimeter were measured to characterize particle angularity.The results of the DIP method and Vernier caliper were compared to examine the accuracy of the DIP method.The sample size test was conducted to show the statistical significance of shape results measured by the DIP method.The practicality of the DIP method was verified by instance analysis.The results show that aspect ratios and roundness measured by the DIP method are equal to ones by the Vernier caliper.Results by DIP are dependent on the sand particle number,and at least 350 particles should be measured to represent the overall shape property of sand.The results show that the DIP method is able to distinguish the differences in the shape of sand particles.It achieves the direct measurement of sand particle thickness,and the characterization results of sand aspect ratios and roundness are accurate,statistically significant and practical.Therefore,the DIP method is suitable for sand particle shape characterization.
文摘The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of atomic functions (AF) are presented. The numerical experiments of digital time series processing and physical analysis of the results confirm the efficiency of the proposed transforms.