To overcome the problem of pulse pile-up at high count rates, a digital deconvolution algorithm is used to remove the exponential current tails of NaI(Tl) detectors, so as to obtain a current unit impulse. Then a na...To overcome the problem of pulse pile-up at high count rates, a digital deconvolution algorithm is used to remove the exponential current tails of NaI(Tl) detectors, so as to obtain a current unit impulse. Then a narrow pulse can be obtained through pulse shaping. The pulse deconvolution technique can thoroughly eliminate the influences of ballistic deficit and improve traditional pulse shaping systems in both pulse throughput and energy resolution. To demonstrate this method, the energy spectrum of a ^137Cs radioactive source was measured. When the shaping time constant is 1.5 μs, traditional pulse shaping systems yielded a 6.99% energy resolution and 68 kcps count rate, while the new pulse deconvolution technique, used to improve traditional pulse shaping systems, yielded a 6.37% energy resolution and 102 kcps count rate.展开更多
We developed a reconfigurable nuclear instrument system (RNIS) that could satisfy the requirements of diverse nuclear and particle physics experiments, and the inertial confinement fusion diagnostic. Benefiting from...We developed a reconfigurable nuclear instrument system (RNIS) that could satisfy the requirements of diverse nuclear and particle physics experiments, and the inertial confinement fusion diagnostic. Benefiting from the reconfigurable hardware structure and digital pulse processing technology RNIS shakes off the restrictions of cumbersome crates and miscellaneous modules. It retains all the advantages of conventional nuclear instruments and is more flexible and portable. RNIS is primarily composed of a field programmable hardware board and relevant t)C software. Separate analog channels are designed to provide different functions, such as am- plifiers, ADC, fast discriminators and Schmitt discriminators for diverse experimental purposes. The high-perfornmnce field programnmble gate array could complete high-precision time interval measurement, histogram accumulation, counting, and coincidence anticoincidence measurement. To illustrate tile prospects of RNIS, a series of applications to the experiments are described in this paper. The first, for which RNIS was originally developed, involves nuclear energy spectrum mea- surement with a scintillation detector and photonmltiplier. The second experiment applies RNIS to a G-M tube counting experiment, and in tile third, it is applied to a quantum comnnmication experiment tllrough reconfiguration.展开更多
Pulse diagnosis equipment used in Traditional Chinese Medicine(TCM)has long been developed for collecting pulse information and in TCM research.However,it is still difficult to implement pulse taking automatically or ...Pulse diagnosis equipment used in Traditional Chinese Medicine(TCM)has long been developed for collecting pulse information and in TCM research.However,it is still difficult to implement pulse taking automatically or efficiently in clinical practice.Here,we present a digital protocol for TCM pulse information collection based on bionic pulse diagnosis equipment,which ensures high efficiency,reliability and data integrity of pulse diagnosis information.A four-degree-of-freedom pulse taking platform together with a wrist bracket can satisfy the spatial positioning and angle requirements for individually adaptive pulse acquisition.Three-dimensional reconstruction of a wrist surface and an image localization model are combined to provide coordinates of the acquisition position and detection direction automatically.Three series elastic joints can not only simulate the TCM pulse taking method that“Three fingers in a straight line,the middle finger determining the‘Guan’location and finger pulp pressing on the radial artery,”but also simultaneously carry out the force-controlled multi-gradient pressing process.In terms of pulse information integrity,this proposed protocol can generate rich pulse information,including basic individual information,pulse localization distribution,multi-gradient dynamic pulse force time series,and objective pulse parameters,which can help establish the fundamental data sets that are required as the pulse phenotype for subsequent comprehensive analysis of pulse diagnosis.The implementation of this scheme is beneficial to promote the standardization of the digitalized collection of pulse information,the effectiveness of detecting abnormal health status,and the promotion of the fundamental and clinical research of TCM,such as TCM pulse phenomics.展开更多
基金Supported by National Natural Science Foundation of China(41474159)Sichuan Youth Science&Technology Foundation(2015JQ0035)Key Laboratory of Applied Nuclear Techniques in Geosciences Sichuan(gnzds2014006)
文摘To overcome the problem of pulse pile-up at high count rates, a digital deconvolution algorithm is used to remove the exponential current tails of NaI(Tl) detectors, so as to obtain a current unit impulse. Then a narrow pulse can be obtained through pulse shaping. The pulse deconvolution technique can thoroughly eliminate the influences of ballistic deficit and improve traditional pulse shaping systems in both pulse throughput and energy resolution. To demonstrate this method, the energy spectrum of a ^137Cs radioactive source was measured. When the shaping time constant is 1.5 μs, traditional pulse shaping systems yielded a 6.99% energy resolution and 68 kcps count rate, while the new pulse deconvolution technique, used to improve traditional pulse shaping systems, yielded a 6.37% energy resolution and 102 kcps count rate.
基金supported by National Natural Science Foundation of China(Nos.11075152 and 11105142)
文摘We developed a reconfigurable nuclear instrument system (RNIS) that could satisfy the requirements of diverse nuclear and particle physics experiments, and the inertial confinement fusion diagnostic. Benefiting from the reconfigurable hardware structure and digital pulse processing technology RNIS shakes off the restrictions of cumbersome crates and miscellaneous modules. It retains all the advantages of conventional nuclear instruments and is more flexible and portable. RNIS is primarily composed of a field programmable hardware board and relevant t)C software. Separate analog channels are designed to provide different functions, such as am- plifiers, ADC, fast discriminators and Schmitt discriminators for diverse experimental purposes. The high-perfornmnce field programnmble gate array could complete high-precision time interval measurement, histogram accumulation, counting, and coincidence anticoincidence measurement. To illustrate tile prospects of RNIS, a series of applications to the experiments are described in this paper. The first, for which RNIS was originally developed, involves nuclear energy spectrum mea- surement with a scintillation detector and photonmltiplier. The second experiment applies RNIS to a G-M tube counting experiment, and in tile third, it is applied to a quantum comnnmication experiment tllrough reconfiguration.
基金supported by the Shanghai 2021 Science and Technology Innovation Action Plan Project(Grant No.21S31902500)the Independent Deployment of Scientific Research Projects of Jihua Laboratory(Grant No.X190051TB190)the National Natural Science Foundation of China(Grant No.U1913216).
文摘Pulse diagnosis equipment used in Traditional Chinese Medicine(TCM)has long been developed for collecting pulse information and in TCM research.However,it is still difficult to implement pulse taking automatically or efficiently in clinical practice.Here,we present a digital protocol for TCM pulse information collection based on bionic pulse diagnosis equipment,which ensures high efficiency,reliability and data integrity of pulse diagnosis information.A four-degree-of-freedom pulse taking platform together with a wrist bracket can satisfy the spatial positioning and angle requirements for individually adaptive pulse acquisition.Three-dimensional reconstruction of a wrist surface and an image localization model are combined to provide coordinates of the acquisition position and detection direction automatically.Three series elastic joints can not only simulate the TCM pulse taking method that“Three fingers in a straight line,the middle finger determining the‘Guan’location and finger pulp pressing on the radial artery,”but also simultaneously carry out the force-controlled multi-gradient pressing process.In terms of pulse information integrity,this proposed protocol can generate rich pulse information,including basic individual information,pulse localization distribution,multi-gradient dynamic pulse force time series,and objective pulse parameters,which can help establish the fundamental data sets that are required as the pulse phenotype for subsequent comprehensive analysis of pulse diagnosis.The implementation of this scheme is beneficial to promote the standardization of the digitalized collection of pulse information,the effectiveness of detecting abnormal health status,and the promotion of the fundamental and clinical research of TCM,such as TCM pulse phenomics.