The colorful satellite image maps with the scale of 1∶100000 were made by processing the parameters-on-satellite under the condition of no data of field surveying.The purpose is to ensure the smooth performance of th...The colorful satellite image maps with the scale of 1∶100000 were made by processing the parameters-on-satellite under the condition of no data of field surveying.The purpose is to ensure the smooth performance of the choice of expedition route,navigation and research task before the Chinese National Antarctic Research Expedition(CHINARE)first made researches on the Grove Mountains.Moreover,on the basis of the visual interpretation of the satellite image,we preliminarily analyze and discuss the relief and landform,blue ice and meteorite distribution characteristics in the Grove Mountains.展开更多
Surveying and mapping work is often disturbed by the surrounding environment, geographical location and other factors, resulting in surveying and mapping difficulty and the obtained data is not accurate. In order to e...Surveying and mapping work is often disturbed by the surrounding environment, geographical location and other factors, resulting in surveying and mapping difficulty and the obtained data is not accurate. In order to ensure the efficiency of data collection, we should strengthen the use of digital mapping software, and integrate the industry and off-industry work together, so that the industry and outside work groups can be carried out simultaneously. Due to the limitations of technology, professional ability and other aspects, some surveying and mapping personnel can not quickly master the application skills of digital mapping software, can not control the quality scientifically, so in the future work period to strengthen the attention to these two aspects.展开更多
Soil salinization is one of the most important causes of land degradation and desertification,especially in arid and semi-arid areas.The dynamic monitoring of soil salinization is of great significance to land managem...Soil salinization is one of the most important causes of land degradation and desertification,especially in arid and semi-arid areas.The dynamic monitoring of soil salinization is of great significance to land management,agricultural activities,water quality,and sustainable development.The remote sensing images taken by the synthetic aperture radar(SAR)Sentinel-1 and the multispectral satellite Sentinel-2 with high resolution and short revisit period have the potential to monitor the spatial distribution of soil attribute information on a large area;however,there are limited studies on the combination of Sentinel-1 and Sentinel-2 for digital mapping of soil salinization.Therefore,in this study,we used topography indices derived from digital elevation model(DEM),SAR indices generated by Sentinel-1,and vegetation indices generated by Sentinel-2 to map soil salinization in the Ogan-Kuqa River Oasis located in the central and northern Tarim Basin in Xinjiang of China,and evaluated the potential of multi-source sensors to predict soil salinity.Using the soil electrical conductivity(EC)values of 70 ground sampling sites as the target variable and the optimal environmental factors as the predictive variable,we constructed three soil salinity inversion models based on classification and regression tree(CART),random forest(RF),and extreme gradient boosting(XGBoost).Then,we evaluated the prediction ability of different models through the five-fold cross validation.The prediction accuracy of XGBoost model is better than those of CART and RF,and soil salinity predicted by the three models has similar spatial distribution characteristics.Compared with the combination of topography indices and vegetation indices,the addition of SAR indices effectively improves the prediction accuracy of the model.In general,the method of soil salinity prediction based on multi-source sensor combination is better than that based on a single sensor.In addition,SAR indices,vegetation indices,and topography indices are all effective variables for soil salinity prediction.Weighted Difference Vegetation Index(WDVI)is designated as the most important variable in these variables,followed by DEM.The results showed that the high-resolution radar Sentinel-1 and multispectral Sentinel-2 have the potential to develop soil salinity prediction model.展开更多
The first Ukrainian using experience of multispectral space scanning for digital soil mapping is described in this paper. Methodical approaches for detailed soil observation of Ukrainian forest regions are elaborated ...The first Ukrainian using experience of multispectral space scanning for digital soil mapping is described in this paper. Methodical approaches for detailed soil observation of Ukrainian forest regions are elaborated based on modem mapping principles. For the first time in Ukraine, digital soil maps based on GIS (geographic information system) were obtained for individual farms. In GIS based on space images and digital relief models, the medium-scale and large-scale soil maps were created by geo-statistical methods. According to elaborated methods, modem digital soil mapping should provide all combined works: remote sensing and traditional soil observations. The modem digital soil mapping should be based just on quantitative principles: on remote sensing data, geomorphologic field parameters, and chemical analyses. The methodological approaches, which were used for the first time in Ukraine during digital soil mapping by remote sensing methods, are described in this paper.展开更多
Ice and snow domint the land features in Antarctica. The great brightness and poorcontrast of ice and snow and streaking noise in satellite image make the procedure of image processing difficult. On the other hand ho...Ice and snow domint the land features in Antarctica. The great brightness and poorcontrast of ice and snow and streaking noise in satellite image make the procedure of image processing difficult. On the other hand however, the contrast between bare rock land/sea water and ice/snow is so high that the details of image will be overcompressed.In the light of characteristics of satellite image in Antarctica, a filtering to remove streaking noise has adn discussed. Based on automatic identify classification to enhance the details of objects and the method and theory of digital rectification of satellite image with ground control points measured from field survey are also presented.展开更多
The continuous development of science and technology has promoted the basic of surveying and mapping technology. More and more advanced surveying and mapping technology has been applied to geological engineering surve...The continuous development of science and technology has promoted the basic of surveying and mapping technology. More and more advanced surveying and mapping technology has been applied to geological engineering survey. The traditional geological survey technology has many defects, which affect the normal development of geological engineering survey. Therefore, we must actively apply digital surveying and mapping technology to improve the quality and efficiency of the survey. This paper first discusses the digital surveying and mapping technology, then analyzes the digital surveying and mapping technology, and finally puts forward some suggestions on the specific application of unmanned aerial vehicle remote sensing surveying and mapping technology in geological engineering survey, hoping to promote the progress of geological engineering survey.展开更多
To deal with the global and regional issues including food security, climate change, land degradation, biodiversity loss, water resource management, and ecosystem health, detailed accurate spatial soil information is ...To deal with the global and regional issues including food security, climate change, land degradation, biodiversity loss, water resource management, and ecosystem health, detailed accurate spatial soil information is urgently needed. This drives the worldwide development of digital soil mapping. In recent years, significant progresses have been made in different aspects of digital soil mapping. The main purpose of this paper is to provide a review for the major progresses of digital soil mapping in the last decade. First, we briefly described the rise of digital soil mapping and outlined important milestones and their influence, and main paradigms in digital soil mapping. Then, we reviewed the progresses in legacy soil data, environmental covariates, soil sampling, predictive models and the applications of digital soil mapping products. Finally, we summarized the main trends and future prospect as revealed by studies up to now. We concluded that although the digital soil mapping is now moving towards mature to meet various demands of soil information, challenges including new theories, methodologies and applications of digital soil mapping, especially for highly heterogeneous and human-affected environments, still exist and need to be addressed in the future.展开更多
Selecting a proper set of covariates is one of the most important factors that influence the accuracy of digital soil mapping(DSM).The statistical or machine learning methods for selecting DSM covariates are not avail...Selecting a proper set of covariates is one of the most important factors that influence the accuracy of digital soil mapping(DSM).The statistical or machine learning methods for selecting DSM covariates are not available for those situations with limited samples.To solve the problem,this paper proposed a case-based method which could formalize the covariate selection knowledge contained in practical DSM applications.The proposed method trained Random Forest(RF)classifiers with DSM cases extracted from the practical DSM applications and then used the trained classifiers to determine whether each one potential covariate should be used in a new DSM application.In this study,we took topographic covariates as examples of covariates and extracted 191 DSM cases from 56 peer-reviewed journal articles to evaluate the performance of the proposed case-based method by Leave-One-Out cross validation.Compared with a novices’commonly-used way of selecting DSM covariates,the proposed case-based method improved more than 30%accuracy according to three quantitative evaluation indices(i.e.,recall,precision,and F1-score).The proposed method could be also applied to selecting the proper set of covariates for other similar geographical modeling domains,such as landslide susceptibility mapping,and species distribution modeling.展开更多
At present, the traditional engineering measurement method has been difficult to adapt to the needs of the current information development. In order to comprehensively improve the technical level of engineering survey...At present, the traditional engineering measurement method has been difficult to adapt to the needs of the current information development. In order to comprehensively improve the technical level of engineering survey, the industry advocates the use of new surveying and mapping means to promote the high-quality development of engineering survey. Among them, digital surveying and mapping technology as an important form of new method of surveying and mapping can play a greater application value in the field of engineering surveying, and the development prospect is relatively good. In view of this, this paper mainly summarizes the practical problems of the application of digital surveying and mapping technology in mine engineering survey and the problems of measures and suggestions, in order to provide some reference value for the relevant personnel.展开更多
With the rapid development of society and economy, various industries pursue technological innovation and application, and the mine geological survey system and its survey technology are improving year by year. The di...With the rapid development of society and economy, various industries pursue technological innovation and application, and the mine geological survey system and its survey technology are improving year by year. The digital measurement technology is relatively mature at present, and is gradually applied to mine surveying projects. It can give full play to its advantages and value and lay a good foundation for the subsequent mine construction. This paper focuses on the application of digital measurement technology in mine surveying, and analyzes the construction technology and application value of digital measurement technology, so as to lay a good foundation for mining and other engineering operations in my country, and then promote the sustainable development of the mining industry. This paper will explore the application path of digital mapping technology in mine geological survey.展开更多
Nowadays, the surveying and mapping technology used in the past can no longer meet the needs of modern engineering construction, especially with the development of the project towards a more refined direction, the acc...Nowadays, the surveying and mapping technology used in the past can no longer meet the needs of modern engineering construction, especially with the development of the project towards a more refined direction, the accuracy of the traditional surveying and mapping technology can not meet the corresponding requirements.Therefore, digital surveying and mapping technology has come into public sight. It can not only improve the work efficiency of surveying and mapping personnel, but also ensure the accuracy of data, which makes the digital surveying and mapping technology widely used at present. Therefore, in this article, we mainly discuss the application analysis of digital surveying and mapping technology in engineering surveying.展开更多
The integration of Global Navigation Satellite System(GNSS)technology into railway train control systems is a crucial step toward achieving the vision of a digital railway.Traditional train control systems undergo ext...The integration of Global Navigation Satellite System(GNSS)technology into railway train control systems is a crucial step toward achieving the vision of a digital railway.Traditional train control systems undergo extensive in-house tests and prolonged field tests for certification and approval before operational deployment,leading to high costs,delays,and operational disruptions.This paper introduces a GNSS-based train control localization framework which eliminates the need for on-site testing by leveraging train movement dynamics and 3D environment modeling to create a zero on-site testing platform.The proposed framework simulates train movement and the surrounding 3D environment using collected railway line location data and environmental attributes to generate realistic multipath signals and obscuration effects.This approach enables comprehensive laboratory-based case studies for train localization,reducing the huge amount test of needed for physical field trials.The framework is established in house,using the data collected at the Test Base of China Academy of Railway Sciences(Circular Railway).Results from the open area and cutting environment tests demonstrate high localization accuracy repeatability within the simulated environment,validating the feasibility and effectiveness of zero on-site testing for GNSS-based train control systems.This research highlights the potential of GNSS simulation platforms in enhancing cost efficiency,operational safety,and accuracy for future digital railways.展开更多
Antarctic surveying, mapping and remote sensing is one of the important aspects of the Chinese Antarctic geoscience research program that stretch back over 25 years, since the first Chinese National Antarctic Research...Antarctic surveying, mapping and remote sensing is one of the important aspects of the Chinese Antarctic geoscience research program that stretch back over 25 years, since the first Chinese National Antarctic Research Expedition (CHINARE) in 1984. During the 1980's, the geodetic datum, height system and absolute gravity datum were established at the Great Wall and Zhongshan Stations. Significant contributions have been made by the construction of the Chinese Great Wall, Zhongshan and Kunlun Stations in Antarctica. Geodetic control and gravity networks were established in the King George Islands, Grove Moun- tains and Dome Argus. An area of more than 200 000 km2 has been mapped using satellite image data, aerial photogrammetry and in situ data. Permanent GPS stations and tide gauges have been established at both the Great Wall and Zhongshan Stations. Studies involving plate motion, precise satellite orbit determination, the gravity field, sea level change, and various GPS applications for atmospheric studies have been carried out. Based on remote sensing techniques, studies have been undertaken on ice sheet and glacier movements, the distributions of blue ice and ice crevasses, and ice mass balance. Polar digital and visual mapping tech- niques have been introduced, and a polar survey space database has been built. The Chinese polar scientific expedition manage- ment information system and Chinese PANDA plan display platform were developed, which provides technical support for Chi- nese polar management. Finally, this paper examines prospects for future Chinese Antarctic surveying, mapping and remote sens- ing.展开更多
Digital geological mapping fundamentally broke through the traditional working pattern,successfully carried out the geological mapping digitalization.By using the RGMAP system to field digital geological mapping,the a...Digital geological mapping fundamentally broke through the traditional working pattern,successfully carried out the geological mapping digitalization.By using the RGMAP system to field digital geological mapping,the authors summarized the method of work and the work flow of the RGMAPGIS during the field geological survey.First,we prepared material,set up the PRB gallery,then put the geographic base map under the background maplayer and organizing the field hand map,forming the field factual datum map.At last,the geological space database is formed.展开更多
The use of landscape covariates to variability of soil properties in similar estimate soil properties is not suitable topographic and vegetation conditions. for the areas of low relief due to the high A new method wa...The use of landscape covariates to variability of soil properties in similar estimate soil properties is not suitable topographic and vegetation conditions. for the areas of low relief due to the high A new method was implemented to map regional soil texture (in terms of sand, silt and clay contents) by hypothesizing that the change in the land surface diurnal temperature difference (DTD) is related to soil texture in case of a relatively homogeneous rainfall input. To examine this hypothesis, the DTDs from moderate resolution imagine spectroradiometer (MODIS) during a selected time period, i.e., after a heavy rainfall between autumn harvest and autumn sowing, were classified using fuzzy-c-means (FCM) clustering. Six classes were generated, and for each class, the sand (〉 0.05 mm), silt (0.002-0.05 mm) and clay (〈 0.002 mm) contents at the location of maximum membership value were considered as the typical values of that class. A weighted average model was then used to digitally map soil texture. The results showed that the predicted map quite accurately reflected the regional soil variation. A validation dataset produced estimates of error for the predicted maps of sand, silt and clay contents at root mean of squared error values of 8.4%, 7.8% and 2.3%, respectively, which is satisfactory in a practical context. This study thus provided a methodology that can help improve the accuracy and efficiency of soil texture mapping in plain areas using easily available data sources.展开更多
The Soil Land Inference Model(SoLIM) was primarily proposed by Zhu et al.(Zhu A X, Band L, Vertessy R, Dutton B. 1997. Derivation of soil properties using a soil land inference model(SoLIM). Soil Sci Soc Am J. 61: 523...The Soil Land Inference Model(SoLIM) was primarily proposed by Zhu et al.(Zhu A X, Band L, Vertessy R, Dutton B. 1997. Derivation of soil properties using a soil land inference model(SoLIM). Soil Sci Soc Am J. 61: 523–533.) and was based on the Third Law of Geography. Based on the assumption that the soil property value at a location of interest will be more similar to that of a given soil sample when the environmental condition at the location of interest is more similar to that at the location from which the sample was taken, SoLIM estimates the soil property value of the location of interest using the soil property values of known samples weighted by the similarity between those samples and the location of interest in terms of an attribute domain of environmental conditions. However, the current SoLIM method ignores information about the spatial distances between the location of interest and those of the sample. In this study, we proposed a new method of soil property mapping, So LIM-IDW, which incorporates spatial distance information into the SoLIM method by means of inverse distance weighting(IDW). The proposed method is based on the assumption that the soil property value at a location of interest will be more similar to that of a known sample both when the environmental conditions are more similar and when the distance between the location of interest and the sample location is shorter. Our evaluation experiments on A-horizon soil organic matter mapping in two study areas with independent evaluation samples showed that the proposed SoLIM-IDW method can obtain lower prediction errors than the original SoLIM method, multiple linear regression, geographically weighted regression, and regression-kriging with the same modeling points. Future work mainly includes the determination of optimal power parameter values and the appropriate setting of the parameter under different application contexts.展开更多
Spatial distribution of soil salinity can be estimated based on its environmental factors because soil salinity is strongly affected and indicated by environmental factors. Different with other properties such as soil...Spatial distribution of soil salinity can be estimated based on its environmental factors because soil salinity is strongly affected and indicated by environmental factors. Different with other properties such as soil texture, soil salinity varies with short-term time. Thus, how to choose powerful environmental predictors is especially important for soil salinity. This paper presents a similarity-based prediction approach to map soil salinity and detects powerful environmental predictors for the Huanghe(Yellow) River Delta area in China. The similarity-based approach predicts the soil salinities of unsampled locations based on the environmental similarity between unsampled and sampled locations. A dataset of 92 points with salt data at depth of 30–40 cm was divided into two subsets for prediction and validation. Topographical parameters, soil textures, distances to irrigation channels and to the coastline, land surface temperature from Moderate Resolution Imaging Spectroradiometer(MODIS), Normalized Difference Vegetation Indices(NDVIs) and land surface reflectance data from Landsat Thematic Mapper(TM) imagery were generated. The similarity-based prediction approach was applied on several combinations of different environmental factors. Based on three evaluation indices including the correlation coefficient(CC) between observed and predicted values, the mean absolute error and the root mean squared error we found that elevation, distance to irrigation channels, soil texture, night land surface temperature, NDVI, and land surface reflectance Band 5 are the optimal combination for mapping soil salinity at the 30–40 cm depth in the study area(with a CC value of 0.69 and a root mean squared error value of 0.38). Our results indicated that the similarity-based prediction approach could be a vital alternative to other methods for mapping soil salinity, especially for area with limited observation data and could be used to monitor soil salinity distributions in the future.展开更多
Due to the almost homogeneous topography in low relief areas, it is usually difficult to make accurate predictions of soil properties using topographic covariates. In this study, we examined how time series of field s...Due to the almost homogeneous topography in low relief areas, it is usually difficult to make accurate predictions of soil properties using topographic covariates. In this study, we examined how time series of field soil moisture observations can be used to estimate soil texture in an oasis agricultural area with low relief in the semi-arid region of northwest China. Time series of field-observed soil moisture variations were recorded for 132 h beginning at the end of an irrigation event during which the surface soil was saturated.Spatial correlation between two time-adjacent soil moisture conditions was used to select the factors for fuzzy c-means clustering. In each of the ten generated clusters, soil texture of the soil sample with the maximum fuzzy membership value was taken as the cluster centroid. Finally, a linearly weighted average was used to predict soil texture from the centroids. The results showed that soil moisture increased with the increase of clay and silt contents, but decreased with the increase of sand content. The spatial patterns of soil moisture changed during the entire soil drying phase. We assumed that these changes were mainly caused by spatial heterogeneity of soil texture. A total of 64 independent samples were used to evaluate the prediction accuracy. The root mean square error(RMSE)values of clay, silt and sand were 1.63, 2.81 and 3.71, respectively. The mean relative error(RE) values were 9.57% for clay, 3.77% for silt and 12.83% for sand. It could be concluded that the method used in this study was effective for soil texture mapping in the low-relief oasis agricultural area and could be applicable in other similar irrigation agricultural areas.展开更多
Detailed knowledge about the estimates and spatial patterns of soil organic carbon(SOC) and total nitrogen(TN) stocks is fundamental for sustainable land management and climate change mitigation.This study aimed at:(1...Detailed knowledge about the estimates and spatial patterns of soil organic carbon(SOC) and total nitrogen(TN) stocks is fundamental for sustainable land management and climate change mitigation.This study aimed at:(1) mapping the spatial patterns,and(2) quantifying SOC and TN stocks to 30 cm depth in the Eastern Mau Forest Reserve using field,remote sensing,geographical information systems(GIS),and statistical modelling approaches.This is a critical ecosystem offering essential services,but its sustainability is threatened by deforestation and degradation.Results revealed that elevation,silt content,TN concentration,and Landsat 8 Operational Land Imager band 11 explained 72% of the variability in SOC stocks,while the same factors(except silt content) explained 71% of the variability in TN stocks.The results further showed that soil properties,particularly TN and SOC concentrations,were more important than that other environmental factors in controlling the observed patterns of SOC and TN stocks,respectively.Forests stored the highest amounts of SOC and TN(3.78 Tg C and 0.38 Tg N) followed by croplands(2.46 Tg C and 0.25 Tg N) and grasslands(0.57 Tg C and 0.06 Tg N).Overall,the Eastern Mau Forest Reserve stored approximately 6.81 Tg C and 0.69 Tg N.The highest estimates of SOC and TN stocks(hotspots) occurred on the western and northwestern parts where forests dominated,while the lowest estimates(coldspots) occurred on the eastern side where croplands had been established.Therefore,the hotspots need policies that promote conservation,while the coldspots need those that support accumulation of SOC and TN stocks.展开更多
Soil type maps at the scale of I Z 1 000 000 are used extensively to provide soil spatial distribution information for soil erosion assessment and watershed management models in China. However, the soil property maps ...Soil type maps at the scale of I Z 1 000 000 are used extensively to provide soil spatial distribution information for soil erosion assessment and watershed management models in China. However, the soil property maps produced through conventional direct linking method usually suffer low accuracy as well as the lack of spatial details within a soil type polygon. This paper presents an effective method to produce detailed soil property map based on representative samples which were extracted from each polygon on the 1 : 1 000 000 soil type map. The representative sample of each polygon is defined as the location that can represent the largest area within the polygon. The representativeness of a candidate sample is determined by calculating the soil-forming environment condition similarities between the sample and other locations. Once the representative sample of each polygon has been chosen, the property values of the existing typical samples are assigned to the corresponding representative samples with the same soil type. Finally, based on these representative samples, the detailed soil property map could be produced by using existing digital soil mapping methods. The case study in XuanCheng City, Anhui Province of China, demonstrated the proposed method could produce soil property map at a higher level of spatial details and accuracy: 1) The soil organic matter (SOM) map produced based on the representative samples can not only depict the detailed spatial distribution of SOM within a soil type polygon but also largely reduce the abrupt change of soil property at the boundaries of two adjacent polygons. 2) The Root Mean Squared Error (RMSE) of the SOM map based on the representative samples is 1.61, and it is 1.37 for the SOM map produced by using conventional direct linking method. Therefore, the proposed method is an effective approach to produce spatial detailed soil property map with higher accuracy for environment simulation models.展开更多
文摘The colorful satellite image maps with the scale of 1∶100000 were made by processing the parameters-on-satellite under the condition of no data of field surveying.The purpose is to ensure the smooth performance of the choice of expedition route,navigation and research task before the Chinese National Antarctic Research Expedition(CHINARE)first made researches on the Grove Mountains.Moreover,on the basis of the visual interpretation of the satellite image,we preliminarily analyze and discuss the relief and landform,blue ice and meteorite distribution characteristics in the Grove Mountains.
文摘Surveying and mapping work is often disturbed by the surrounding environment, geographical location and other factors, resulting in surveying and mapping difficulty and the obtained data is not accurate. In order to ensure the efficiency of data collection, we should strengthen the use of digital mapping software, and integrate the industry and off-industry work together, so that the industry and outside work groups can be carried out simultaneously. Due to the limitations of technology, professional ability and other aspects, some surveying and mapping personnel can not quickly master the application skills of digital mapping software, can not control the quality scientifically, so in the future work period to strengthen the attention to these two aspects.
基金This work was financially supported by the National Natural Science Foundation of China(41771470)the China Postdoctoral Science Foundation(2020M672776).
文摘Soil salinization is one of the most important causes of land degradation and desertification,especially in arid and semi-arid areas.The dynamic monitoring of soil salinization is of great significance to land management,agricultural activities,water quality,and sustainable development.The remote sensing images taken by the synthetic aperture radar(SAR)Sentinel-1 and the multispectral satellite Sentinel-2 with high resolution and short revisit period have the potential to monitor the spatial distribution of soil attribute information on a large area;however,there are limited studies on the combination of Sentinel-1 and Sentinel-2 for digital mapping of soil salinization.Therefore,in this study,we used topography indices derived from digital elevation model(DEM),SAR indices generated by Sentinel-1,and vegetation indices generated by Sentinel-2 to map soil salinization in the Ogan-Kuqa River Oasis located in the central and northern Tarim Basin in Xinjiang of China,and evaluated the potential of multi-source sensors to predict soil salinity.Using the soil electrical conductivity(EC)values of 70 ground sampling sites as the target variable and the optimal environmental factors as the predictive variable,we constructed three soil salinity inversion models based on classification and regression tree(CART),random forest(RF),and extreme gradient boosting(XGBoost).Then,we evaluated the prediction ability of different models through the five-fold cross validation.The prediction accuracy of XGBoost model is better than those of CART and RF,and soil salinity predicted by the three models has similar spatial distribution characteristics.Compared with the combination of topography indices and vegetation indices,the addition of SAR indices effectively improves the prediction accuracy of the model.In general,the method of soil salinity prediction based on multi-source sensor combination is better than that based on a single sensor.In addition,SAR indices,vegetation indices,and topography indices are all effective variables for soil salinity prediction.Weighted Difference Vegetation Index(WDVI)is designated as the most important variable in these variables,followed by DEM.The results showed that the high-resolution radar Sentinel-1 and multispectral Sentinel-2 have the potential to develop soil salinity prediction model.
文摘The first Ukrainian using experience of multispectral space scanning for digital soil mapping is described in this paper. Methodical approaches for detailed soil observation of Ukrainian forest regions are elaborated based on modem mapping principles. For the first time in Ukraine, digital soil maps based on GIS (geographic information system) were obtained for individual farms. In GIS based on space images and digital relief models, the medium-scale and large-scale soil maps were created by geo-statistical methods. According to elaborated methods, modem digital soil mapping should provide all combined works: remote sensing and traditional soil observations. The modem digital soil mapping should be based just on quantitative principles: on remote sensing data, geomorphologic field parameters, and chemical analyses. The methodological approaches, which were used for the first time in Ukraine during digital soil mapping by remote sensing methods, are described in this paper.
文摘Ice and snow domint the land features in Antarctica. The great brightness and poorcontrast of ice and snow and streaking noise in satellite image make the procedure of image processing difficult. On the other hand however, the contrast between bare rock land/sea water and ice/snow is so high that the details of image will be overcompressed.In the light of characteristics of satellite image in Antarctica, a filtering to remove streaking noise has adn discussed. Based on automatic identify classification to enhance the details of objects and the method and theory of digital rectification of satellite image with ground control points measured from field survey are also presented.
文摘The continuous development of science and technology has promoted the basic of surveying and mapping technology. More and more advanced surveying and mapping technology has been applied to geological engineering survey. The traditional geological survey technology has many defects, which affect the normal development of geological engineering survey. Therefore, we must actively apply digital surveying and mapping technology to improve the quality and efficiency of the survey. This paper first discusses the digital surveying and mapping technology, then analyzes the digital surveying and mapping technology, and finally puts forward some suggestions on the specific application of unmanned aerial vehicle remote sensing surveying and mapping technology in geological engineering survey, hoping to promote the progress of geological engineering survey.
基金supported by the National Natural Science Foundation of China (91325301, 41571130051)
文摘To deal with the global and regional issues including food security, climate change, land degradation, biodiversity loss, water resource management, and ecosystem health, detailed accurate spatial soil information is urgently needed. This drives the worldwide development of digital soil mapping. In recent years, significant progresses have been made in different aspects of digital soil mapping. The main purpose of this paper is to provide a review for the major progresses of digital soil mapping in the last decade. First, we briefly described the rise of digital soil mapping and outlined important milestones and their influence, and main paradigms in digital soil mapping. Then, we reviewed the progresses in legacy soil data, environmental covariates, soil sampling, predictive models and the applications of digital soil mapping products. Finally, we summarized the main trends and future prospect as revealed by studies up to now. We concluded that although the digital soil mapping is now moving towards mature to meet various demands of soil information, challenges including new theories, methodologies and applications of digital soil mapping, especially for highly heterogeneous and human-affected environments, still exist and need to be addressed in the future.
基金supported by grants from the National Natural Science Foundation of China(41431177 and 41871300)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China+4 种基金the Innovation Project of State Key Laboratory of Resources and Environmental Information System(LREIS),China(O88RA20CYA)the Outstanding Innovation Team in Colleges and Universities in Jiangsu Province,ChinaSupports to A-Xing Zhu through the Vilas Associate Awardthe Hammel Faculty Fellow Awardthe Manasse Chair Professorship from the University of Wisconsin-Madison。
文摘Selecting a proper set of covariates is one of the most important factors that influence the accuracy of digital soil mapping(DSM).The statistical or machine learning methods for selecting DSM covariates are not available for those situations with limited samples.To solve the problem,this paper proposed a case-based method which could formalize the covariate selection knowledge contained in practical DSM applications.The proposed method trained Random Forest(RF)classifiers with DSM cases extracted from the practical DSM applications and then used the trained classifiers to determine whether each one potential covariate should be used in a new DSM application.In this study,we took topographic covariates as examples of covariates and extracted 191 DSM cases from 56 peer-reviewed journal articles to evaluate the performance of the proposed case-based method by Leave-One-Out cross validation.Compared with a novices’commonly-used way of selecting DSM covariates,the proposed case-based method improved more than 30%accuracy according to three quantitative evaluation indices(i.e.,recall,precision,and F1-score).The proposed method could be also applied to selecting the proper set of covariates for other similar geographical modeling domains,such as landslide susceptibility mapping,and species distribution modeling.
文摘At present, the traditional engineering measurement method has been difficult to adapt to the needs of the current information development. In order to comprehensively improve the technical level of engineering survey, the industry advocates the use of new surveying and mapping means to promote the high-quality development of engineering survey. Among them, digital surveying and mapping technology as an important form of new method of surveying and mapping can play a greater application value in the field of engineering surveying, and the development prospect is relatively good. In view of this, this paper mainly summarizes the practical problems of the application of digital surveying and mapping technology in mine engineering survey and the problems of measures and suggestions, in order to provide some reference value for the relevant personnel.
文摘With the rapid development of society and economy, various industries pursue technological innovation and application, and the mine geological survey system and its survey technology are improving year by year. The digital measurement technology is relatively mature at present, and is gradually applied to mine surveying projects. It can give full play to its advantages and value and lay a good foundation for the subsequent mine construction. This paper focuses on the application of digital measurement technology in mine surveying, and analyzes the construction technology and application value of digital measurement technology, so as to lay a good foundation for mining and other engineering operations in my country, and then promote the sustainable development of the mining industry. This paper will explore the application path of digital mapping technology in mine geological survey.
文摘Nowadays, the surveying and mapping technology used in the past can no longer meet the needs of modern engineering construction, especially with the development of the project towards a more refined direction, the accuracy of the traditional surveying and mapping technology can not meet the corresponding requirements.Therefore, digital surveying and mapping technology has come into public sight. It can not only improve the work efficiency of surveying and mapping personnel, but also ensure the accuracy of data, which makes the digital surveying and mapping technology widely used at present. Therefore, in this article, we mainly discuss the application analysis of digital surveying and mapping technology in engineering surveying.
基金supported by the National Natural Science Foundation of China(62027809,U2268206,T2222015,U2468202).
文摘The integration of Global Navigation Satellite System(GNSS)technology into railway train control systems is a crucial step toward achieving the vision of a digital railway.Traditional train control systems undergo extensive in-house tests and prolonged field tests for certification and approval before operational deployment,leading to high costs,delays,and operational disruptions.This paper introduces a GNSS-based train control localization framework which eliminates the need for on-site testing by leveraging train movement dynamics and 3D environment modeling to create a zero on-site testing platform.The proposed framework simulates train movement and the surrounding 3D environment using collected railway line location data and environmental attributes to generate realistic multipath signals and obscuration effects.This approach enables comprehensive laboratory-based case studies for train localization,reducing the huge amount test of needed for physical field trials.The framework is established in house,using the data collected at the Test Base of China Academy of Railway Sciences(Circular Railway).Results from the open area and cutting environment tests demonstrate high localization accuracy repeatability within the simulated environment,validating the feasibility and effectiveness of zero on-site testing for GNSS-based train control systems.This research highlights the potential of GNSS simulation platforms in enhancing cost efficiency,operational safety,and accuracy for future digital railways.
基金supported by the National Administration of Surveying, Mapping and Geoinformation (Grant no.1469990324229)the National Natural Science Foundation of China (Grant nos.40806076, 41176172, 41176173)+2 种基金the National High Technology Research and Development Program of China (Grant no. 2008AA121702–5)the National Science and Technology Infrastructure Program of China (Grant no.2006BAB18B01)the Chinese Arctic and Antarctic Administration, SOA(Grant no. 20070206)
文摘Antarctic surveying, mapping and remote sensing is one of the important aspects of the Chinese Antarctic geoscience research program that stretch back over 25 years, since the first Chinese National Antarctic Research Expedition (CHINARE) in 1984. During the 1980's, the geodetic datum, height system and absolute gravity datum were established at the Great Wall and Zhongshan Stations. Significant contributions have been made by the construction of the Chinese Great Wall, Zhongshan and Kunlun Stations in Antarctica. Geodetic control and gravity networks were established in the King George Islands, Grove Moun- tains and Dome Argus. An area of more than 200 000 km2 has been mapped using satellite image data, aerial photogrammetry and in situ data. Permanent GPS stations and tide gauges have been established at both the Great Wall and Zhongshan Stations. Studies involving plate motion, precise satellite orbit determination, the gravity field, sea level change, and various GPS applications for atmospheric studies have been carried out. Based on remote sensing techniques, studies have been undertaken on ice sheet and glacier movements, the distributions of blue ice and ice crevasses, and ice mass balance. Polar digital and visual mapping tech- niques have been introduced, and a polar survey space database has been built. The Chinese polar scientific expedition manage- ment information system and Chinese PANDA plan display platform were developed, which provides technical support for Chi- nese polar management. Finally, this paper examines prospects for future Chinese Antarctic surveying, mapping and remote sens- ing.
基金Supported by National Oil-gas Project:No XQ-2004-07
文摘Digital geological mapping fundamentally broke through the traditional working pattern,successfully carried out the geological mapping digitalization.By using the RGMAP system to field digital geological mapping,the authors summarized the method of work and the work flow of the RGMAPGIS during the field geological survey.First,we prepared material,set up the PRB gallery,then put the geographic base map under the background maplayer and organizing the field hand map,forming the field factual datum map.At last,the geological space database is formed.
基金Supported by the Basic Research Program of Jiangsu Province,China (No. BK2008058)the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-409)
文摘The use of landscape covariates to variability of soil properties in similar estimate soil properties is not suitable topographic and vegetation conditions. for the areas of low relief due to the high A new method was implemented to map regional soil texture (in terms of sand, silt and clay contents) by hypothesizing that the change in the land surface diurnal temperature difference (DTD) is related to soil texture in case of a relatively homogeneous rainfall input. To examine this hypothesis, the DTDs from moderate resolution imagine spectroradiometer (MODIS) during a selected time period, i.e., after a heavy rainfall between autumn harvest and autumn sowing, were classified using fuzzy-c-means (FCM) clustering. Six classes were generated, and for each class, the sand (〉 0.05 mm), silt (0.002-0.05 mm) and clay (〈 0.002 mm) contents at the location of maximum membership value were considered as the typical values of that class. A weighted average model was then used to digitally map soil texture. The results showed that the predicted map quite accurately reflected the regional soil variation. A validation dataset produced estimates of error for the predicted maps of sand, silt and clay contents at root mean of squared error values of 8.4%, 7.8% and 2.3%, respectively, which is satisfactory in a practical context. This study thus provided a methodology that can help improve the accuracy and efficiency of soil texture mapping in plain areas using easily available data sources.
基金funded by the National Natural Science Foundation of China (Nos.41871300,41422109,and 41431177)the National Basic Research Program of China (No.2015CB954102)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,China (No.164320H116)the Outstanding Innovation Team in Colleges and Universities in Jiangsu Province,China the support from the Innovation Project of State Key Laboratory of Resources and Environmental Information System of China (No.O88RA20CYA)。
文摘The Soil Land Inference Model(SoLIM) was primarily proposed by Zhu et al.(Zhu A X, Band L, Vertessy R, Dutton B. 1997. Derivation of soil properties using a soil land inference model(SoLIM). Soil Sci Soc Am J. 61: 523–533.) and was based on the Third Law of Geography. Based on the assumption that the soil property value at a location of interest will be more similar to that of a given soil sample when the environmental condition at the location of interest is more similar to that at the location from which the sample was taken, SoLIM estimates the soil property value of the location of interest using the soil property values of known samples weighted by the similarity between those samples and the location of interest in terms of an attribute domain of environmental conditions. However, the current SoLIM method ignores information about the spatial distances between the location of interest and those of the sample. In this study, we proposed a new method of soil property mapping, So LIM-IDW, which incorporates spatial distance information into the SoLIM method by means of inverse distance weighting(IDW). The proposed method is based on the assumption that the soil property value at a location of interest will be more similar to that of a known sample both when the environmental conditions are more similar and when the distance between the location of interest and the sample location is shorter. Our evaluation experiments on A-horizon soil organic matter mapping in two study areas with independent evaluation samples showed that the proposed SoLIM-IDW method can obtain lower prediction errors than the original SoLIM method, multiple linear regression, geographically weighted regression, and regression-kriging with the same modeling points. Future work mainly includes the determination of optimal power parameter values and the appropriate setting of the parameter under different application contexts.
基金Under the auspices of Special Fund for Ocean Public Welfare Profession Scientific Research(No.201105020)National Natural Science Foundation of China(No.41471178,41023010,41431177)National Key Technology Innovation Project for Water Pollution Control and Remediation(No.2013ZX07103006)
文摘Spatial distribution of soil salinity can be estimated based on its environmental factors because soil salinity is strongly affected and indicated by environmental factors. Different with other properties such as soil texture, soil salinity varies with short-term time. Thus, how to choose powerful environmental predictors is especially important for soil salinity. This paper presents a similarity-based prediction approach to map soil salinity and detects powerful environmental predictors for the Huanghe(Yellow) River Delta area in China. The similarity-based approach predicts the soil salinities of unsampled locations based on the environmental similarity between unsampled and sampled locations. A dataset of 92 points with salt data at depth of 30–40 cm was divided into two subsets for prediction and validation. Topographical parameters, soil textures, distances to irrigation channels and to the coastline, land surface temperature from Moderate Resolution Imaging Spectroradiometer(MODIS), Normalized Difference Vegetation Indices(NDVIs) and land surface reflectance data from Landsat Thematic Mapper(TM) imagery were generated. The similarity-based prediction approach was applied on several combinations of different environmental factors. Based on three evaluation indices including the correlation coefficient(CC) between observed and predicted values, the mean absolute error and the root mean squared error we found that elevation, distance to irrigation channels, soil texture, night land surface temperature, NDVI, and land surface reflectance Band 5 are the optimal combination for mapping soil salinity at the 30–40 cm depth in the study area(with a CC value of 0.69 and a root mean squared error value of 0.38). Our results indicated that the similarity-based prediction approach could be a vital alternative to other methods for mapping soil salinity, especially for area with limited observation data and could be used to monitor soil salinity distributions in the future.
基金supported by the National Natural Science Foundation of China(Nos.41130530,91325301,41201207 and 41571212)the Project of Frontier Fields during the Thirteenth Five-Year Plan Period of the Institute of Soil Science,Chinese Academy of Sciences(ISSASIP1622)
文摘Due to the almost homogeneous topography in low relief areas, it is usually difficult to make accurate predictions of soil properties using topographic covariates. In this study, we examined how time series of field soil moisture observations can be used to estimate soil texture in an oasis agricultural area with low relief in the semi-arid region of northwest China. Time series of field-observed soil moisture variations were recorded for 132 h beginning at the end of an irrigation event during which the surface soil was saturated.Spatial correlation between two time-adjacent soil moisture conditions was used to select the factors for fuzzy c-means clustering. In each of the ten generated clusters, soil texture of the soil sample with the maximum fuzzy membership value was taken as the cluster centroid. Finally, a linearly weighted average was used to predict soil texture from the centroids. The results showed that soil moisture increased with the increase of clay and silt contents, but decreased with the increase of sand content. The spatial patterns of soil moisture changed during the entire soil drying phase. We assumed that these changes were mainly caused by spatial heterogeneity of soil texture. A total of 64 independent samples were used to evaluate the prediction accuracy. The root mean square error(RMSE)values of clay, silt and sand were 1.63, 2.81 and 3.71, respectively. The mean relative error(RE) values were 9.57% for clay, 3.77% for silt and 12.83% for sand. It could be concluded that the method used in this study was effective for soil texture mapping in the low-relief oasis agricultural area and could be applicable in other similar irrigation agricultural areas.
文摘Detailed knowledge about the estimates and spatial patterns of soil organic carbon(SOC) and total nitrogen(TN) stocks is fundamental for sustainable land management and climate change mitigation.This study aimed at:(1) mapping the spatial patterns,and(2) quantifying SOC and TN stocks to 30 cm depth in the Eastern Mau Forest Reserve using field,remote sensing,geographical information systems(GIS),and statistical modelling approaches.This is a critical ecosystem offering essential services,but its sustainability is threatened by deforestation and degradation.Results revealed that elevation,silt content,TN concentration,and Landsat 8 Operational Land Imager band 11 explained 72% of the variability in SOC stocks,while the same factors(except silt content) explained 71% of the variability in TN stocks.The results further showed that soil properties,particularly TN and SOC concentrations,were more important than that other environmental factors in controlling the observed patterns of SOC and TN stocks,respectively.Forests stored the highest amounts of SOC and TN(3.78 Tg C and 0.38 Tg N) followed by croplands(2.46 Tg C and 0.25 Tg N) and grasslands(0.57 Tg C and 0.06 Tg N).Overall,the Eastern Mau Forest Reserve stored approximately 6.81 Tg C and 0.69 Tg N.The highest estimates of SOC and TN stocks(hotspots) occurred on the western and northwestern parts where forests dominated,while the lowest estimates(coldspots) occurred on the eastern side where croplands had been established.Therefore,the hotspots need policies that promote conservation,while the coldspots need those that support accumulation of SOC and TN stocks.
基金Under the auspices of Program of International Science & Technology Cooperation,Ministry of Science and Technology of China(No.2010DFB24140)National Natural Science Foundation of China(No.41023010,41001298)National High Technology Research and Development Program of China(No.2011AA120305)
文摘Soil type maps at the scale of I Z 1 000 000 are used extensively to provide soil spatial distribution information for soil erosion assessment and watershed management models in China. However, the soil property maps produced through conventional direct linking method usually suffer low accuracy as well as the lack of spatial details within a soil type polygon. This paper presents an effective method to produce detailed soil property map based on representative samples which were extracted from each polygon on the 1 : 1 000 000 soil type map. The representative sample of each polygon is defined as the location that can represent the largest area within the polygon. The representativeness of a candidate sample is determined by calculating the soil-forming environment condition similarities between the sample and other locations. Once the representative sample of each polygon has been chosen, the property values of the existing typical samples are assigned to the corresponding representative samples with the same soil type. Finally, based on these representative samples, the detailed soil property map could be produced by using existing digital soil mapping methods. The case study in XuanCheng City, Anhui Province of China, demonstrated the proposed method could produce soil property map at a higher level of spatial details and accuracy: 1) The soil organic matter (SOM) map produced based on the representative samples can not only depict the detailed spatial distribution of SOM within a soil type polygon but also largely reduce the abrupt change of soil property at the boundaries of two adjacent polygons. 2) The Root Mean Squared Error (RMSE) of the SOM map based on the representative samples is 1.61, and it is 1.37 for the SOM map produced by using conventional direct linking method. Therefore, the proposed method is an effective approach to produce spatial detailed soil property map with higher accuracy for environment simulation models.