Races using kitefoil and windfoil surfboards have been in the Olympic Games for the first time in Paris 2024,signalling their relevance in sailing sports.However,the dynamics of these devices is yet not well understoo...Races using kitefoil and windfoil surfboards have been in the Olympic Games for the first time in Paris 2024,signalling their relevance in sailing sports.However,the dynamics of these devices is yet not well understood,in particular the influence on the hydrodynamic forces and moments of the distance of the foil to the free surface.Considering this,the present paper documents an experimental investigation in which forces and torque produced,under uniform flow,by a full-scale state-of-the-art hydrofoil(suitable both for kitesurf and windsurf)were measured.A range of velocities,angles of attack,and submergences were tested,leading to Froude numbers based on submergence with maximum values around five,a typical range in actual sailing conditions.From these tests,formulae for the hydrodynamic coefficients have been proposed.They can be used for developing Velocity Prediction Programs(VPP)for this kind of craft,a necessary tool to plan racing configurations and to analyze their racing performance.With the aim of making the experimental data useful for benchmarking numerical models and for future research on related topics such as foil ventilation and transition to turbulence,the specimen’s 3D file is provided as supplementary material to this paper.展开更多
Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological me...Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological mechanisms,preventing and treating cerebral small vessel vasculopathy is challenging.Recent studies have shown that the glymphatic system plays a crucial role in interstitial solute clearance and the maintenance of brain homeostasis.Increasing evidence also suggests that dysfunction in glymphatic clearance is a key factor in the progression of cerebral small vessel disease.This review begins with a comprehensive introduction to the structure,function,and driving factors of the glymphatic system,highlighting its essential role in brain waste clearance.Afterwards,cerebral small vessel disease was reviewed from the perspective of the glymphatic system,after which the mechanisms underlying their correlation were summarized.Glymphatic dysfunction may lead to the accumulation of metabolic waste in the brain,thereby exacerbating the pathological processes associated with cerebral small vessel disease.The review also discussed the direct evidence of glymphatic dysfunction in patients and animal models exhibiting two subtypes of cerebral small vessel disease:arteriolosclerosis-related cerebral small vessel disease and amyloid-related cerebral small vessel disease.Diffusion tensor image analysis along the perivascular space is an important non-invasive tool for assessing the clearance function of the glymphatic system.However,the effectiveness of its parameters needs to be enhanced.Among various nervous system diseases,including cerebral small vessel disease,glymphatic failure may be a common final pathway toward dementia.Overall,this review summarizes prevention and treatment strategies that target glymphatic drainage and will offer valuable insight for developing novel treatments for cerebral small vessel disease.展开更多
文摘Races using kitefoil and windfoil surfboards have been in the Olympic Games for the first time in Paris 2024,signalling their relevance in sailing sports.However,the dynamics of these devices is yet not well understood,in particular the influence on the hydrodynamic forces and moments of the distance of the foil to the free surface.Considering this,the present paper documents an experimental investigation in which forces and torque produced,under uniform flow,by a full-scale state-of-the-art hydrofoil(suitable both for kitesurf and windsurf)were measured.A range of velocities,angles of attack,and submergences were tested,leading to Froude numbers based on submergence with maximum values around five,a typical range in actual sailing conditions.From these tests,formulae for the hydrodynamic coefficients have been proposed.They can be used for developing Velocity Prediction Programs(VPP)for this kind of craft,a necessary tool to plan racing configurations and to analyze their racing performance.With the aim of making the experimental data useful for benchmarking numerical models and for future research on related topics such as foil ventilation and transition to turbulence,the specimen’s 3D file is provided as supplementary material to this paper.
基金supported by the National Natural Science Foundation of China,No.82274304(to YH)the Major Clinical Study Projects of Shanghai Shenkang Hospital Development Center,No.SHDC2020CR2046B(to YH)Shanghai Municipal Health Commission Talent Plan,No.2022LJ010(to YH).
文摘Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological mechanisms,preventing and treating cerebral small vessel vasculopathy is challenging.Recent studies have shown that the glymphatic system plays a crucial role in interstitial solute clearance and the maintenance of brain homeostasis.Increasing evidence also suggests that dysfunction in glymphatic clearance is a key factor in the progression of cerebral small vessel disease.This review begins with a comprehensive introduction to the structure,function,and driving factors of the glymphatic system,highlighting its essential role in brain waste clearance.Afterwards,cerebral small vessel disease was reviewed from the perspective of the glymphatic system,after which the mechanisms underlying their correlation were summarized.Glymphatic dysfunction may lead to the accumulation of metabolic waste in the brain,thereby exacerbating the pathological processes associated with cerebral small vessel disease.The review also discussed the direct evidence of glymphatic dysfunction in patients and animal models exhibiting two subtypes of cerebral small vessel disease:arteriolosclerosis-related cerebral small vessel disease and amyloid-related cerebral small vessel disease.Diffusion tensor image analysis along the perivascular space is an important non-invasive tool for assessing the clearance function of the glymphatic system.However,the effectiveness of its parameters needs to be enhanced.Among various nervous system diseases,including cerebral small vessel disease,glymphatic failure may be a common final pathway toward dementia.Overall,this review summarizes prevention and treatment strategies that target glymphatic drainage and will offer valuable insight for developing novel treatments for cerebral small vessel disease.