期刊文献+
共找到181篇文章
< 1 2 10 >
每页显示 20 50 100
Motion In-Betweening via Frequency-Domain Diffusion Model
1
作者 Qiang Zhang Shuo Feng +2 位作者 Shanxiong Chen Teng Wan Ying Qi 《Computers, Materials & Continua》 2026年第1期275-296,共22页
Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frame... Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction. 展开更多
关键词 Motion generation diffusion model frequency domain human motion synthesis self-attention network 3D motion interpolation
在线阅读 下载PDF
A Diffusion Model for Traffic Data Imputation 被引量:1
2
作者 Bo Lu Qinghai Miao +5 位作者 Yahui Liu Tariku Sinshaw Tamir Hongxia Zhao Xiqiao Zhang Yisheng Lv Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期606-617,共12页
Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has prov... Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has proven highly successful in image generation,speech generation,time series modelling etc.and now opens a new avenue for traffic data imputation.In this paper,we propose a conditional diffusion model,called the implicit-explicit diffusion model,for traffic data imputation.This model exploits both the implicit and explicit feature of the data simultaneously.More specifically,we design two types of feature extraction modules,one to capture the implicit dependencies hidden in the raw data at multiple time scales and the other to obtain the long-term temporal dependencies of the time series.This approach not only inherits the advantages of the diffusion model for estimating missing data,but also takes into account the multiscale correlation inherent in traffic data.To illustrate the performance of the model,extensive experiments are conducted on three real-world time series datasets using different missing rates.The experimental results demonstrate that the model improves imputation accuracy and generalization capability. 展开更多
关键词 Data imputation diffusion model implicit feature time series traffic data
在线阅读 下载PDF
Temperature fields prediction for the casting process by a conditional diffusion model
3
作者 Jin-wu Kang Jing-xi Zhu Qi-chao Zhao 《China Foundry》 2025年第2期139-150,共12页
Deep learning has achieved great progress in image recognition,segmentation,semantic recognition and game theory.In this study,a latest deep learning model,a conditional diffusion model was adopted as a surrogate mode... Deep learning has achieved great progress in image recognition,segmentation,semantic recognition and game theory.In this study,a latest deep learning model,a conditional diffusion model was adopted as a surrogate model to predict the heat transfer during the casting process instead of numerical simulation.The conditional diffusion model was established and trained with the geometry shapes,initial temperature fields and temperature fields at t_(i) as the condition and random noise sampled from standard normal distribution as the input.The output was the temperature field at t_(i+1).Therefore,the temperature field at t_(i+1)can be predicted as the temperature field at t_(i) is known,and the continuous temperature fields of all the time steps can be predicted based on the initial temperature field of an arbitrary 2D geometry.A training set with 3022D shapes and their simulated temperature fields at different time steps was established.The accuracy for the temperature field for a single time step reaches 97.7%,and that for continuous time steps reaches 69.1%with the main error actually existing in the sand mold.The effect of geometry shape and initial temperature field on the prediction accuracy was investigated,the former achieves better result than the latter because the former can identify casting,mold and chill by different colors in the input images.The diffusion model has proved the potential as a surrogate model for numerical simulation of the casting process. 展开更多
关键词 diffusion model U-Net CASTING simulation heat transfer
在线阅读 下载PDF
Seeing the macro in the micro:a diffusion model-based approach for style transfer in cellular images
4
作者 Jiayi CAI Yong HE +2 位作者 Feng LIU Byung-Ho KANG Xuping FENG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 2025年第6期609-612,共4页
The internal structures of cells as the basic units of life are a major wonder of the microscopic world.Cellular images provide an intriguing window to help explore and understand the composition and function of these... The internal structures of cells as the basic units of life are a major wonder of the microscopic world.Cellular images provide an intriguing window to help explore and understand the composition and function of these structures.Scientific imagery combined with artistic expression can further expand the potential of imaging in educational dissemination and interdisciplinary applications. 展开更多
关键词 interdisciplinary applications artistic expression diffusion model explore understand composition function cellular images educational dissemination style transfer internal structures
原文传递
Dual-Stream Attention-Based Classification Network for Tibial Plateau Fractures via Diffusion Model Augmentation and Segmentation Map Integration
5
作者 Yi Xie Zhi-wei Hao +8 位作者 Xin-meng Wang Hong-lin Wang Jia-ming Yang Hong Zhou Xu-dong Wang Jia-yao Zhang Hui-wen Yang Peng-ran Liu Zhe-wei Ye 《Current Medical Science》 2025年第1期57-69,共13页
Objective This study aimed to explore a novel method that integrates the segmentation guidance classification and the dif-fusion model augmentation to realize the automatic classification for tibial plateau fractures(... Objective This study aimed to explore a novel method that integrates the segmentation guidance classification and the dif-fusion model augmentation to realize the automatic classification for tibial plateau fractures(TPFs).Methods YOLOv8n-cls was used to construct a baseline model on the data of 3781 patients from the Orthopedic Trauma Center of Wuhan Union Hospital.Additionally,a segmentation-guided classification approach was proposed.To enhance the dataset,a diffusion model was further demonstrated for data augmentation.Results The novel method that integrated the segmentation-guided classification and diffusion model augmentation sig-nificantly improved the accuracy and robustness of fracture classification.The average accuracy of classification for TPFs rose from 0.844 to 0.896.The comprehensive performance of the dual-stream model was also significantly enhanced after many rounds of training,with both the macro-area under the curve(AUC)and the micro-AUC increasing from 0.94 to 0.97.By utilizing diffusion model augmentation and segmentation map integration,the model demonstrated superior efficacy in identifying SchatzkerⅠ,achieving an accuracy of 0.880.It yielded an accuracy of 0.898 for SchatzkerⅡandⅢand 0.913 for SchatzkerⅣ;for SchatzkerⅤandⅥ,the accuracy was 0.887;and for intercondylar ridge fracture,the accuracy was 0.923.Conclusion The dual-stream attention-based classification network,which has been verified by many experiments,exhibited great potential in predicting the classification of TPFs.This method facilitates automatic TPF assessment and may assist surgeons in the rapid formulation of surgical plans. 展开更多
关键词 Artificial intelligence YOLOv8 Tibial plateau fracture diffusion model augmentation Segmentation map
暂未订购
Physics field super-resolution reconstruction via enhanced diffusion model and fourier neural operator
6
作者 Yanan Guo Junqiang Song +2 位作者 Xiaoqun Cao Chuanfeng Zhao Hongze Leng 《Theoretical & Applied Mechanics Letters》 2025年第5期498-507,共10页
With the growing demand for high-precision flow field simulations in computational science and engineering,the super-resolution reconstruction of physical fields has attracted considerable research interest.However,tr... With the growing demand for high-precision flow field simulations in computational science and engineering,the super-resolution reconstruction of physical fields has attracted considerable research interest.However,tradi-tional numerical methods often entail high computational costs,involve complex data processing,and struggle to capture fine-scale high-frequency details.To address these challenges,we propose an innovative super-resolution reconstruction framework that integrates a Fourier neural operator(FNO)with an enhanced diffusion model.The framework employs an adaptively weighted FNO to process low-resolution flow field inputs,effectively capturing global dependencies and high-frequency features.Furthermore,a residual-guided diffusion model is introduced to further improve reconstruction performance.This model uses a Markov chain for noise injection in phys-ical fields and integrates a reverse denoising procedure,efficiently solved by an adaptive time-step ordinary differential equation solver,thereby ensuring both stability and computational efficiency.Experimental results demonstrate that the proposed framework significantly outperforms existing methods in terms of accuracy and efficiency,offering a promising solution for fine-grained data reconstruction in scientific simulations. 展开更多
关键词 Fourier neural operator diffusion model Super-resolution reconstruction Flow field simulation Scientific computing
在线阅读 下载PDF
Predicting unsteady hydrodynamic performance of seaplanes based on diffusion models
7
作者 Xinlong YU Miao PENG +4 位作者 Mingzhen WANG Junlong ZHANG Jian YU Hongqiang LYU Xuejun LIU 《Chinese Journal of Aeronautics》 2025年第10期327-346,共20页
Obtaining unsteady hydrodynamic performance is of great significance for seaplane design.Common methods for obtaining unsteady hydrodynamic performance data include tank test and Computational Fluid Dynamics(CFD)numer... Obtaining unsteady hydrodynamic performance is of great significance for seaplane design.Common methods for obtaining unsteady hydrodynamic performance data include tank test and Computational Fluid Dynamics(CFD)numerical simulation,which are costly and time-consuming.Therefore,it is necessary to obtain unsteady hydrodynamic performance in a low-cost and high-precision manner.Due to the strong nonlinearity,complex data distribution,and temporal characteristics of unsteady hydrodynamic performance,the prediction of it is challenging.This paper proposes a Temporal Convolutional Diffusion Model(TCDM)for predicting the unsteady hydrodynamic performance of seaplanes given design parameters.Under the framework of a classifier-free guided diffusion model,TCDM learns the distribution patterns of unsteady hydrodynamic performance data with the designed denoising module based on temporal convolutional network and captures the temporal features of unsteady hydrodynamic performance data.Using CFD simulation data,the proposed method is compared with the alternative methods to demonstrate its accuracy and generalization.This paper provides a method that enables the rapid and accurate prediction of unsteady hydrodynamic performance data,expecting to shorten the design cycle of seaplanes. 展开更多
关键词 Seaplanes Unsteady hydrodynamic performance Classifier-free guided diffusion model Temporal convolutional network Temporal data
原文传递
Diff-Fastener:A Few-Shot Rail Fastener Anomaly Detection Framework Based on Diffusion Model
8
作者 Peng Sun Dechen Yao +1 位作者 Jianwei Yang Quanyu Long 《Structural Durability & Health Monitoring》 2025年第5期1221-1239,共19页
Supervised learning-based rail fastener anomaly detection models are limited by the scarcity of anomaly samples and perform poorly under data imbalance conditions.However,unsupervised anomaly detection methods based o... Supervised learning-based rail fastener anomaly detection models are limited by the scarcity of anomaly samples and perform poorly under data imbalance conditions.However,unsupervised anomaly detection methods based on diffusion models reduce the dependence on the number of anomalous samples but suffer from too many iterations and excessive smoothing of reconstructed images.In this work,we have established a rail fastener anomaly detection framework called Diff-Fastener,the diffusion model is introduced into the fastener detection task,half of the normal samples are converted into anomaly samples online in the model training stage,and One-Step denoising and canonical guided denoising paradigms are used instead of iterative denoising to improve the reconstruction efficiency of the model while solving the problem of excessive smoothing.DACM(Dilated Attention Convolution Module)is proposed in the middle layer of the reconstruction network to increase the detail information of the reconstructed image;meanwhile,Sparse-Skip connections are used instead of dense connections to reduce the computational load of themodel and enhance its scalability.Through exhaustive experiments onMVTec,VisA,and railroad fastener datasets,the results show that Diff-Fastener achieves 99.1%Image AUROC(Area Under the Receiver Operating Characteristic)and 98.9%Pixel AUROC on the railroad fastener dataset,which outperforms the existing models and achieves the best average score on MVTec and VisA datasets.Our research provides new ideas and directions in the field of anomaly detection for rail fasteners. 展开更多
关键词 diffusion model anomaly detection unsupervised learning rail fastener
在线阅读 下载PDF
Fixed Neural Network Image Steganography Based on Secure Diffusion Models
9
作者 Yixin Tang Minqing Zhang +2 位作者 Peizheng Lai Ya Yue Fuqiang Di 《Computers, Materials & Continua》 2025年第9期5733-5750,共18页
Traditional steganography conceals information by modifying cover data,but steganalysis tools easily detect such alterations.While deep learning-based steganography often involves high training costs and complex deplo... Traditional steganography conceals information by modifying cover data,but steganalysis tools easily detect such alterations.While deep learning-based steganography often involves high training costs and complex deployment.Diffusion model-based methods face security vulnerabilities,particularly due to potential information leakage during generation.We propose a fixed neural network image steganography framework based on secure diffu-sion models to address these challenges.Unlike conventional approaches,our method minimizes cover modifications through neural network optimization,achieving superior steganographic performance in human visual perception and computer vision analyses.The cover images are generated in an anime style using state-of-the-art diffusion models,ensuring the transmitted images appear more natural.This study introduces fixed neural network technology that allows senders to transmit only minimal critical information alongside stego-images.Recipients can accurately reconstruct secret images using this compact data,significantly reducing transmission overhead compared to conventional deep steganography.Furthermore,our framework innovatively integrates ElGamal,a cryptographic algorithm,to protect critical information during transmission,enhancing overall system security and ensuring end-to-end information protection.This dual optimization of payload reduction and cryptographic reinforcement establishes a new paradigm for secure and efficient image steganography. 展开更多
关键词 Image steganography fixed neural network secure diffusion models ELGAMAL
在线阅读 下载PDF
Text-guided diverse-expression diffusion model for molecule generation
10
作者 Wenchao Weng Hanyu Jiang +1 位作者 Xiangjie Kong Giovanni Pau 《Chinese Physics B》 2025年第5期106-113,共8页
The task of molecule generation guided by specific text descriptions has been proposed to generate molecules that match given text inputs.Mainstream methods typically use simplified molecular input line entry system(S... The task of molecule generation guided by specific text descriptions has been proposed to generate molecules that match given text inputs.Mainstream methods typically use simplified molecular input line entry system(SMILES)to represent molecules and rely on diffusion models or autoregressive structures for modeling.However,the one-to-many mapping diversity when using SMILES to represent molecules causes existing methods to require complex model architectures and larger training datasets to improve performance,which affects the efficiency of model training and generation.In this paper,we propose a text-guided diverse-expression diffusion(TGDD)model for molecule generation.TGDD combines both SMILES and self-referencing embedded strings(SELFIES)into a novel diverse-expression molecular representation,enabling precise molecule mapping based on natural language.By leveraging this diverse-expression representation,TGDD simplifies the segmented diffusion generation process,achieving faster training and reduced memory consumption,while also exhibiting stronger alignment with natural language.TGDD outperforms both TGM-LDM and the autoregressive model MolT5-Base on most evaluation metrics. 展开更多
关键词 molecule generation diffusion model AI for science
原文传递
Federated Semi-Supervised Learning with Diffusion Model-Based Data Synthesis
11
作者 Wang Zhongwei Wu Tong +3 位作者 Chen Zhiyong Qian Liang Xu Yin Tao Meixia 《China Communications》 2025年第7期44-57,共14页
Federated semi-supervised learning(FSSL)faces two major challenges:the scarcity of labeled data across clients and the non-independent and identically distributed(Non-IID)nature of data among clients.To address these ... Federated semi-supervised learning(FSSL)faces two major challenges:the scarcity of labeled data across clients and the non-independent and identically distributed(Non-IID)nature of data among clients.To address these issues,we propose diffusion model-based data synthesis aided FSSL(DDSA-FSSL),a novel approach that leverages diffusion model(DM)to generate synthetic data,thereby bridging the gap between heterogeneous local data distributions and the global data distribution.In the proposed DDSA-FSSL,each client addresses the scarcity of labeled data by utilizing a federated learningtrained classifier to perform pseudo labeling for unlabeled data.The DM is then collaboratively trained using both labeled and precision-optimized pseudolabeled data,enabling clients to generate synthetic samples for classes that are absent in their labeled datasets.As a result,the disparity between local and global distributions is reduced and clients can create enriched synthetic datasets that better align with the global data distribution.Extensive experiments on various datasets and Non-IID scenarios demonstrate the effectiveness of DDSA-FSSL,achieving significant performance improvements,such as increasing accuracy from 38.46%to 52.14%on CIFAR-10 datasets with 10%labeled data. 展开更多
关键词 diffusion model federated semisupervised learning non-independent and identically distributed
在线阅读 下载PDF
Diff-IDS:A Network Intrusion Detection Model Based on Diffusion Model for Imbalanced Data Samples
12
作者 Yue Yang Xiangyan Tang +3 位作者 Zhaowu Liu Jieren Cheng Haozhe Fang Cunyi Zhang 《Computers, Materials & Continua》 2025年第3期4389-4408,共20页
With the rapid development of Internet of Things technology,the sharp increase in network devices and their inherent security vulnerabilities present a stark contrast,bringing unprecedented challenges to the field of ... With the rapid development of Internet of Things technology,the sharp increase in network devices and their inherent security vulnerabilities present a stark contrast,bringing unprecedented challenges to the field of network security,especially in identifying malicious attacks.However,due to the uneven distribution of network traffic data,particularly the imbalance between attack traffic and normal traffic,as well as the imbalance between minority class attacks and majority class attacks,traditional machine learning detection algorithms have significant limitations when dealing with sparse network traffic data.To effectively tackle this challenge,we have designed a lightweight intrusion detection model based on diffusion mechanisms,named Diff-IDS,with the core objective of enhancing the model’s efficiency in parsing complex network traffic features,thereby significantly improving its detection speed and training efficiency.The model begins by finely filtering network traffic features and converting them into grayscale images,while also employing image-flipping techniques for data augmentation.Subsequently,these preprocessed images are fed into a diffusion model based on the Unet architecture for training.Once the model is trained,we fix the weights of the Unet network and propose a feature enhancement algorithm based on feature masking to further boost the model’s expressiveness.Finally,we devise an end-to-end lightweight detection strategy to streamline the model,enabling efficient lightweight detection of imbalanced samples.Our method has been subjected to multiple experimental tests on renowned network intrusion detection benchmarks,including CICIDS 2017,KDD 99,and NSL-KDD.The experimental results indicate that Diff-IDS leads in terms of detection accuracy,training efficiency,and lightweight metrics compared to the current state-of-the-art models,demonstrating exceptional detection capabilities and robustness. 展开更多
关键词 Network traffic feature enhancement diffusion model multi-classification Algorithm 2(continued)13:end for 14:Return y
在线阅读 下载PDF
Air target intent recognition method combining graphing time series and diffusion models
13
作者 Chenghai LI Ke WANG +2 位作者 Yafei SONG Peng WANG Lemin LI 《Chinese Journal of Aeronautics》 2025年第1期507-519,共13页
Air target intent recognition holds significant importance in aiding commanders to assess battlefield situations and secure a competitive edge in decision-making.Progress in this domain has been hindered by challenges... Air target intent recognition holds significant importance in aiding commanders to assess battlefield situations and secure a competitive edge in decision-making.Progress in this domain has been hindered by challenges posed by imbalanced battlefield data and the limited robustness of traditional recognition models.Inspired by the success of diffusion models in addressing visual domain sample imbalances,this paper introduces a new approach that utilizes the Markov Transfer Field(MTF)method for time series data visualization.This visualization,when combined with the Denoising Diffusion Probabilistic Model(DDPM),effectively enhances sample data and mitigates noise within the original dataset.Additionally,a transformer-based model tailored for time series visualization and air target intent recognition is developed.Comprehensive experimental results,encompassing comparative,ablation,and denoising validations,reveal that the proposed method achieves a notable 98.86%accuracy in air target intent recognition while demonstrating exceptional robustness and generalization capabilities.This approach represents a promising avenue for advancing air target intent recognition. 展开更多
关键词 Intent Recognition Markov Transfer Field Denoising diffusion Probability model Transformer Neural Network
原文传递
A novel diffusion model considering curvature radius at the bonding interface in a titanium/steel explosive clad plate 被引量:5
14
作者 Hai-tao Jiang Qiang Kang Xiao-qian Yan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第9期956-965,共10页
This article introduces an element diffusion behavior model for a titanium/steel explosive clad plate characterized by a typical curved interface during the heat-treatment process. A series of heat-treatment experimen... This article introduces an element diffusion behavior model for a titanium/steel explosive clad plate characterized by a typical curved interface during the heat-treatment process. A series of heat-treatment experiments were conducted in the temperature range from 750℃ to 950℃, and the effects of heat-treatment parameters on the microstructural evolution and diffusion behavior were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction analysis, and electron-probe microanalysis. Carbon atoms within the steel matrix were observed to diffuse toward the titanium matrix and to aggregate at the bonding interface at 850℃ or lower; in contrast, when the temperature exceeded 850℃, the mutual diffusion of Ti and Fe occurred, along with the diffusion of C atoms, resulting in the for- marion of Ti-Fe intermetallics (Fe2Ti/FeTi). The diffusion distances of C, Ti, and Fe atoms increased with increasing heating temperature and/or holding time. On the basis of this diffusion behavior, a novel diffusion model was proposed. This model considers the effects of various factors, including the curvature radius of the curved interface, the diffusion coefficient, the heating temperature, and the holding rime. The experimental results show good agreement with the calculated values. The proposed model could clearly provide a general prediction of the elements' diffusion at both straight and curved interfaces. 展开更多
关键词 explosive bonding metal cladding diffusion models INTERFACES heat treatment
在线阅读 下载PDF
STABILITY OF INNOVATION DIFFUSION MODEL WITH NONLINEAR ACCEPTANCE 被引量:5
15
作者 于宇梅 王稳地 《Acta Mathematica Scientia》 SCIE CSCD 2007年第3期645-655,共11页
In this article, an innovation diffusion model with the nonlinear acceptance is proposed to describe the dynamics of three competing products in a market. It is proved that the model admits a unique positive equilibri... In this article, an innovation diffusion model with the nonlinear acceptance is proposed to describe the dynamics of three competing products in a market. It is proved that the model admits a unique positive equilibrium, which is globally stable by excluding the existence of periodic solutions and by using the theory of three dimensional competition systems. 展开更多
关键词 Global stability nonlinear acceptance innovation diffusion model
在线阅读 下载PDF
A Numerical Algorithm Based on Quadratic Finite Element for Two-Dimensional Nonlinear Time Fractional Thermal Diffusion Model 被引量:3
16
作者 Yanlong Zhang Baoli Yin +2 位作者 Yue Cao Yang Liu Hong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1081-1098,共18页
In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-d... In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-dimensional nonlinear time fractional thermal diffusion model.The time Caputo fractional derivative is approximated by using the L2-1formula,the first-order derivative and nonlinear term are discretized by some second-order approximation formulas,and the quadratic finite element is used to approximate the spatial direction.The error accuracy O(h3+t2)is obtained,which is verified by the numerical results. 展开更多
关键词 Quadratic finite element two-dimensional nonlinear time fractional thermal diffusion model L2-1formula.
在线阅读 下载PDF
Valuing Credit Default Swap under a double exponential jump diffusion model 被引量:2
17
作者 YANG Rui-cheng PANG Maooxiu JIN Zhuang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2014年第1期36-43,共8页
This paper discusses the valuation of the Credit Default Swap based on a jump market, in which the asset price of a firm follows a double exponential jump diffusion process, the value of the debt is driven by a geomet... This paper discusses the valuation of the Credit Default Swap based on a jump market, in which the asset price of a firm follows a double exponential jump diffusion process, the value of the debt is driven by a geometric Brownian motion, and the default barrier follows a continuous stochastic process. Using the Gaver-Stehfest algorithm and the non-arbitrage asset pricing theory, we give the default probability of the first passage time, and more, derive the price of the Credit Default Swap. 展开更多
关键词 Credit Default Swap Brownian motion double exponential jump diffusion model
在线阅读 下载PDF
SeisResoDiff: Seismic resolution enhancement based on a diffusion model 被引量:1
18
作者 Hao-Ran Zhang Yang Liu +1 位作者 Yu-Hang Sun Gui Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3166-3188,共23页
High resolution of post-stack seismic data assists in better interpretation of subsurface structures as well as high accuracy of impedance inversion. Therefore, geophysicists consistently strive to acquire higher reso... High resolution of post-stack seismic data assists in better interpretation of subsurface structures as well as high accuracy of impedance inversion. Therefore, geophysicists consistently strive to acquire higher resolution seismic images in petroleum exploration. Although there have been successful applications of conventional signal processing and machine learning for post-stack seismic resolution enhancement,there is limited reference to the seismic applications of the recent emergence and rapid development of generative artificial intelligence. Hence, we propose to apply diffusion models, among the most popular generative models, to enhance seismic resolution. Specifically, we apply the classic diffusion model—denoising diffusion probabilistic model(DDPM), conditioned on the seismic data in low resolution, to reconstruct corresponding high-resolution images. Herein the entire scheme is referred to as SeisResoDiff. To provide a comprehensive and clear understanding of SeisResoDiff, we introduce the basic theories of diffusion models and detail the optimization objective's derivation with the aid of diagrams and algorithms. For implementation, we first propose a practical workflow to acquire abundant training data based on the generated pseudo-wells. Subsequently, we apply the trained model to both synthetic and field datasets, evaluating the results in three aspects: the appearance of seismic sections and slices in the time domain, frequency spectra, and comparisons with the synthetic data using real well-logging data at the well locations. The results demonstrate not only effective seismic resolution enhancement,but also additional denoising by the diffusion model. Experimental comparisons indicate that training the model on noisy data, which are more realistic, outperforms training on clean data. The proposed scheme demonstrates superiority over some conventional methods in high-resolution reconstruction and denoising ability, yielding more competitive results compared to our previous research. 展开更多
关键词 Seismic resolution enhancement diffusion model High resolution Reservoir characterization Deep learning Seismic data processing
原文传递
Study of Pre-equilibrium Fission Based on Diffusion Model 被引量:1
19
作者 SUN Xiao-Jun ZHANG Jing-Shang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第2期325-331,共7页
In terms of numerical method of Smoluchowski equation the behavior of fission process in diffusion model has been described and analyzed, including the reliance upon time, as well as the deformation parameters at seve... In terms of numerical method of Smoluchowski equation the behavior of fission process in diffusion model has been described and analyzed, including the reliance upon time, as well as the deformation parameters at several nuclear temperatures in this paper. The fission rates and the residual probabilities inside the saddle point are calculated for fissile nucleus n+^238U reaction and un-fissile nucleus p+^208Pb reaction. The results indicate that there really exists a transient fission process, which means that the pre-equillbrium fission should be taken into account for the fissile nucleus at the high temperature. Oppositely, the pre-equilibrlum fission could be neglected for the un-fissile nucleus. In the certain case the overshooting phenomenon of the fission rates will occur, which is mainly determined by the diffusive current at the saddle point. The higher the temperature is, the more obvious the overshooting phenomenon is. However, the emissions of the light particles accompanying the diffusion process may weaken or vanish the overshooting phenomenon. 展开更多
关键词 pre-equilibrium fission diffusion model fissile nucleus un-fissile nucleus
在线阅读 下载PDF
A Comprehensive Survey of Recent Transformers in Image,Video and Diffusion Models 被引量:1
20
作者 Dinh Phu Cuong Le Dong Wang Viet-Tuan Le 《Computers, Materials & Continua》 SCIE EI 2024年第7期37-60,共24页
Transformer models have emerged as dominant networks for various tasks in computer vision compared to Convolutional Neural Networks(CNNs).The transformers demonstrate the ability to model long-range dependencies by ut... Transformer models have emerged as dominant networks for various tasks in computer vision compared to Convolutional Neural Networks(CNNs).The transformers demonstrate the ability to model long-range dependencies by utilizing a self-attention mechanism.This study aims to provide a comprehensive survey of recent transformerbased approaches in image and video applications,as well as diffusion models.We begin by discussing existing surveys of vision transformers and comparing them to this work.Then,we review the main components of a vanilla transformer network,including the self-attention mechanism,feed-forward network,position encoding,etc.In the main part of this survey,we review recent transformer-based models in three categories:Transformer for downstream tasks,Vision Transformer for Generation,and Vision Transformer for Segmentation.We also provide a comprehensive overview of recent transformer models for video tasks and diffusion models.We compare the performance of various hierarchical transformer networks for multiple tasks on popular benchmark datasets.Finally,we explore some future research directions to further improve the field. 展开更多
关键词 TRANSFORMER vision transformer self-attention hierarchical transformer diffusion models
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部