期刊文献+
共找到16,816篇文章
< 1 2 250 >
每页显示 20 50 100
High-efficiency RGB achromatic liquid crystal diffractive optical elements 被引量:1
1
作者 Yuqiang Ding Xiaojin Huang +2 位作者 Yongziyan Ma Yan Li Shin-Tson Wu 《Opto-Electronic Advances》 2025年第3期4-15,共12页
Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However... Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However,chromatic aberration remains a serious longstanding problem for diffractive optics,hindering their broader adoption.To overcome the chromatic aberrations for red,green and blue(RGB)light sources,in this paper,we propose a counterintuitive multi-twist structure to achieve narrowband PBOEs without crosstalk,which plays a vital role to eliminate the chromatic aberration.The performance of our designed and fabricated narrowband Pacharatnam-Berry lenses(PBLs)aligns well with our simulation results.Furthermore,in a feasibility demonstration experiment using a laser projector,our proposed PBL system indeed exhibits a diminished chromatic aberration as compared to a broadband PBL.Additionally,polarization raytracing is implemented to demonstrate the versatility of the multi-twist structure for designing any RGB wavelengths with high contrast ratios.This analysis explores the feasibility of using RGB laser lines and quantum dot light-emitting diodes.Overall,our approach enables high optical efficiency,low fabrication complexity,and high degree of design freedom to accommodate any liquid crystal material and RGB light sources,holding immense potential for widespread applications of achromatic PBOEs. 展开更多
关键词 achromatic diffractive optical elements Pacharatnam-Berry phase optical elements liquid crystal planar optics near-eye displays
在线阅读 下载PDF
Compact planar-waveguide integrated diffractive optical neural network chip
2
作者 Jianan Feng Chang Li +7 位作者 Dahai Yang Yang Liu Jianyang Hu Chen Chen Yiqun Wang Jie Lin Lei Wang Peng Jin 《Advanced Photonics Nexus》 2025年第1期93-104,共12页
Diffractive optical neural networks(DONNs)have exhibited the advantages of parallelization,high speed,and low consumption.However,the existing DONNs based on free-space diffractive optical elements are bulky and unste... Diffractive optical neural networks(DONNs)have exhibited the advantages of parallelization,high speed,and low consumption.However,the existing DONNs based on free-space diffractive optical elements are bulky and unsteady.In this study,we propose a planar-waveguide integrated diffractive neural network chip architecture.The three diffractive layers are engraved on the same side of a quartz wafer.The three-layer chip is designed with 32-mm3 processing space and enables a computing speed of 3.1×109 Tera operations per second.The results show that the proposed chip achieves 73.4%experimental accuracy for the Modified National Institute of Standards and Technology database while showing the system’s robustness in a cycle test.The consistency of experiments is 88.6%,and the arithmetic mean standard deviation of the results is~4.7%.The proposed chip architecture can potentially revolutionize high-resolution optical processing tasks with high robustness. 展开更多
关键词 optical computing diffractive neural network planar waveguide high robustness.
在线阅读 下载PDF
Diffractive characteristics of the liquid crystal spatial light modulator 被引量:3
3
作者 曹召良 穆全全 +2 位作者 胡立发 刘永刚 宣丽 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第6期1665-1671,共7页
The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thou... The liquid crystal spatial light modulator (LC SLM) is very suitable for wavefront correction and optical testing and can produce a wavefront with large phase change and high accuracy. The LC SLM is composed of thousands of pixels and the pixel size and shape have effects on the diffractive characteristics of the LC SLM. This paper investigates the pixel effect on the phase of the wavefront with the scalar diffractive theory. The results show that the maximum optical path difference modulation is 41μm to produce the paraboloid wavefront with the peak to valley accuracy better than λ/10. Effects of the mismatch between the pixel and the period, and black matrix on the diffraction efficiency of the LC SLM are also analysed with the Fresnel phase lens model. The ability of the LC SLM is discussed for optical testing and wavefront correction based on the calculated results. It shows that the LC SLM can be used as a wavefront corrector and a compensator. 展开更多
关键词 liquid crystal spatial light modulator diffraction efficiency PIXEL WAVEFRONT
原文传递
Compound diffractive telescope system:design,stray light analysis,and optical test 被引量:2
4
作者 岳巾英 刘华 +4 位作者 卢振武 许文斌 张虎 张红鑫 刘英 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第1期234-240,共7页
The compound diffractive telescope is a novel space optical system which combines the structure of compound eyes with diffractive optics and so it has a lighter weight, a wider field of view (FOV), a lower cost as w... The compound diffractive telescope is a novel space optical system which combines the structure of compound eyes with diffractive optics and so it has a lighter weight, a wider field of view (FOV), a lower cost as well as looser fabrication tolerance. In this paper, the design of a compound diffractive telescope composed of one primary lens and twenty-one eyepieces is introduced. Then the influence of diffraction orders on the performance of the system is analysed. A modified phase function model of diffractive optics is proposed to analyse the modulation transfer function (MTF) curves for 0° FOV, which provides a more accurate prediction of the performance of the system. In addition, an optimized mechanism is also proposed to suppress stray light. The star image and resolution tests show that the system can achieve diffraction limit imaging within ±2° of FOV and 4-4 mm of eccentricity. Finally, a series of pictures of an object are taken from different channels, and the splicing of pictures from adjacent FOVs is demonstrated. In summary, the designed system has been proved to have great potential applications. 展开更多
关键词 lens system design compound eyes structure diffractive lens stray light
原文传递
Simple and universal method in designs of high-efficiency diffractive optical elements for spectrum separation and beam concentration 被引量:2
5
作者 徐文琪 林冬风 +8 位作者 许信 叶佳声 王新柯 冯胜飞 孙文峰 韩鹏 张岩 孟庆波 杨国桢 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期89-95,共7页
Diffractive optical elements(DOEs) with spectrum separation and beam concentration(SSBC) functions have important applications in solar cell systems. With the SSBC DOEs, the sunlight radiation is divided into seve... Diffractive optical elements(DOEs) with spectrum separation and beam concentration(SSBC) functions have important applications in solar cell systems. With the SSBC DOEs, the sunlight radiation is divided into several wave bands so as to be effectively absorbed by photovoltaic materials with different band gaps. A new method is proposed for designing high-efficiency SSBC DOEs, which is physically simple, numerically fast, and universally applicable. The SSBC DOEs are designed by the new design method, and their performances are analyzed by the Fresnel diffraction integral method.The new design method takes two advantages over the previous design method. Firstly, the optical focusing efficiency is heightened by up to 10%. Secondly, focal positions of all the designed wavelengths can be designated arbitrarily and independently. It is believed that the designed SSBC DOEs should have practical applications to solar cell systems. 展开更多
关键词 diffractive optical element spectrum separation and beam concentration optical focusing efficiency solar cell system
原文传递
Realizing high photovoltaic efficiency with parallel multijunction solar cells based on spectrum-splitting and-concentrating diffractive optical element 被引量:1
6
作者 王进泽 黄庆礼 +7 位作者 许信 全宝钢 罗建恒 张岩 叶佳声 李冬梅 孟庆波 杨国桢 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第5期329-334,共6页
Based on the facts that multijunction solar cells can increase the efficiency and concentration can reduce the cost dramatically, a special design of parallel multijunction solar cells was presented. The design employ... Based on the facts that multijunction solar cells can increase the efficiency and concentration can reduce the cost dramatically, a special design of parallel multijunction solar cells was presented. The design employed a diffractive optical element (DOE) to split and concentrate the sunlight. A rainbow region and a zero-order diffraction region were generated on the output plane where solar cells with corresponding band gaps were placed. An analytical expression of the light intensity distribution on the output plane of the special DOE was deduced, and the limiting photovoltaic efficiency of such parallel multijunction solar ceils was obtained based on Shockley-Queisser's theory. An efficiency exceeding the Shockley--Queisser limit (33%) can be expected using multijunction solar cells consisting of separately fabricated subcells. The results provide an important alternative approach to realize high photovoltaic efficiency without the need for expensive epitaxial technology widely used in tandem solar cells, thus stimulating the research and application of high efficiency and low cost solar cells. 展开更多
关键词 diffractive optical element SPLIT CONCENTRATION MULTIJUNCTION
原文传递
A single diffractive optical element implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency 被引量:2
7
作者 叶佳声 王进泽 +3 位作者 黄庆礼 董碧珍 张岩 杨国桢 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期44-49,共6页
In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an opt... In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an optimization algorithm,through which the SSBC DOE can be optimized within an arbitrary thickness range according to the limitations of modern photolithography technology.Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency.It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems. 展开更多
关键词 diffractive optical element spectrum-splitting and beam-concentration functions thickness optimization algorithm solar cell systems
原文传递
Clinical outcomes of a new diffractive multifocal intraocular lens 被引量:1
8
作者 Baha Toygar Ozge Yabas Kiziloglu +1 位作者 Okan Toygar Ali Murat Hacimustafaoglu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2017年第12期1844-1850,共7页
AIM:To evaluate clinical outcomes after implantation of a new diffractive aspheric multifocal intraocular lens(IOL) with +3.00 addition power.METHODS:This is a retrospective,consecutive case series of cataract pa... AIM:To evaluate clinical outcomes after implantation of a new diffractive aspheric multifocal intraocular lens(IOL) with +3.00 addition power.METHODS:This is a retrospective,consecutive case series of cataract patients who underwent bilateral implantation of the Optiflex MO/HF D012(Moss Vision Inc.Ltd,London,UK) multifocal IOL.Patients followed for 6 mo were included in the study.Data on distance,intermediate and near visual acuity,refractive error [manifest spherical equivalent(MSE)],contrast sensitivity,adverse events,subjective symptoms,spectacle independence and patient satisfaction [visual function questionnaire(VFQ)-25 questionnaire] were retrieved from electronic medical records and analyzed.RESULTS:Forty eyes of 20 patients with a mean age of 66.7±8.5 y(range:53-82) were included in the study.Mean uncorrected distance,near and intermediate visual acuity remained stable through postoperative visits and was 0.19±0.19 log MAR,Jaeger 4 and Jaeger 3 respectively at the 6 mo visit.At the end of postoperative 6 mo,MSE was-0.14±0.42 diopters(D) and 98% of the eyes were within 1.00 D of target refraction.Postoperative low contrast(10%) visual acuity remained stable(P=0.54) through follow up visits with a mean of 0.35±0.17 log MAR at the 6 mo visit.There were no reported adverse events.None of the patients reported subjective symptoms of halo or glare.Spectacle independence rate was 90%.Mean VFQ-25 questionnaire score was 93.5±6.12.CONCLUSION:The Optiflex MO/HF-DO12 IOL was safely implanted and successfully restored distance,intermediate and near visual acuity without impairing contrast sensitivity.High levels of spectacle independence were achieved at all distances including intermediate distance. 展开更多
关键词 MULTIFOCAL intraocular lens diffractive aspheric
原文传递
Diffractive Deep Neural Networks at Visible Wavelengths 被引量:25
9
作者 Hang Chen Jianan Feng +4 位作者 Minwei Jiang Yiqun Wang Jie Lin Jiubin Tan Peng Jin 《Engineering》 SCIE EI 2021年第10期1483-1491,共9页
Optical deep learning based on diffractive optical elements offers unique advantages for parallel processing,computational speed,and power efficiency.One landmark method is the diffractive deep neural network(D^(2) NN... Optical deep learning based on diffractive optical elements offers unique advantages for parallel processing,computational speed,and power efficiency.One landmark method is the diffractive deep neural network(D^(2) NN)based on three-dimensional printing technology operated in the terahertz spectral range.Since the terahertz bandwidth involves limited interparticle coupling and material losses,this paper extends D^(2) NN to visible wavelengths.A general theory including a revised formula is proposed to solve any contradictions between wavelength,neuron size,and fabrication limitations.A novel visible light D^(2) NN classifier is used to recognize unchanged targets(handwritten digits ranging from 0 to 9)and targets that have been changed(i.e.,targets that have been covered or altered)at a visible wavelength of 632.8 nm.The obtained experimental classification accuracy(84%)and numerical classification accuracy(91.57%)quantify the match between the theoretical design and fabricated system performance.The presented framework can be used to apply a D^(2) NN to various practical applications and design other new applications. 展开更多
关键词 Optical computation Optical neural networks Deep learning Optical machine learning diffractive deep neural networks
在线阅读 下载PDF
A general phase retrieval algorithm based on a ptychographical iterative engine for coherent diffractive imaging 被引量:1
10
作者 傅健 李鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期243-248,共6页
Coherent diffractive imaging (CDI) is a lensless imaging technique and can achieve a resolution beyond the Rayleigh or Abbe limit. The ptychographical iterative engine (PIE) is a CDI phase retrieval algorithm that... Coherent diffractive imaging (CDI) is a lensless imaging technique and can achieve a resolution beyond the Rayleigh or Abbe limit. The ptychographical iterative engine (PIE) is a CDI phase retrieval algorithm that uses multiple diffraction patterns obtained through the scan of a localized illumination on the specimen, which has been demonstrated successfully at optical and X-ray wavelengths. In this paper, a general PIE algorithm (gPIE) is presented and demonstrated with an He-Ne laser light diffraction dataset. This algorithm not only permits the removal of the accurate model of the illumination function in PIE, but also provides improved convergence speed and retrieval quality. 展开更多
关键词 phase retrieval algorithm coherent diffractive imaging PTYCHOGRAPHY
原文传递
Rainbow halos occur less following implantation of extended range of vision one-piece intraocular lenses vs diffractive bifocal intraocular lenses 被引量:4
11
作者 Jae-hyung Kim Youngsub Eom +5 位作者 Seo Yeon Park Soo Youn Choi Ho Sik Hwang Jun-Heon Kim Jong Suk Song Hyo Myung Kim 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2020年第6期913-919,共7页
AIM:To evaluate clinical outcomes following implantation of an extended range of vision intraocular lens(IOL),the ZXR00,and a diffractive multifocal IOL with+2.75 diopters(D)add power,the ZKB00.METHODS:Totally 30 pati... AIM:To evaluate clinical outcomes following implantation of an extended range of vision intraocular lens(IOL),the ZXR00,and a diffractive multifocal IOL with+2.75 diopters(D)add power,the ZKB00.METHODS:Totally 30 patients who underwent either bilateral implantation of the ZXR00 IOL with intended emmetropia(ZXR00 emmetropia group:20 eyes)and intended micromonovision(ZXR00 monovision group:20 eyes),or bilateral implantation of the ZKB00 IOL with intended emmetropia(ZKB00 group:20 eyes)were included in this study.Visual acuity at 4 m,80,and 40 cm;and the types of halos(misty,fine,and rainbow)were analyzed at one and three months after surgery.RESULTS:There were no significant differences in distance visual acuity among the three groups.The mean uncorrected intermediate visual acuity was better in the ZXR00 emmetropia and monovision groups(0.02 logMAR and 0.02 logMAR,respectively)than in the ZKB00 group(0.14 logMAR).The mean uncorrected near visual acuity was worse in the ZXR00 emmetropia group(0.26 logMAR)than in the ZXR00 monovision and ZKB00 groups(0.12 logMAR and 0.10 logMAR,respectively).There was an increased incidence of rainbow halos in the ZKB00 group vs in either ZXR00 group(P=0.033).CONCLUSION:Implantation of the ZXR00 IOL with intended micromonovision provide superior visual acuity than implantation of the ZXR00 IOL with intended emmetropia.The ZXR00 IOLs tend to show a lower incidence of rainbow halos than did the ZKB00 IOL. 展开更多
关键词 HALOS intraocular lens diffractive bifocal MULTIFOCAL rainbow halos
原文传递
Diffractive multifocal intraocular lens implantation in patients with monofocal intraocular lens in the contralateral eye 被引量:7
12
作者 Jae Yong Kim Yunhan Lee +4 位作者 Hun Jae Won Hyerin Jeong Jin Hyoung Park Myoung Joon Kim Hungwon Tchah 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2020年第5期737-743,共7页
AIM:To evaluate clinical outcomes of unilateral implantation of a diffractive multifocal intraocular lens(IOL)in patients with contralateral monofocal IOL.METHODS:Twenty-two patients who already had implantation of a ... AIM:To evaluate clinical outcomes of unilateral implantation of a diffractive multifocal intraocular lens(IOL)in patients with contralateral monofocal IOL.METHODS:Twenty-two patients who already had implantation of a monofocal IOL in unilateral eye underwent implantation of a diffractive multifocal IOL in contralateral eye were enrolled.After 1,6,and 12 mo,uncorrected and distant corrected distant visual acuity(UCDVA and DCDVA),uncorrected and distant corrected intermediate-visual acuity(UCIVA and DCIVA),uncorrected and distant corrected near visual acuity(UCNVA and DCNVA),and contrast sensitivity were obtained.Halo/glare symptoms,spectacle dependence,and patient satisfaction were also evaluated.RESULTS:The mean age was 67.86±7.25 y and the average interval between two IOL implantations was 645.82±878.44 d.At 1 mo,binocular UCDVA was lower than 0.20 logMAR in 76%of patients(mean 0.12±0.13 logMAR),which increased to 90%by 6 and 12 mo.The binocular UCDVA was significantly better than the monocular results(P<0.05)at 1,6,and 12 mo.Additionally,UCNVA was lower than 0.40 logMAR in 82%of patients,increasing to 90%by 6 and 12 mo.Mean UCNVA in the multifocal IOL implanted eye was statistically significantly better than that in the monofocal IOL implanted eye(P<0.05)at 1,6,and 12 mo.About 5%of patients at 1 and 6 mo,reported"severe glare or halo".Patient satisfaction rates were 95%and 91%at 6 and 12 mo,respectively.CONCLUSION:Unilateral implantation of multifocal IOL in patients with a contralateral,monofocal IOL implantation results in high patient satisfaction rate,with low severe glare or halo rate during follow-up.It can represent a good option for patients who have previously had a monofocal IOL implantation regardless of two year interval duration between two IOL implantations. 展开更多
关键词 diffractive multifocal intraocular lens unilateral implantation near vision cataract surgery
原文传递
Linking Diffractive and Geometrical Optics Surface Scattering at a Fundamental Level 被引量:1
13
作者 Christi Kay Madsen 《Optics and Photonics Journal》 2022年第1期1-17,共17页
Optical surface scattering analyses based on diffractive optics (DO) are typically applied to one surface;however, there is a need for simulating surface scattering losses for devices having many surface interactions ... Optical surface scattering analyses based on diffractive optics (DO) are typically applied to one surface;however, there is a need for simulating surface scattering losses for devices having many surface interactions such as light pipes. Light pipes are often simulated with geometric optics (GO) using ray tracing, where surface scattering is driven by the surface slope distribution. In the DO case, surface scattering analyses depend on the spatial frequency distribution and amplitude as well as wavelength, with the sinusoidal grating as a fundamental basis. A better understanding of the link, or transition, between DO and GO scattering domains would be helpful for efficiently incorporating scattering loss analyses into ray trace simulations. A formula for the root-mean-square (rms) scattered angle width of a sinusoidal reflection grating that depends only on the surface rms slope is derived from the nonparaxial scalar diffraction theory, thereby linking it to GO. The scatter angle’s mean and rms width are evaluated over a range of grating amplitudes and periods using scalar theory and full vector simulations from the COMSOL® wave optic module for a sinusoidal reflection grating. The conditions under which the diffraction-based solution closely approximates the GO solution, as predicted by the rms slope, are identified. Close agreement is shown between the DO and GO solutions for the same surface rms slope scattering loss due to angular filtering near the critical angle of a total internal reflection (TIR) glass-to-air interface. 展开更多
关键词 diffractive Optics Geometrical Optics diffraction Gratings Surface Scattering Light Pipes
在线阅读 下载PDF
Complex-valued universal linear transformations and image encryption using spatially incoherent diffractive networks 被引量:4
14
作者 Xilin Yang Md Sadman Sakib Rahman +2 位作者 Bijie Bai Jingxi Li Aydogan Ozcan 《Advanced Photonics Nexus》 2024年第1期76-85,共10页
As an optical processor,a diffractive deep neural network(D2NN)utilizes engineered diffractive surfaces designed through machine learning to perform all-optical information processing,completing its tasks at the speed... As an optical processor,a diffractive deep neural network(D2NN)utilizes engineered diffractive surfaces designed through machine learning to perform all-optical information processing,completing its tasks at the speed of light propagation through thin optical layers.With sufficient degrees of freedom,D2NNs can perform arbitrary complex-valued linear transformations using spatially coherent light.Similarly,D2NNs can also perform arbitrary linear intensity transformations with spatially incoherent illumination;however,under spatially incoherent light,these transformations are nonnegative,acting on diffraction-limited optical intensity patterns at the input field of view.Here,we expand the use of spatially incoherent D2NNs to complex-valued information processing for executing arbitrary complex-valued linear transformations using spatially incoherent light.Through simulations,we show that as the number of optimized diffractive features increases beyond a threshold dictated by the multiplication of the input and output space-bandwidth products,a spatially incoherent diffractive visual processor can approximate any complex-valued linear transformation and be used for all-optical image encryption using incoherent illumination.The findings are important for the all-optical processing of information under natural light using various forms of diffractive surface-based optical processors. 展开更多
关键词 optical computing optical networks machine learning diffractive optical networks diffractive neural networks image encryption
在线阅读 下载PDF
Multimode diffractive optical neural network 被引量:8
15
作者 Run Sun Tingzhao Fu +3 位作者 Yuyao Huang Wencan Liu Zhenmin Du Hongwei Chen 《Advanced Photonics Nexus》 2024年第2期49-58,共10页
On-chip diffractive optical neural networks(DONNs)bring the advantages of parallel processing and low energy consumption.However,an accurate representation of the optical field’s evolution in the structure cannot be ... On-chip diffractive optical neural networks(DONNs)bring the advantages of parallel processing and low energy consumption.However,an accurate representation of the optical field’s evolution in the structure cannot be provided using the previous diffraction-based analysis method.Moreover,the loss caused by the open boundaries poses challenges to applications.A multimode DONN architecture based on a more precise eigenmode analysis method is proposed.We have constructed a universal library of input,output,and metaline structures utilizing this method,and realized a multimode DONN composed of the structures from the library.On the designed multimode DONNs with only one layer of the metaline,the classification task of an Iris plants dataset is verified with an accuracy of 90%on the blind test dataset,and the performance of the one-bit binary adder task is also validated.Compared to the previous architectures,the multimode DONN exhibits a more compact design and higher energy efficiency. 展开更多
关键词 optical computing mode multiplexing diffraction optical neural network
在线阅读 下载PDF
Design optimization of highly efficient spectrum-splitting and beam-concentrating diffractive optical element for lateral multijunction solar cells
16
作者 王进泽 叶佳声 +4 位作者 黄庆礼 许信 李冬梅 孟庆波 杨国桢 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期319-323,共5页
Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spec- trum of sunlight. An optimum design has been found for the DOE, with a weighted average optical effici... Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spec- trum of sunlight. An optimum design has been found for the DOE, with a weighted average optical efficiency of about 6.8% better than that of the previous design. The optimization of designing high optical efficiency DOEs will pave the way for future designs of high-efficiency, low-cost lateral multijunction solar cells based on such a DOE. 展开更多
关键词 thickness optimization solar cell SPLIT CONCENTRATION diffractive optical element
原文传递
Advanced all-optical classification using orbitalangular-momentum-encoded diffractive networks 被引量:4
17
作者 Kuo Zhang Kun Liao +2 位作者 Haohang Cheng Shuai Feng Xiaoyong Hu 《Advanced Photonics Nexus》 2023年第6期51-64,共14页
As a successful case of combining deep learning with photonics,the research on optical machine learning has recently undergone rapid development.Among various optical classification frameworks,diffractive networks hav... As a successful case of combining deep learning with photonics,the research on optical machine learning has recently undergone rapid development.Among various optical classification frameworks,diffractive networks have been shown to have unique advantages in all-optical reasoning.As an important property of light,the orbital angular momentum(OAM)of light shows orthogonality and mode-infinity,which can enhance the ability of parallel classification in information processing.However,there have been few all-optical diffractive networks under the OAM mode encoding.Here,we report a strategy of OAM-encoded diffractive deep neural network(OAM-encoded D2NN)that encodes the spatial information of objects into the OAM spectrum of the diffracted light to perform all-optical object classification.We demonstrated three different OAM-encoded D2NNs to realize(1)single detector OAM-encoded D2NN for single task classification,(2)single detector OAM-encoded D2NN for multitask classification,and(3)multidetector OAM-encoded D2NN for repeatable multitask classification.We provide a feasible way to improve the performance of all-optical object classification and open up promising research directions for D2NN by proposing OAMencoded D2NN. 展开更多
关键词 diffractive deep neural network deep learning orbital angular momentum multiplexing optical classification
在线阅读 下载PDF
Optical System Design of Telescope Based on Mixed Modulation Diffractive Lens
18
作者 Fei Li Xueying Jin +1 位作者 Mengyu Wang Keyi Wang 《Journal of Applied Mathematics and Physics》 2018年第11期2322-2329,共8页
Using of diffractive optical elements (DOE) in the Schupmann system offer a new way for the construction of ultra-large aperture telescope. The Fresnel Corrector, one of the DOEs, is the key device in the Schupmann sy... Using of diffractive optical elements (DOE) in the Schupmann system offer a new way for the construction of ultra-large aperture telescope. The Fresnel Corrector, one of the DOEs, is the key device in the Schupmann system, which is used to correct the chromatic aberration introduced by the diffractive primary lens called Magnifying Glass. Generally, in a large aperture telescope (>20 m), the Fresnel Corrector is a diffractive lens with a large aperture and a small f-number, which is difficult to process. In this article, an improved device with a small F number but a large rim feature size, called amplitude and phase hybrid modulation Fresnel diffractive optical element (APHMFDOE), is used here as the Fresnel corrector. First, APHMFDOE with appropriate parameters is designed to match the dispersion of the Magnifying Glass so that the system meets the achromatic condition. Second, the optical characteristics of this improved system are simulated and compared with those of the general system based on the conventional Fresnel corrector. Our approach introduces a new dispersion correction device, which not only can eliminate the chromatic aberration caused by Magnifying Glass, but also can reduce the processing difficulty of Fresnel Corrector. 展开更多
关键词 FRESNEL CORRECTOR diffractive TELESCOPE Imaging System
暂未订购
3D Diffractive Focusing THz of In-Plane Surface Plasmon Polarition Waves
19
作者 I. Minin O. Minin 《Journal of Electromagnetic Analysis and Applications》 2010年第2期116-119,共4页
Demonstrated that analog of diffractive and refractive 3D optics in free space can be developed to manipulate surface waves such as surface plasmon polaritons (SPPs). It has been shown that an air-gap control of a flo... Demonstrated that analog of diffractive and refractive 3D optics in free space can be developed to manipulate surface waves such as surface plasmon polaritons (SPPs). It has been shown that an air-gap control of a floating dielectric block can generate the dynamic phase and amplitude modulation of the SPP transmission coefficient. Unlike conventional bulk optics, the nano-scale surface optics for SPP processing contains several unexpected and interesting features in addition to the physical features described. Dynamic plasmonic information processing on the nano-scale using air-gap control may be an effective mechanism for building a dynamic plasmonic information processing system. 展开更多
关键词 diffractive Optical Element Surface PLASMON Polarition WAVES Three DIMENSION
暂未订购
Analysis of the Focusing Characteristics of Double Negative Binary Diffractive Lens
20
作者 Zongxin Wang Lizhi You 《Journal of Electromagnetic Analysis and Applications》 2010年第9期557-562,共6页
For a compact millimeter wave imaging system it is very important to design every component into small size, for the components in a millimeter wave system are usually much larger than those in an optical imaging syst... For a compact millimeter wave imaging system it is very important to design every component into small size, for the components in a millimeter wave system are usually much larger than those in an optical imaging system due to rela-tively long wave lengths. In this paper, we suggest a kind of binary diffractive lens (BDL) designed using double nega-tive materials (DNG) as the objective lens for a millimeter wave imaging system. The DNG-BDL has not only the ad-vantage of low profile but also small f number, which will be benefit for constructing a compact millimeter wave imaging system. Several DNG-BDL are designed and analyzed using the FDTD method. The numerical results of the focal plane field of the DNG-BDL are presented, which show that the DNG-BDL with small f number has relatively better focusing characteristic than that of a double positive BDL with same f number. 展开更多
关键词 MILLIMETER Wave Imaging BINARY diffractive LENS Double NEGATIVE Material
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部