Holographic display stands as a prominent approach for achieving lifelike three-dimensional(3D)reproductions with continuous depth sensation.However,the generation of a computer-generated hologram(CGH)always relies on...Holographic display stands as a prominent approach for achieving lifelike three-dimensional(3D)reproductions with continuous depth sensation.However,the generation of a computer-generated hologram(CGH)always relies on the repetitive computation of diffraction propagation from point-cloud or multiple depthsliced planar images,which inevitably leads to an increase in computational complexity,making real-time CGH generation impractical.Here,we report a new CGH generation algorithm capable of rapidly synthesizing a 3D hologram in only one-step backward propagation calculation in a novel split Lohmann lens-based diffraction model.By introducing an extra predesigned virtual digital phase modulation of multifocal split Lohmann lens in such a diffraction model,the generated CGH appears to reconstruct 3D scenes with accurate accommodation abilities across the display contents.Compared with the conventional layer-based method,the computation speed of the proposed method is independent of the quantized layer numbers,and therefore can achieve real-time computation speed with a very dense of depth sampling.Both simulation and experimental results validate the proposed method.展开更多
Single crystal of Ba2SbGaSs has been synthesized by the high temperature solidstate reaction method. The compound crystallizes in the orthorhombic space group Pnma with a = 12.177(4), b = 8.880(3), c = 8.982(3) ...Single crystal of Ba2SbGaSs has been synthesized by the high temperature solidstate reaction method. The compound crystallizes in the orthorhombic space group Pnma with a = 12.177(4), b = 8.880(3), c = 8.982(3) A, V= 971.4(6) A3, Z = 4, De = 4.284 g/cm3,μ = 14.487 mm-1, F(000) - 1096, the final R = 0.0171 and wR = 0.0384 for all data. The structure comprises an infinite one-dimensional 1∞[SbGaS5]4- anionic chain constructed from the GaS4 tetrahedra and the SbS5 polyhedra via sharing edge alternately. The paralleled 1∞[SbGaS5]4anionic chains engage with each other and form the two-dimensional Sb-Ga-S layer perpendicular to a-axis with the isolated Ba2+ cations arranged between layers. The IR spectrum and the UV-Vis spectrum have been investigated. Also, the first-principles band structure and density of states calculations indicate that the compound belongs to indirect semiconductor with the band gap of 2.1 eV, which is supported by the UV-Vis diffuse reflectance results.展开更多
基金supported by the National Special Fund for the Development of Major Research Equipment and Instrument(Grant No.2020YFF01014503)the ShanghaiMunicipal Science and Technology Major Project(Grant No.22ZR1473100)+1 种基金the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2022232)and the National Key Research and Development Program of China(Grant No.2022YFB2804602).
文摘Holographic display stands as a prominent approach for achieving lifelike three-dimensional(3D)reproductions with continuous depth sensation.However,the generation of a computer-generated hologram(CGH)always relies on the repetitive computation of diffraction propagation from point-cloud or multiple depthsliced planar images,which inevitably leads to an increase in computational complexity,making real-time CGH generation impractical.Here,we report a new CGH generation algorithm capable of rapidly synthesizing a 3D hologram in only one-step backward propagation calculation in a novel split Lohmann lens-based diffraction model.By introducing an extra predesigned virtual digital phase modulation of multifocal split Lohmann lens in such a diffraction model,the generated CGH appears to reconstruct 3D scenes with accurate accommodation abilities across the display contents.Compared with the conventional layer-based method,the computation speed of the proposed method is independent of the quantized layer numbers,and therefore can achieve real-time computation speed with a very dense of depth sampling.Both simulation and experimental results validate the proposed method.
文摘Single crystal of Ba2SbGaSs has been synthesized by the high temperature solidstate reaction method. The compound crystallizes in the orthorhombic space group Pnma with a = 12.177(4), b = 8.880(3), c = 8.982(3) A, V= 971.4(6) A3, Z = 4, De = 4.284 g/cm3,μ = 14.487 mm-1, F(000) - 1096, the final R = 0.0171 and wR = 0.0384 for all data. The structure comprises an infinite one-dimensional 1∞[SbGaS5]4- anionic chain constructed from the GaS4 tetrahedra and the SbS5 polyhedra via sharing edge alternately. The paralleled 1∞[SbGaS5]4anionic chains engage with each other and form the two-dimensional Sb-Ga-S layer perpendicular to a-axis with the isolated Ba2+ cations arranged between layers. The IR spectrum and the UV-Vis spectrum have been investigated. Also, the first-principles band structure and density of states calculations indicate that the compound belongs to indirect semiconductor with the band gap of 2.1 eV, which is supported by the UV-Vis diffuse reflectance results.