期刊文献+
共找到2,394篇文章
< 1 2 120 >
每页显示 20 50 100
Controllable two-dimensional asymmetric diffraction grating via vortex light in a semiconductor double quantum wells system
1
作者 Kunpeng Zhao Duo Zhang +1 位作者 Junbing Guo Jiaqian Li 《Communications in Theoretical Physics》 2025年第8期49-58,共10页
We present a theoretical scheme to realize two-dimensional(2D)asymmetric diffraction grating in a five-level inverted Y-type asymmetric double semiconductor quantum wells(SQWs)structure with resonant tunneling.The SQW... We present a theoretical scheme to realize two-dimensional(2D)asymmetric diffraction grating in a five-level inverted Y-type asymmetric double semiconductor quantum wells(SQWs)structure with resonant tunneling.The SQW structure interacts with a weak probe laser field,a spatially independent 2D standing-wave(SW)field,and a Laguerre–Gaussian(LG)vortex field,respectively.The results indicate that the diffraction patterns are highly sensitive to amplitude modulation and phase modulation.Because of the existence of vortex light,it is possible to realize asymmetric high-order diffraction in the SQW structure,and then a 2D asymmetric grating is established.By adjusting the detunings of the probe field,vortex field,and SW field,as well as the interaction length,diffraction intensity,and direction of the 2D asymmetric electromagnetically induced grating(EIG)can be controlled effectively.In addition,the number of orbital angular momenta(OAM)and beam waist parameter can be used to modulate the diffraction intensity and energy transfer of the probe light in different regions.High-order diffraction intensity is enhanced and high-efficiency 2D asymmetric diffraction grating with different diffraction patterns is obtained in the scheme.Such 2D asymmetric diffraction grating may be beneficial to the research of optical communication and innovative semiconductor quantum devices. 展开更多
关键词 asymmetric diffraction grating standing-wave field laguerre-gaussian vortex field diffraction property semiconductor quantum well
原文传递
Diffraction classification imaging using coordinate attention enhanced DenseNet
2
作者 Tong-Jie Sheng Jing-Tao Zhao +2 位作者 Su-Ping Peng Zong-Nan Chen Jie Yang 《Petroleum Science》 2025年第6期2353-2383,共31页
In oil and gas exploration,small-scale karst cavities and faults are important targets.The former often serve as reservoir space for carbonate reservoirs,while the latter often provide migration pathways for oil and g... In oil and gas exploration,small-scale karst cavities and faults are important targets.The former often serve as reservoir space for carbonate reservoirs,while the latter often provide migration pathways for oil and gas.Due to these differences,the classification and identification of karst cavities and faults are of great significance for reservoir development.Traditional seismic attributes and diffraction imaging techniques can effectively identify discontinuities in seismic images,but these techniques do not distinguish whether these discontinuities are karst cavities,faults,or other structures.It poses a challenge for seismic interpretation to accurately locate and classify karst cavities or faults within the seismic attribute maps and diffraction imaging profiles.In seismic data,the scattering waves are associated with small-scale scatters like karst cavities,while diffracted waves are seismic responses from discontinuous structures such as faults,reflector edges and fractures.In order to achieve classification and identification of small-scale karst cavities and faults in seismic images,we propose a diffraction classification imaging method which classifies diffracted and scattered waves in the azimuth-dip angle image matrix using a modified DenseNet.We introduce a coordinate attention module into DenseNet,enabling more precise extraction of dynamic and azimuthal features of diffracted and scattered waves in the azimuth-dip angle image matrix.Leveraging these extracted features,the modified DenseNet can produce reliable probabilities for diffracted/scattered waves,achieving high-accuracy automatic classification of cavities and faults based on diffraction imaging.The proposed method achieves 96%classification accuracy on the synthetic dataset.The field data experiment demonstrates that the proposed method can accurately classify small-scale faults and scatterers,further enhancing the resolution of diffraction imaging in complex geologic structures,and contributing to the localization of karstic fracture-cavern reservoirs. 展开更多
关键词 diffraction imaging diffraction classification Azimuth-dip angle image matrix Coordinate attention DenseNet
原文传递
Polarization-sensitive nonlinear optical diffraction
3
作者 Jianluo Chen Lihong Hong +2 位作者 Yu Zou Jiacheng Li Zhi-Yuan Li 《Chinese Physics B》 2025年第6期350-355,共6页
When a laser beam is incident on a nonlinear grating with a laterally modulated second-order nonlinear coefficient,nonlinear diffraction of the noncollinear second-harmonic generation(SHG)signal occurs,with Raman–Nat... When a laser beam is incident on a nonlinear grating with a laterally modulated second-order nonlinear coefficient,nonlinear diffraction of the noncollinear second-harmonic generation(SHG)signal occurs,with Raman–Nath nonlinear diffraction(NRND)being a prominent example.As these SHG NRND processes involve coupling between the fundamental-wave pump laser vectorial field and the SHG laser vectorial field through the second-order nonlinearity secondrank tensor of the nonlinear crystal,the nonlinear interaction between light and the nonlinear grating can be manipulated by adjusting the polarization state of the pump laser.In this paper,we derive the relationship between the polarization state of the incident light and the generated nonlinear diffraction signal based on the nonlinear coupled wave equation and experimentally validate the predicted diffraction characteristics.The results show that the optical properties of each order of NRND are highly sensitive to the polarization angle of the incident pump laser beam. 展开更多
关键词 Raman–Nath nonlinear diffraction(NRND) nonlinear diffraction POLARIZATION
原文传递
Tension-compression asymmetry of an AM magnesium alloy unveiled by in-situ synchrotron X-ray diffraction
4
作者 Hao Chen Huicong Chen +6 位作者 Yuanding Huang Weimin Gan Emad Maawad Weidong Xie Guobing Wei Yan Yang Yu Zou 《Journal of Magnesium and Alloys》 2025年第11期5421-5437,共17页
Magnesium(Mg)alloys typically exhibit anisotropic mechanical behaviors due to their hexagonal close-packed(hcp)crystal structures,often leading to tension-compression asymmetries.Understanding of the asymmetrical and ... Magnesium(Mg)alloys typically exhibit anisotropic mechanical behaviors due to their hexagonal close-packed(hcp)crystal structures,often leading to tension-compression asymmetries.Understanding of the asymmetrical and related deformation mechanisms is crucial for their structural applications,particularly in the lightweight transportation industries.Nevertheless,the underlying deformation mechanisms(e.g.,slip versus twinning)at each deformation stage during tension and compression have not been fully understood.In this study,we employed tensile and compressive tests on extruded Al and Mn containing Mg alloy,i.e.,an AM alloy Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca,during the synchrotron X-ray diffraction.Our results show that distinct deformation behaviors and mechanisms in tension and compression are associated with the strong texture in the extruded samples:(i)The tensile deformation is dominated by dislocation slips,with activation of non-basaland<c+a>slip,but deformation twinning is suppressed.(ii)The compressive deformation shows early-stage tensile twinning,followed by dislocation slips.Twinning induces grain reorientation,leading to significant lattice strain evolution aligned with the texture.The pronounced tension-compression asymmetry is attributed to the favorable shear stress direction formed in the twinning system during compression,which facilitates the activation of tensile twins.During tension,the strain hardening rate(SHR)drops significantly after yielding due to limited activated slip systems.In contrast,the samples under compression exhibit significant increases in SHR after yielding.During compression,dislocation multiplication dominates the initial strain hardening,while twinning progressively contributes more significantly than dislocation slip at higher strains.This study improves our understanding of the tension-compression and strain hardening asymmetries in extruded AM Mg alloys. 展开更多
关键词 Mg alloy Plastic deformation DISLOCATION TWINNING Synchrotron X-ray diffraction
在线阅读 下载PDF
Solid solution dependence of the deformation behavior in Mg-xZn(x=0,1,2 wt%)alloys:In-situ neutron diffraction and crystal plasticity modeling
5
作者 Huai Wang Soo Yeol Lee +3 位作者 You Sub Kim Huamiao Wang Wanchuck Woo Ke An 《Journal of Magnesium and Alloys》 2025年第2期823-838,共16页
The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were... The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were investigated using in-situ neutron diffraction and the EVPSC-TDT model.Neutron diffraction was used to quantitatively track grain-level lattice strains and diffraction intensity changes(related to mechanical twinning)in differently oriented grains of each alloy during cyclic tensile/compressive loadings.These measurements were accurately captured by the model.The stress-strain curves of Mg-1 wt%Zn and Mg-2 wt%Zn alloys show as-expected solid solution strengthening from the addition of Zn compared to pure Mg.The macroscopic yielding and hardening behaviors are explained by alternating slip and twinning modes as calculated by the model.The solid solution's influence on individual deformation modes,including basal〈a〉slip,prismatic〈a〉slip,and extension twinning,was then quantitatively assessed in terms of activity,yielding behavior,and hardening response by combining neutron diffraction results with crystal plasticity predictions.The Mg-1 wt%Zn alloy displays distinct yielding and hardening behavior due to solid solution softening of prismatic〈a〉slip.Additionally,the dependence of extension twinning,in terms of the twinning volume fraction,on Zn content exhibits opposite trends under tensile and compressive loadings. 展开更多
关键词 Magnesium alloy Deformation behavior Solid solution Crystal plasticity modeling Neutron diffraction
在线阅读 下载PDF
Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes
6
作者 Yan-Jiang Li Shu-Lei Chou Yao Xiao 《Chinese Chemical Letters》 2025年第2期118-132,共15页
The detrimental phase transformations of sodium layered transition metal oxides(Na_(x)TMO_(2))during desodiation/sodiation seriously suppress their practical applications for sodium ion batteries(SIBs).Undoubtedly,com... The detrimental phase transformations of sodium layered transition metal oxides(Na_(x)TMO_(2))during desodiation/sodiation seriously suppress their practical applications for sodium ion batteries(SIBs).Undoubtedly,comprehensively investigating of the dynamic crystal structure evolutions of Na_(x)TMO_(2)associating with Na ions extraction/intercalation and then deeply understanding of the relationships between electrochemical performances and phase structures drawing support from advanced characterization techniques are indispensable.In-situ high-energy X-ray diffraction(HEXRD),a powerful technology to distinguish the crystal structure of electrode materials,has been widely used to identify the phase evolutions of Na_(x)TMO_(2)and then profoundly revealed the electrochemical reaction processes.In this review,we begin with the descriptions of synchrotron characterization techniques and then present the advantages of synchrotron X-ray diffraction(XRD)over conventional XRD in detail.The optimizations of structural stability and electrochemical properties for P2-,O3-,and P2/O3-type Na_(x)TMO_(2)cathodes through single/dual-site substitution,high-entropy design,phase composition regulation,and surface engineering are summarized.The dynamic crystal structure evolutions of Na_(x)TMO_(2)polytypes during Na ion extraction/intercalation as well as corresponding structural enhancement mechanisms characterizing by means of HEXRD are concluded.The interior relationships between structure/component of Na_(x)TMO_(2)polytypes and their electrochemical properties are discussed.Finally,we look forward the research directions and issues in the route to improve the electrochemical properties of Na_(x)TMO_(2)cathodes for SIBs in the future and the combined utilizations of multiple characterization techniques.This review will provide significant guidelines for rational designs of high-performance Na_(x)TMO_(2)cathodes. 展开更多
关键词 Layered oxides Sodium-ion batteries Phase evolutions In-situ high-energy X-ray diffraction ELECTROCHEMISTRY
原文传递
Sub-Diffraction Limit Quantum Metrology for Nanofabrication
7
作者 Wenyi Ye Yang Li +10 位作者 Lianwei Chen Mingbo Pu Zheting Meng Yuanjian Huang Hengshuo Guo Xiaoyin Li Yinghui Guo Xiong Li Yun Long Emmanuel Stratakis Xiangang Luo 《Engineering》 2025年第6期96-103,共8页
Optical monitoring of object position and alignment with nanoscale precision is critical for ultra-precision measurement applications,such as micro/nano-fabrication,weak force sensing,and micro-scopic imaging.Traditio... Optical monitoring of object position and alignment with nanoscale precision is critical for ultra-precision measurement applications,such as micro/nano-fabrication,weak force sensing,and micro-scopic imaging.Traditional optical nanometry methods often rely on precision nanostructure fabrication,multi-beam interferometry,or complex post-processing algorithms,which can limit their practical use.In this study,we introduced a simplified and robust quantum measurement technique with an achievable resolution of 2.2 pm and an experimental demonstration of 1 nm resolution,distinguishing it from conventional interferometry,which depended on multiple reference beams.We designed a metasurface substrate with a mode-conversion function,in which an incident Gaussian beam is converted into higher-order transverse electromagnetic mode(TEM)modes.A theoretical analysis,including calculations of the Fisher information,demonstrated that the accuracy was maintained for nanoscale displacements.In conclusion,the study findings provide a new approach for precise alignment and metrology of nanofabrication and other advanced applications. 展开更多
关键词 Nanofabrication Precision measurement diffraction limit Quantum metrology
在线阅读 下载PDF
Nonlinear Raman–Nath diffraction of inclined femtosecond laser by periodically poled lithium niobate nonlinear grating
8
作者 Jiacheng Li Lihong Hong +2 位作者 Yu Zou Jianluo Chen Zhi-Yuan Li 《Chinese Physics B》 2025年第5期424-429,共6页
When a pump laser beam strikes the surface of a nonlinear crystal with modulated second-order nonlinearity,various nonlinear diffraction phenomena occur,with nonlinear Raman–Nath diffraction(NRND)being a prominent ex... When a pump laser beam strikes the surface of a nonlinear crystal with modulated second-order nonlinearity,various nonlinear diffraction phenomena occur,with nonlinear Raman–Nath diffraction(NRND)being a prominent example.In this study,we use an 800-nm Ti:sapphire femtosecond laser beam to pump the surface of a periodically poled lithium niobate(PPLN)crystal thin-plate nonlinear grating.By rotating the crystal,we change the incidence angle and observe and measure the exit angle,polarization,and power of NRND spots on the other side of the crystal.The experiment shows that NRND characteristics are highly sensitive to the incidence angle of the pump laser beam,which are consistent with the theoretical prediction.We expect that this research will advance the understanding of nonlinear diffraction and provide valuable insights for nonlinear optical interaction in complicated geometric and physical configurations. 展开更多
关键词 nonlinear diffraction second harmonic quasi-phase matching oblique incidence
原文传递
Depression of pyrrhotite superstructures in copper flotation:A synchrotron X-ray powder diffraction and DFT study
9
作者 Alireza Rezvani Foad Raji +3 位作者 Rong Fan R.Kappes Zhiyong Gao Yongjun Peng 《International Journal of Mining Science and Technology》 2025年第8期1259-1270,共12页
Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and ... Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and quantifying these superstructures hinder the optimization of pyrrhotite depression in flotation processes.To address this critical issue,synchrotron X-ray powder diffraction(S-XRPD)with Rietveld refinement was employed to quantify the distribution of superstructures in the feed and flotation concentrates of a copper–gold ore.To elucidate the mechanisms influencing depression,density functional theory(DFT)calculations were conducted to explore the electronic structures and surface reactivity of the pyrrhotite superstructures toward the adsorption of water,oxygen and hydroxyl ions(OH-)as dominant species present in the flotation process.S-XRPD analysis revealed that flotation recovery rates of pyrrhotite followed the order of 4C<6C<5C.DFT calculations indicated that the Fe 3d and S 3p orbital band centers exhibited a similar trend relative to the Fermi level with 4C being the closest.The Fe3d band center suggested that the 4C structure possessed a more reactive surface toward the oxygen reduction reaction,promoting the formation of hydrophilic Fe-OH sites.The S 3p band center order also implied that xanthate on the non-magnetic 5C and 6C surfaces could oxidize to dixanthogen,increasing hydrophobicity and floatability,while 4C formed less hydrophobic metal-xanthate complexes.Adsorption energy and charge transfer analyses of water,hydroxyl ions and molecular oxygen further supported the high reactivity and hydrophilic nature of 4C pyrrhotite.The strong bonding with hydroxyl ions indicated enhanced surface passivation by hydrophilic Fe–OOH complexes,aligning with the experimentally observed flotation order(4C<6C<5C).These findings provide a compelling correlation between experimental flotation results and electronic structure calculations,delivering crucial insights for optimizing flotation processes and improving pyrrhotite depression.This breakthrough opens up new opportunities to enhance the efficiency of flotation processes in the mining industry. 展开更多
关键词 Pyrrhotite depression Synchrotron X-ray powder diffraction analysis Pyrrhotite superstructures DFT simulation Surface reactivity
在线阅读 下载PDF
Wafer-level perfect conformal contact lithography at the diffraction limit enabled by dry transferable photoresist
10
作者 Yu Zhou Lei Chen +3 位作者 Zhiwen Shu Fu Fan Yueqiang Hu Huigao Duan 《International Journal of Extreme Manufacturing》 2025年第6期426-434,共9页
Lithography is a Key enabling technique in modern micro/nano scale technology.Achieving the optimal trade-off between resolution,throughput,and cost remains a central focus in the ongoing development.However,current l... Lithography is a Key enabling technique in modern micro/nano scale technology.Achieving the optimal trade-off between resolution,throughput,and cost remains a central focus in the ongoing development.However,current lithographic techniques such as direct-write,projection,and extreme ultraviolet lithography achieve higher resolution at the expense of increased complexity in optical systems or the use of shorter-wavelength light sources,thus raising the overall cost of production.Here,we present a cost-effective and wafer-level perfect conformal contact lithography at the diffraction limit.By leveraging a transferable photoresist,the technique ensures optimal contact between the mask and photoresist with zero-gap,facilitating the transfer of patterns at the diffraction limit while maintaining high fidelity and uniformity across large wafers.This technique applies to a wide range of complex surfaces,including non-conductive glass surfaces,flexible substrates,and curved surfaces.The proposed technique expands the potential of contact photolithography for novel device architectures and practic al manufacturing processes. 展开更多
关键词 perfect conformal contact lithography diffraction limit conformal pattern transfer large-aperture metalens
在线阅读 下载PDF
Quasi-in situ electron backscatter diffraction analysis of twinning±detwinning behavior in AZ31 magnesium-alloy rolled plates subjected to compression loading in different directions
11
作者 Le Zhou Guiyuan Ren +5 位作者 Tianqi Huang Zhi Wang Feng Wang Ziqi Wei Pingli Mao Zheng Liu 《Journal of Magnesium and Alloys》 2025年第5期2358-2373,共16页
In this study,the twinning-detwinning behavior and slip behavior of rolled AZ31 magnesium-alloy plates during a three-step intermittent dynamic compression process along the rolling direction(RD)and normal direction(N... In this study,the twinning-detwinning behavior and slip behavior of rolled AZ31 magnesium-alloy plates during a three-step intermittent dynamic compression process along the rolling direction(RD)and normal direction(ND),are investigated via quasi-in situ electron backscatter diffraction,and the causes of the twinning and detwinning behavior are explained according to Schmid law,local strain coordination,and slip trajectories.It is found that the twins are first nucleated and grow at a compressive strain of 3%along the RD.In addition to the Schmid factor(SF),the strain coordination factor(m’)also influences the selection of the twin variants during the twinning process,resulting in the nucleation of twins with a low SF.During the second and third steps of the application of continuous compressive strains with magnitudes and directions of 3%RD+3%ND and 3%RD+3%ND+2.5%ND,detwinning occurs to different extents.The observation of the detwinning behavior reveals that the order in which multiple twins within the same grain undergo complete detwinning is related to Schmid law and the strain concentration,with a low SF and a high strain concentration promoting complete detwinning.The interaction between slip dislocations and twin boundaries in the deformed grains as well as the pinning of dislocations at the tips of the {1012} tensile twins with a special structure result in incomplete detwinning.Understanding the microstructural evolution and twinning behavior of magnesium alloys under different deformation geometries is important for the development of high-strength and high-toughness magnesium alloys. 展开更多
关键词 Quasi-in situ electron backscatter diffraction Twinning and detwinning Schmid law Strain coordination
在线阅读 下载PDF
Single order soft X-ray diffraction with quasi-random radius pinhole array spectroscopic photon sieves
12
作者 张强强 魏来 +5 位作者 杨祖华 钱凤 范全平 张博 谷渝秋 曹磊峰 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期342-346,共5页
A novel single order diffraction grating in the soft X-ray region, called quasi-random radius pinhole array spectro- scopic photon sieves (QRSPS), is proposed in this paper. This new grating is composed of pinholes ... A novel single order diffraction grating in the soft X-ray region, called quasi-random radius pinhole array spectro- scopic photon sieves (QRSPS), is proposed in this paper. This new grating is composed of pinholes on a substrate, whose radii are quasi-random, while their centers are regular. Analysis proves that its transmittance function across the grating bar is similar to that of sinusoidal transmission gratings. Simulation results show that the QRSPS can suppress higher-order diffraction effectively. And the QRSPS would still retain its characteristic of single order diffraction when we take the effect of X-ray penetration into account. These properties indicate that the QRSPS can be used in the soft X-ray spectra measurement. 展开更多
关键词 diffraction properties diffraction gratings soft X-rays single-order diffraction
原文传递
High-Throughput Powder Diffraction Using White X-Ray Beam and a Simulated Energy-Dispersive Array Detector
13
作者 Xiaoping Wang Weiwei Dong +6 位作者 Peng Zhang Haoqi Tang Lanting Zhang Tieying Yang Peng Liu Hong Wang X.-D.Xiang 《Engineering》 SCIE EI 2022年第3期81-88,共8页
High-throughput powder X-ray diffraction(XRD)with white X-ray beam and an energy-dispersive detector array is demonstrated in this work on a CeO;powder sample on a bending magnet synchrotron beamline at the Shanghai S... High-throughput powder X-ray diffraction(XRD)with white X-ray beam and an energy-dispersive detector array is demonstrated in this work on a CeO;powder sample on a bending magnet synchrotron beamline at the Shanghai Synchrotron Radiation Facility(SSRF),using a simulated energy-dispersive array detector consisting of a spatially scanning silicon-drift detector(SDD).Careful analysis and corrections are applied to account for various experimental hardware-related and diffraction angle-related factors.The resulting diffraction patterns show that the relative strength between different diffraction peaks from energy-dispersive XRD(EDXRD)spectra is consistent with that from angle-resolved XRD(ARXRD),which is necessary for analyzing crystal structures for unknown samples.The X-ray fluorescence(XRF)signal is collected simultaneously.XRF counts from all pixels are integrated directly by energy,while the diffraction spectra are integrated by d-spacing,resulting in a much improved peak strength and signal-to-noise(S/N)ratio for the array detector.In comparison with ARXRD,the diffraction signal generated by a white X-ray beam over monochromic light under the experimental conditions is about 104 times higher.The full width at half maximum(FWHM)of the peaks in q-space is found to be dependent on the energy resolution of the detector,the angle span of the detector,and the diffraction angle.It is possible for EDXRD to achieve the same or even smaller FWHM as ARXRD under the energy resolution of the current detector if the experimental parameters are properly chosen. 展开更多
关键词 High-throughput experiment White beam X-ray diffraction Energy-dispersive array detector Energy-dispersive X-ray diffraction Angle-resolved X-ray diffraction
在线阅读 下载PDF
Evaluation on residual stresses of silicon-doped CVD diamond films using X-ray diffraction and Raman spectroscopy 被引量:13
14
作者 陈苏琳 沈彬 +2 位作者 张建国 王亮 孙方宏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期3021-3026,共6页
The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited o... The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa. 展开更多
关键词 silicon-doped diamond films silicon doping residual stress X-ray diffraction Raman spectroscopy
在线阅读 下载PDF
Diffraction separation by plane-wave prediction filtering 被引量:6
15
作者 孔雪 王德营 +2 位作者 李振春 张瑞香 胡秋媛 《Applied Geophysics》 SCIE CSCD 2017年第3期399-405,461,共8页
Seismic data processing typically deals with seismic wave reflections and neglects wave diffraction that affect the resolution. As a general rule, wave diffractions are treated as noise in seismic data processing. How... Seismic data processing typically deals with seismic wave reflections and neglects wave diffraction that affect the resolution. As a general rule, wave diffractions are treated as noise in seismic data processing. However, wave diffractions generally originate from geological structures, such as fractures, karst caves, and faults. The wave diffraction energy is much weaker than that of the reflections. Therefore, even if wave diffractions can be traced back to their origin, their energy is masked by that of the reflections. Separating and imaging diffractions and reflections can improve the imaging accuracy of diffractive targets. Based on the geometrical differences between reflections and diffractions on the plane-wave record; that is, reflections are quasi-linear and diffractions are quasi-hyperbolic, we use plane-wave prediction fltering to separate the wave diffractions. First, we estimate the local slope of the seismic event using plane- wave destruction filtering and, then, we predict and extract the wave reflections based on the local slope. Thus, we obtain the diffracted wavefield by directly subtracting the reflected wavefield from the entire wavefield. Finally, we image the diffracted wavefield and obtain high-resolution diffractive target results. 2D SEG salt model data suggest that the plane-wave prediction filtering eliminates the phase reversal in the plane-wave destruction filtering and maintains the original wavefield phase, improving the accuracy of imaging heterogeneous objects. 展开更多
关键词 Plane wave prediction filter SEPARATION diffraction
在线阅读 下载PDF
Quantitative damage imaging using Lamb wave diffraction tomography 被引量:3
16
作者 张海燕 阮敏 +1 位作者 朱文发 柴晓冬 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第12期25-31,共7页
In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb w... In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated nu- merically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted SO scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor. 展开更多
关键词 Lamb waves diffraction tomography damage identification Fourier diffraction theorem
原文传递
Diffraction separation and imaging based on double sparse transforms 被引量:2
17
作者 Xue Chen Jing-Jie Cao +2 位作者 He-Long Yang Shao-Jian Shi Yong-Shuai Guo 《Petroleum Science》 SCIE CAS CSCD 2022年第2期534-542,共9页
Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fra... Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fractures,etc.Diffraction imaging is an important method to identify small-scale geological bodies and it has higher resolution than reflection imaging.In the common-offset domain,reflections are mostly expressed as smooth linear events,whereas diffractions are characterized by hyperbolic events.This paper proposes a diffraction extraction method based on double sparse transforms.The linear events can be sparsely expressed by the high-resolution linear Radon transform,and the curved events can be sparsely expressed by the Curvelet transform.A sparse inversion model is built and the alternating direction method is used to solve the inversion model.Simulation data and field data experimental results proved that the diffractions extraction method based on double sparse transforms can effectively improve the imaging quality of faults and other small-scale geological bodies. 展开更多
关键词 diffraction separation Common-offset domain diffraction imaging High-resolution linear Radon transform Curvelet transform Sparse inversion
原文传递
Microstructures and micromechanical behaviors of high -entropy alloys investigated by synchrotron X-ray and neutron diffraction techniques: A review 被引量:2
18
作者 Yubo Huang Ning Xu +3 位作者 Huaile Lu Yang Ren Shilei Li Yandong Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1333-1349,共17页
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten... High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed. 展开更多
关键词 high-entropy alloys MICROSTRUCTURES micromechanical behaviors synchrotron X-ray diffraction neutron diffraction
在线阅读 下载PDF
Investigation of Peak Separation for X-ray Diffraction Profiles of Spinodal Decomposition by a Kind of Optimized Voigt Function 被引量:2
19
作者 LiudingWANG JunqiangZHOU +1 位作者 QuanxiCAO ZhaoCHEN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第4期371-373,共3页
The intensity and position of sidebands (satellites) on both sides of main diffraction peak in a great number of X-ray diffraction profiles of alloys always change with progress of aging. The sidebands position is det... The intensity and position of sidebands (satellites) on both sides of main diffraction peak in a great number of X-ray diffraction profiles of alloys always change with progress of aging. The sidebands position is determined by a newly optimized Voigt function in present investigation. Furthermore, for Cu-4 wt pet Ti alloy aged at 400℃ for 720 min and 1080 min, after introducing the weight factor of above two satellites intensity, the relative error between the fitting curves and X-ray diffraction profiles is less than 0.185%, which is more precise than the previously calculating result. 展开更多
关键词 X-ray diffraction diffraction profile Peak separation Voigt function
在线阅读 下载PDF
Crystallographic Characteristic of Intermetallic Compounds in Al-Si-Mg Casting Alloys Using Electron Backscatter Diffraction 被引量:2
20
作者 ZOU Yongzhi XU Zhengbing +1 位作者 HE Juan ZENG Jianmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期305-311,共7页
The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mecha... The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mechanical properties in Al-Si-Mg alloys. But intermetallic compounds in cast Al-Si-Mg alloy intermetallics are often misidentified in previous metallurgical studies. It was described as many different compounds, such as AlFeSi, Al8Fe2Si, Al5(Fe, Mn)3Si2 and so on. For the purpose of solving this problem, the intermetallic compounds in cast Al-Si alloys containing 0.5% Mg were investigated in this study. The iron-rich compounds in Al-Si-Mg casting alloys were characterized by optical microscope(OM), scanning electron microscope(SEM), energy dispersive X-ray spectrometer(EDS), electron backscatter diffraction(EBSD) and X-ray powder diffraction(XRD). The electron backscatter diffraction patterns were used to assess the crystallographic characteristics of intermetallic compounds. The compound which contains Fe/Mg-rich particles with coarse morphologies was Al8FeMg3Si6 in the alloy by using EBSD. The compound belongs to hexagonal system, space group P6_2m, with the lattice parameter a=0.662 nm, c=0.792 nm. The β-phase is indexed as tetragonal Al3FeSi2, space group I4/mcm, a=0.607 nm and c=0.950 nm. The XRD data indicate that Al8FeMg3Si6 and Al3FeSi2 are present in the microstructure of Al-7Si-Mg alloy, which confirms the identification result of EBSD. The present study identified the iron-rich compound in Al-Si-Mg alloy, which provides a reliable method to identify the intermetallic compounds in short time in Al-Si-Mg alloy. Study results are helpful for identification of complex compounds in alloys. 展开更多
关键词 Al-Si-Mg alloys intermetallic compound electron backscatter diffraction(EBSD) X-ray powder diffraction(XRD)
在线阅读 下载PDF
上一页 1 2 120 下一页 到第
使用帮助 返回顶部