Wire-fed laser-arc directed energy deposition(Wire-fed LA-DED)Technol.improves production speed while maintaining high quality and is particularly suited for manufacturing large,complex aluminum or titanium alloy comp...Wire-fed laser-arc directed energy deposition(Wire-fed LA-DED)Technol.improves production speed while maintaining high quality and is particularly suited for manufacturing large,complex aluminum or titanium alloy components.The geometry of the weld bead(height and width)is influenced by multiple intricate parameters and variables during the manufacturing process.Accurately predicting the weld bead shape enables precise control over the surface flatness of the part,helping to prevent defects such as lack of fusion.This significantly reduces dimensional redundancy,enhances printing efficiency,and optimizes material usage.In this study,a quadratic regression prediction model for weld bead geometry was developed using the response surface methodology(RSM),with predictions generated through several machine learning models.These models included the back-propagation neural network(BPNN),support vector regression(SVR),multi-output support vector regression(MOSVR),extreme learning machine(ELM),and a differential evolution-optimized MOSVR(DE-MOSVR)model.Grid search and cross-validation techniques were utilized to identify the optimal parameters for each model to achieve the best predictive performance.A comparison of these models was conducted,followed by an evaluation of their generalization capabilities using an additional 20 sets of test data.The most accurate predictive model was selected based on a comprehensive assessment.The results showed that the DE-MOSVR model outperformed the others,achieving mean squared error,root mean squared error,mean absolute error,and R^(2) values for width(height)predictions of 0.0411(0.0041),0.2028(0.0639),0.1671(0.0550),and 0.9434(0.9433),respectively.It demonstrated the smallest deviation in the validation set,with mean deviations of 1.97% and 1.68%,respectively.The model we developed was validated through the production of prototype parts,providing valuable reference and guidance for predicting and modeling weld bead morphology in the Wire-fed LA-DED process.展开更多
Differential evolution(DE)algorithms are simple and efficient evolutionary algorithms that performwell in various optimization problems.Unfortunately,they inevitably stagnate when differential evolutionary algorithms ...Differential evolution(DE)algorithms are simple and efficient evolutionary algorithms that performwell in various optimization problems.Unfortunately,they inevitably stagnate when differential evolutionary algorithms are used to solve complex problems(e.g.,real-world artificial neural network(ANN)training problems).To resolve this issue,this paper proposes a framework based on an efficient elite centroid operator.It continuously monitors the current state of the population.Once stagnation is detected,two dedicated operators,centroid-based mutation(CM)and centroid-based crossover(CX),are executed to replace the classical mutation and binomial crossover operations in DE.CM and CX are centred on the elite centroid composed of multiple elite individuals,constituting a framework consisting of elitism centroid-based operations(CMX)to improve the performance of the individuals who fall into stagnation.In CM,elite centroid provide evolutionary direction for stagnant individuals,and in CX,elite plasmoids address the limitation that stagnant individuals can only obtain limited information about the population.The CMX framework is simple enough to easily incorporate into both classically well-known DEs with constant population sizes and state-of-the-art DEs with varying populations.Numerical experiments on benchmark functions show that the proposed CMX method can significantly enhance the classical DE algorithm and its advanced variants in solving the stagnation problem and improving performance.展开更多
To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating t...To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating the lithium-ion battery SOH was proposed based on an improved extreme learning machine(ELM).Input weights and hidden layer biases were generated randomly in traditional ELM.To improve the estimation accuracy of ELM,the differential evolution algorithm was used to optimize these parameters in feasible solution spaces.First,incremental capacity curves were obtained by incremental capacity analysis and smoothed by Gaussian filter to extract health interests.Then,the ELM based on differential evolution algorithm(DE-ELM model)was used for a lithium-ion battery SOH estimation.At last,four battery historical aging data sets and one random walk data set were employed to validate the prediction performance of DE-ELM model.Results show that the DE-ELM has a better performance than other studied algorithms in terms of generalization ability.展开更多
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ...The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.展开更多
A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stres...A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.展开更多
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust...Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.展开更多
To address the challenges of high-dimensional constrained optimization problems with expensive simulation models,a Surrogate-Assisted Differential Evolution using Manifold Learning-based Sampling(SADE-MLS)is proposed....To address the challenges of high-dimensional constrained optimization problems with expensive simulation models,a Surrogate-Assisted Differential Evolution using Manifold Learning-based Sampling(SADE-MLS)is proposed.In SADE-MLS,differential evolution operators are executed to generate numerous high-dimensional candidate points.To alleviate the curse of dimensionality,a Manifold Learning-based Sampling(MLS)mechanism is developed to explore the high-dimensional design space effectively.In MLS,the intrinsic dimensionality of the candidate points is determined by a maximum likelihood estimator.Then,the candidate points are mapped into a low-dimensional space using the dimensionality reduction technique,which can avoid significant information loss during dimensionality reduction.Thus,Kriging surrogates are constructed in the low-dimensional space to predict the responses of the mapped candidate points.The candidate points with high constrained expected improvement values are selected for global exploration.Moreover,the local search process assisted by radial basis function and differential evolution is performed to exploit the design space efficiently.Several numerical benchmarks are tested to compare SADE-MLS with other algorithms.Finally,SADE-MLS is successfully applied to a solid rocket motor multidisciplinary optimization problem and a re-entry vehicle aerodynamic optimization problem,with the total impulse and lift to drag ratio being increased by 32.7%and 35.5%,respec-tively.The optimization results demonstrate the practicality and effectiveness of the proposed method in real engineering practices.展开更多
The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) a...The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and thecorrelation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a largenumber of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, thispaper proposes a novel approach for constructing the incremental HFS. During system design, the deep structureand the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated basedon the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition amongthe structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and theparameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of themodel. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,respectively with rule counts of rules is 8 and 12, respectively.When compared to alternative methods, the resultsindicate that the proposed method offers improvements in accuracy and rule counts.展开更多
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide...This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.展开更多
When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on ...When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed.展开更多
Myocarditis is a serious cardiovascular ailment that can lead to severe consequences if not promptly treated.It is triggered by viral infections and presents symptoms such as chest pain and heart dysfunction.Early det...Myocarditis is a serious cardiovascular ailment that can lead to severe consequences if not promptly treated.It is triggered by viral infections and presents symptoms such as chest pain and heart dysfunction.Early detection is crucial for successful treatment,and cardiac magnetic resonance imaging(CMR)is a valuable tool for identifying this condition.However,the detection of myocarditis using CMR images can be challenging due to low contrast,variable noise,and the presence of multiple high CMR slices per patient.To overcome these challenges,the approach proposed incorporates advanced techniques such as convolutional neural networks(CNNs),an improved differential evolution(DE)algorithm for pre-training,and a reinforcement learning(RL)-based model for training.Developing this method presented a significant challenge due to the imbalanced classification of the Z-Alizadeh Sani myocarditis dataset from Omid Hospital in Tehran.To address this,the training process is framed as a sequential decision-making process,where the agent receives higher rewards/penalties for correctly/incorrectly classifying the minority/majority class.Additionally,the authors suggest an enhanced DE algorithm to initiate the backpropagation(BP)process,overcoming the initialisation sensitivity issue of gradient-based methods like back-propagation during the training phase.The effectiveness of the proposed model in diagnosing myocarditis is demonstrated through experimental results based on standard performance metrics.Overall,this method shows promise in expediting the triage of CMR images for automatic screening,facilitating early detection and successful treatment of myocarditis.展开更多
Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various as...Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data.展开更多
The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This pape...The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications.展开更多
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op...This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.展开更多
The effectiveness of industrial character recognition on cast steel is often compromised by factors such as corrosion,surface defects,and low contrast,which hinder the extraction of reliable visual information.The pro...The effectiveness of industrial character recognition on cast steel is often compromised by factors such as corrosion,surface defects,and low contrast,which hinder the extraction of reliable visual information.The problem is further compounded by the scarcity of large-scale annotated datasets and complex noise patterns in real-world factory environments.This makes conventional OCR techniques and standard deep learning models unreliable.To address these limitations,this study proposes a unified framework that integrates adaptive image preprocessing with collaborative reasoning among LLMs.A Biorthogonal 4.4(bior4.4)wavelet transform is adaptively tuned using DE to enhance character edge clarity,suppress background noise,and retain morphological structure,thereby improving input quality for subsequent recognition.A structured three-round debate mechanism is further introduced within a multi-agent architecture,employing GPT-4o and Gemini-2.0-flash as role-specialized agents to perform complementary inference and achieve consensus.The proposed system is evaluated on a proprietary dataset of 48 high-resolution images collected under diverse industrial conditions.Experimental results show that the combination of DE-based enhancement and multi-agent collaboration consistently outperforms traditional baselines and ablated models,achieving an F1-score of 94.93%and an LCS accuracy of 93.30%.These results demonstrate the effectiveness of integrating signal processing with multi-agent LLM reasoning to achieve robust and interpretable OCR in visually complex and data-scarce industrial environments.展开更多
The current trends in forestry in Europe include the increased use of continuous cover forestry(CCF)and the increased availability of tree-level forest inventory data.Accordingly,recent literature suggests methodologi...The current trends in forestry in Europe include the increased use of continuous cover forestry(CCF)and the increased availability of tree-level forest inventory data.Accordingly,recent literature suggests methodologies for optimizing the harvest decisions at the tree level.Using tree-level optimization for all trees of the stand is computationally demanding.This study proposed a two-level optimization method for CCF where the harvest prescriptions are optimized at the tree level for only a part of the trees or the first cuttings.The higher-level algorithm optimizes the cutting years and the harvest rates of those diameter classes for which tree-level optimization is not used.The lower-level algorithm allocates the individually optimized trees to different cutting events.The most detailed problem formulations,employing much tree-level optimization,resulted in the highest net present value and longest optimization time.However,restricting tree-level optimization to the largest trees and first cuttings did not significantly alter the time,intensity,or type of first cutting.Computing times could also be shortened by applying accumulated knowledge from previous optimizations,implementing learning aspects in heuristic search,and optimizing the search algorithms for short computing time and good-quality solutions.展开更多
In response to the increasing global energy demand and environmental pollution,microgrids have emerged as an innovative solution by integrating distributed energy resources(DERs),energy storage systems,and loads to im...In response to the increasing global energy demand and environmental pollution,microgrids have emerged as an innovative solution by integrating distributed energy resources(DERs),energy storage systems,and loads to improve energy efficiency and reliability.This study proposes a novel hybrid optimization algorithm,DE-HHO,combining differential evolution(DE)and Harris Hawks optimization(HHO)to address microgrid scheduling issues.The proposed method adopts a multi-objective optimization framework that simultaneously minimizes operational costs and environmental impacts.The DE-HHO algorithm demonstrates significant advantages in convergence speed and global search capability through the analysis of wind,solar,micro-gas turbine,and battery models.Comprehensive simulation tests show that DE-HHO converges rapidly within 10 iterations and achieves a 4.5%reduction in total cost compared to PSO and a 5.4%reduction compared to HHO.Specifically,DE-HHO attains an optimal total cost of$20,221.37,outperforming PSO($21,184.45)and HHO($21,372.24).The maximum cost obtained by DE-HHO is$23,420.55,with a mean of$21,615.77,indicating stability and cost control capabilities.These results highlight the effectiveness of DE-HHO in reducing operational costs and enhancing system stability for efficient and sustainable microgrid operation.展开更多
To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a...To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a two-stage scaling factor variation strategy.In the initial phase,it adapts according to environmental complexity.In the following phase,it combines individual and global experiences to fine-tune the orientation factor,effectively improving its global search capability.Furthermore,this study developed a new population update method,ensuring that well-adapted individuals are retained,which enhances population diversity.In benchmark function tests across different dimensions,the proposed algorithm consistently demonstrates superior convergence accuracy and speed.This study also tested the TPADE algorithm in path planning simulations.The experimental results reveal that the TPADE algorithm outperforms existing algorithms by achieving path lengths of 28.527138 and 31.963990 in simple and complex map environments,respectively.These findings indicate that the proposed algorithm is more adaptive and efficient in path planning.展开更多
The Duanfengshan deposit is a newly discovered large pegmatitic-type Nb-Ta deposit in the central section of the Jiangnan orogenic belt,South China.There are three types of pegmatite in the Duanfengshan area:microclin...The Duanfengshan deposit is a newly discovered large pegmatitic-type Nb-Ta deposit in the central section of the Jiangnan orogenic belt,South China.There are three types of pegmatite in the Duanfengshan area:microcline pegmatite,microcline-albite pegmatite and albite pegmatite.Although several geological,geochronological and geochemical studies of this deposit have been carried out,the relationships between the evolution degree of different types of pegmatites and mineralization are still unclear.We address this problem through systematic petrographic and geochemical studies of muscovite and feldspars from two representative pegmatite veins,the No.328 microcline-albite pegmatite vein,and the No.610 albite pegmatite vein.The results of electron probe microanalysis(EPMA)and laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)analyses of muscovite and K-feldspar reveal that K/Rb ratios decrease with increasing Rb,Cs,Ga,Nb and Ta contents alongside decreasing Ba and Sr contents,suggesting that magmatic differentiation played a dominant role in rare metal mineralization.A comparison of the analytical results of this study with those from rare metal pegmatites globally suggests that the No.610 vein has a high mineralization potential,whereas the No.328 vein has relatively low mineralization potential.The results from this study may be applied to the evaluation of mineralization potential for other pegmatite veins in the Duanfengshan area and other rare metal pegmatite fields with similar geological settings.展开更多
The Cambrian platform margin in the Tarim Basin boasts favorable source-reservoir-cap assemblages,making it a significant target for hydrocarbon exploration in ultra-to extra-deep facies-controlled for-mations.Of the ...The Cambrian platform margin in the Tarim Basin boasts favorable source-reservoir-cap assemblages,making it a significant target for hydrocarbon exploration in ultra-to extra-deep facies-controlled for-mations.Of the three major basins in western China,Tarim is the only basin with large-scale platform margin where no exploration breakthrough has been achieved yet.This study determines the vertical and lateral differential evolution of the platform margin(in the Manxi area hereafter referred to as the Cambrian Manxi platform margin)through fine-scale sequence stratigraphic division and a segmented analysis.The platform margin can be divided into the Yuqi,Tahe,Shunbei,and Gucheng segments,from north to south,based on the development of different ancient landforms and the evolutionary process of the platform.The Yuqi and Shunbei segments exhibit relatively low-elevation ancient landforms.Both segments were in a submarine buildup stage during the Early Cambrian,resulting in overall limited scales of their reservoirs.The Gucheng segment features the highest-elevation ancient landforms and accordingly limited accommodation spaces.As a result,the rapid lateral migration of high-energy facies zones leads to the development of large-scale reservoirs with only limited thicknesses.In contrast,the Tahe segment,exhibiting comparatively high-elevation ancient landforms,is identified as the most favorable segment for the formation of large-scale reservoirs.The cap rocks of the platform margin are dominated by back-reef dolomitic flats and tight carbonate rocks formed in transgressive periods.A comprehensive evaluation of source rocks,reservoirs,and cap rocks indicates that the Tahe segment boasts the optimal hydrocarbon accumulation conditions along the platform margin.In this segment,the Shayilike Formation transgressive deposits and the high-energy mound-shoal complexes along the platform margin of the Wusonggeer Formation constitute the optimal reservoir-cap rock assemblage,establishing this segment as the most promising target for hydrocarbon exploration in the platform margin.展开更多
基金supported by Natural Science Foundation of Shandong Province(Grant No.ZR202212010161)Natural Science Foundation of Qingdao(Grant No.23-2-1-83-zyyd-jch)+1 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515110116)the National Natural Science Foundation of China(Grant No.52405359).
文摘Wire-fed laser-arc directed energy deposition(Wire-fed LA-DED)Technol.improves production speed while maintaining high quality and is particularly suited for manufacturing large,complex aluminum or titanium alloy components.The geometry of the weld bead(height and width)is influenced by multiple intricate parameters and variables during the manufacturing process.Accurately predicting the weld bead shape enables precise control over the surface flatness of the part,helping to prevent defects such as lack of fusion.This significantly reduces dimensional redundancy,enhances printing efficiency,and optimizes material usage.In this study,a quadratic regression prediction model for weld bead geometry was developed using the response surface methodology(RSM),with predictions generated through several machine learning models.These models included the back-propagation neural network(BPNN),support vector regression(SVR),multi-output support vector regression(MOSVR),extreme learning machine(ELM),and a differential evolution-optimized MOSVR(DE-MOSVR)model.Grid search and cross-validation techniques were utilized to identify the optimal parameters for each model to achieve the best predictive performance.A comparison of these models was conducted,followed by an evaluation of their generalization capabilities using an additional 20 sets of test data.The most accurate predictive model was selected based on a comprehensive assessment.The results showed that the DE-MOSVR model outperformed the others,achieving mean squared error,root mean squared error,mean absolute error,and R^(2) values for width(height)predictions of 0.0411(0.0041),0.2028(0.0639),0.1671(0.0550),and 0.9434(0.9433),respectively.It demonstrated the smallest deviation in the validation set,with mean deviations of 1.97% and 1.68%,respectively.The model we developed was validated through the production of prototype parts,providing valuable reference and guidance for predicting and modeling weld bead morphology in the Wire-fed LA-DED process.
基金funded by National Special Project Number for International Cooperation under Grant 2015DFR11050the Applied Science and Technology Research and Development Special Fund Project of Guangdong Province under Grant 2016B010126004.
文摘Differential evolution(DE)algorithms are simple and efficient evolutionary algorithms that performwell in various optimization problems.Unfortunately,they inevitably stagnate when differential evolutionary algorithms are used to solve complex problems(e.g.,real-world artificial neural network(ANN)training problems).To resolve this issue,this paper proposes a framework based on an efficient elite centroid operator.It continuously monitors the current state of the population.Once stagnation is detected,two dedicated operators,centroid-based mutation(CM)and centroid-based crossover(CX),are executed to replace the classical mutation and binomial crossover operations in DE.CM and CX are centred on the elite centroid composed of multiple elite individuals,constituting a framework consisting of elitism centroid-based operations(CMX)to improve the performance of the individuals who fall into stagnation.In CM,elite centroid provide evolutionary direction for stagnant individuals,and in CX,elite plasmoids address the limitation that stagnant individuals can only obtain limited information about the population.The CMX framework is simple enough to easily incorporate into both classically well-known DEs with constant population sizes and state-of-the-art DEs with varying populations.Numerical experiments on benchmark functions show that the proposed CMX method can significantly enhance the classical DE algorithm and its advanced variants in solving the stagnation problem and improving performance.
文摘To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating the lithium-ion battery SOH was proposed based on an improved extreme learning machine(ELM).Input weights and hidden layer biases were generated randomly in traditional ELM.To improve the estimation accuracy of ELM,the differential evolution algorithm was used to optimize these parameters in feasible solution spaces.First,incremental capacity curves were obtained by incremental capacity analysis and smoothed by Gaussian filter to extract health interests.Then,the ELM based on differential evolution algorithm(DE-ELM model)was used for a lithium-ion battery SOH estimation.At last,four battery historical aging data sets and one random walk data set were employed to validate the prediction performance of DE-ELM model.Results show that the DE-ELM has a better performance than other studied algorithms in terms of generalization ability.
基金in part supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB1141,2023BAB094)the Key Project of Science and Technology Research ProgramofHubei Educational Committee(No.D20211402)+1 种基金the Teaching Research Project of Hubei University of Technology(No.XIAO2018001)the Project of Xiangyang Industrial Research Institute of Hubei University of Technology(No.XYYJ2022C04).
文摘The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.
基金the Project Support of NSFC(No.U19B6003-05 and No.52074314)。
文摘A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.
基金supported in part by the National Key Research and Development Program of China(2021YFC2902703)the National Natural Science Foundation of China(62173078,61773105,61533007,61873049,61873053,61703085,61374147)。
文摘Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.
基金co-supported by the National Natural Science Foundation of China(Nos.52272360,52232014,52005288,52201327)Beijing Natural Science Foundation,China(No.3222019)+1 种基金Beijing Institute of Technology Research Fund Program for Young Scholars,China(No.XSQD-202101006)BIT Research and Innovation Promoting Project(No.2022YCXZ017).
文摘To address the challenges of high-dimensional constrained optimization problems with expensive simulation models,a Surrogate-Assisted Differential Evolution using Manifold Learning-based Sampling(SADE-MLS)is proposed.In SADE-MLS,differential evolution operators are executed to generate numerous high-dimensional candidate points.To alleviate the curse of dimensionality,a Manifold Learning-based Sampling(MLS)mechanism is developed to explore the high-dimensional design space effectively.In MLS,the intrinsic dimensionality of the candidate points is determined by a maximum likelihood estimator.Then,the candidate points are mapped into a low-dimensional space using the dimensionality reduction technique,which can avoid significant information loss during dimensionality reduction.Thus,Kriging surrogates are constructed in the low-dimensional space to predict the responses of the mapped candidate points.The candidate points with high constrained expected improvement values are selected for global exploration.Moreover,the local search process assisted by radial basis function and differential evolution is performed to exploit the design space efficiently.Several numerical benchmarks are tested to compare SADE-MLS with other algorithms.Finally,SADE-MLS is successfully applied to a solid rocket motor multidisciplinary optimization problem and a re-entry vehicle aerodynamic optimization problem,with the total impulse and lift to drag ratio being increased by 32.7%and 35.5%,respec-tively.The optimization results demonstrate the practicality and effectiveness of the proposed method in real engineering practices.
基金the Sichuan Science and Technology Program(2021ZYD0016).
文摘The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and thecorrelation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a largenumber of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, thispaper proposes a novel approach for constructing the incremental HFS. During system design, the deep structureand the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated basedon the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition amongthe structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and theparameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of themodel. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,respectively with rule counts of rules is 8 and 12, respectively.When compared to alternative methods, the resultsindicate that the proposed method offers improvements in accuracy and rule counts.
基金supported by the National Natural Science Foundation of China(61973105,62373137)。
文摘This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.
文摘When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed.
文摘Myocarditis is a serious cardiovascular ailment that can lead to severe consequences if not promptly treated.It is triggered by viral infections and presents symptoms such as chest pain and heart dysfunction.Early detection is crucial for successful treatment,and cardiac magnetic resonance imaging(CMR)is a valuable tool for identifying this condition.However,the detection of myocarditis using CMR images can be challenging due to low contrast,variable noise,and the presence of multiple high CMR slices per patient.To overcome these challenges,the approach proposed incorporates advanced techniques such as convolutional neural networks(CNNs),an improved differential evolution(DE)algorithm for pre-training,and a reinforcement learning(RL)-based model for training.Developing this method presented a significant challenge due to the imbalanced classification of the Z-Alizadeh Sani myocarditis dataset from Omid Hospital in Tehran.To address this,the training process is framed as a sequential decision-making process,where the agent receives higher rewards/penalties for correctly/incorrectly classifying the minority/majority class.Additionally,the authors suggest an enhanced DE algorithm to initiate the backpropagation(BP)process,overcoming the initialisation sensitivity issue of gradient-based methods like back-propagation during the training phase.The effectiveness of the proposed model in diagnosing myocarditis is demonstrated through experimental results based on standard performance metrics.Overall,this method shows promise in expediting the triage of CMR images for automatic screening,facilitating early detection and successful treatment of myocarditis.
基金supported by National Natural Science Foundation of China(32122066,32201855)STI2030—Major Projects(2023ZD04076).
文摘Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data.
文摘The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications.
基金supported by the Serbian Ministry of Education and Science under Grant No.TR35006 and COST Action:CA23155—A Pan-European Network of Ocean Tribology(OTC)The research of B.Rosic and M.Rosic was supported by the Serbian Ministry of Education and Science under Grant TR35029.
文摘This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.
文摘The effectiveness of industrial character recognition on cast steel is often compromised by factors such as corrosion,surface defects,and low contrast,which hinder the extraction of reliable visual information.The problem is further compounded by the scarcity of large-scale annotated datasets and complex noise patterns in real-world factory environments.This makes conventional OCR techniques and standard deep learning models unreliable.To address these limitations,this study proposes a unified framework that integrates adaptive image preprocessing with collaborative reasoning among LLMs.A Biorthogonal 4.4(bior4.4)wavelet transform is adaptively tuned using DE to enhance character edge clarity,suppress background noise,and retain morphological structure,thereby improving input quality for subsequent recognition.A structured three-round debate mechanism is further introduced within a multi-agent architecture,employing GPT-4o and Gemini-2.0-flash as role-specialized agents to perform complementary inference and achieve consensus.The proposed system is evaluated on a proprietary dataset of 48 high-resolution images collected under diverse industrial conditions.Experimental results show that the combination of DE-based enhancement and multi-agent collaboration consistently outperforms traditional baselines and ablated models,achieving an F1-score of 94.93%and an LCS accuracy of 93.30%.These results demonstrate the effectiveness of integrating signal processing with multi-agent LLM reasoning to achieve robust and interpretable OCR in visually complex and data-scarce industrial environments.
基金supported by the KESTO project (Planning and implementation of the harvesting of climate-resilient continuous cover forests (CCF) using digitalization in North Karelia),Grant Number 41007-00241901funded by the European Regional Development Fund (ERDF)funding provided by University of Eastern Finland (including Kuopio University Hospital)
文摘The current trends in forestry in Europe include the increased use of continuous cover forestry(CCF)and the increased availability of tree-level forest inventory data.Accordingly,recent literature suggests methodologies for optimizing the harvest decisions at the tree level.Using tree-level optimization for all trees of the stand is computationally demanding.This study proposed a two-level optimization method for CCF where the harvest prescriptions are optimized at the tree level for only a part of the trees or the first cuttings.The higher-level algorithm optimizes the cutting years and the harvest rates of those diameter classes for which tree-level optimization is not used.The lower-level algorithm allocates the individually optimized trees to different cutting events.The most detailed problem formulations,employing much tree-level optimization,resulted in the highest net present value and longest optimization time.However,restricting tree-level optimization to the largest trees and first cuttings did not significantly alter the time,intensity,or type of first cutting.Computing times could also be shortened by applying accumulated knowledge from previous optimizations,implementing learning aspects in heuristic search,and optimizing the search algorithms for short computing time and good-quality solutions.
文摘In response to the increasing global energy demand and environmental pollution,microgrids have emerged as an innovative solution by integrating distributed energy resources(DERs),energy storage systems,and loads to improve energy efficiency and reliability.This study proposes a novel hybrid optimization algorithm,DE-HHO,combining differential evolution(DE)and Harris Hawks optimization(HHO)to address microgrid scheduling issues.The proposed method adopts a multi-objective optimization framework that simultaneously minimizes operational costs and environmental impacts.The DE-HHO algorithm demonstrates significant advantages in convergence speed and global search capability through the analysis of wind,solar,micro-gas turbine,and battery models.Comprehensive simulation tests show that DE-HHO converges rapidly within 10 iterations and achieves a 4.5%reduction in total cost compared to PSO and a 5.4%reduction compared to HHO.Specifically,DE-HHO attains an optimal total cost of$20,221.37,outperforming PSO($21,184.45)and HHO($21,372.24).The maximum cost obtained by DE-HHO is$23,420.55,with a mean of$21,615.77,indicating stability and cost control capabilities.These results highlight the effectiveness of DE-HHO in reducing operational costs and enhancing system stability for efficient and sustainable microgrid operation.
基金The National Natural Science Foundation of China(No.62272239,62303214)Jiangsu Agricultural Science and Tech-nology Independent Innovation Fund(No.SJ222051).
文摘To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a two-stage scaling factor variation strategy.In the initial phase,it adapts according to environmental complexity.In the following phase,it combines individual and global experiences to fine-tune the orientation factor,effectively improving its global search capability.Furthermore,this study developed a new population update method,ensuring that well-adapted individuals are retained,which enhances population diversity.In benchmark function tests across different dimensions,the proposed algorithm consistently demonstrates superior convergence accuracy and speed.This study also tested the TPADE algorithm in path planning simulations.The experimental results reveal that the TPADE algorithm outperforms existing algorithms by achieving path lengths of 28.527138 and 31.963990 in simple and complex map environments,respectively.These findings indicate that the proposed algorithm is more adaptive and efficient in path planning.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42102110,U2444204,42472111 and U2344220).
文摘The Duanfengshan deposit is a newly discovered large pegmatitic-type Nb-Ta deposit in the central section of the Jiangnan orogenic belt,South China.There are three types of pegmatite in the Duanfengshan area:microcline pegmatite,microcline-albite pegmatite and albite pegmatite.Although several geological,geochronological and geochemical studies of this deposit have been carried out,the relationships between the evolution degree of different types of pegmatites and mineralization are still unclear.We address this problem through systematic petrographic and geochemical studies of muscovite and feldspars from two representative pegmatite veins,the No.328 microcline-albite pegmatite vein,and the No.610 albite pegmatite vein.The results of electron probe microanalysis(EPMA)and laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)analyses of muscovite and K-feldspar reveal that K/Rb ratios decrease with increasing Rb,Cs,Ga,Nb and Ta contents alongside decreasing Ba and Sr contents,suggesting that magmatic differentiation played a dominant role in rare metal mineralization.A comparison of the analytical results of this study with those from rare metal pegmatites globally suggests that the No.610 vein has a high mineralization potential,whereas the No.328 vein has relatively low mineralization potential.The results from this study may be applied to the evaluation of mineralization potential for other pegmatite veins in the Duanfengshan area and other rare metal pegmatite fields with similar geological settings.
基金funded by SINOPEC Science and Technology Research Program (project Nos:P24226, P24077)Northwest Oil Field Company,SINOPEC.
文摘The Cambrian platform margin in the Tarim Basin boasts favorable source-reservoir-cap assemblages,making it a significant target for hydrocarbon exploration in ultra-to extra-deep facies-controlled for-mations.Of the three major basins in western China,Tarim is the only basin with large-scale platform margin where no exploration breakthrough has been achieved yet.This study determines the vertical and lateral differential evolution of the platform margin(in the Manxi area hereafter referred to as the Cambrian Manxi platform margin)through fine-scale sequence stratigraphic division and a segmented analysis.The platform margin can be divided into the Yuqi,Tahe,Shunbei,and Gucheng segments,from north to south,based on the development of different ancient landforms and the evolutionary process of the platform.The Yuqi and Shunbei segments exhibit relatively low-elevation ancient landforms.Both segments were in a submarine buildup stage during the Early Cambrian,resulting in overall limited scales of their reservoirs.The Gucheng segment features the highest-elevation ancient landforms and accordingly limited accommodation spaces.As a result,the rapid lateral migration of high-energy facies zones leads to the development of large-scale reservoirs with only limited thicknesses.In contrast,the Tahe segment,exhibiting comparatively high-elevation ancient landforms,is identified as the most favorable segment for the formation of large-scale reservoirs.The cap rocks of the platform margin are dominated by back-reef dolomitic flats and tight carbonate rocks formed in transgressive periods.A comprehensive evaluation of source rocks,reservoirs,and cap rocks indicates that the Tahe segment boasts the optimal hydrocarbon accumulation conditions along the platform margin.In this segment,the Shayilike Formation transgressive deposits and the high-energy mound-shoal complexes along the platform margin of the Wusonggeer Formation constitute the optimal reservoir-cap rock assemblage,establishing this segment as the most promising target for hydrocarbon exploration in the platform margin.