An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account...An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models,general solutions cal-culating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening prop-erties. If classical elastic theory is adopted and strain-softening properties are neglected,rather large errors may be the result.展开更多
The determination of discontinuity shear strength is an important concern in rock engineering.Previous research mainly focused on the shear behavior of discontinuities with identical joint wall compressive strengths(D...The determination of discontinuity shear strength is an important concern in rock engineering.Previous research mainly focused on the shear behavior of discontinuities with identical joint wall compressive strengths(DIJCS).However,the shear behavior of discontinuities with different joint wall compressive strengths(DDJCS)and 3D surface morphology had been rarely reported.In this study,matched mortar DDJCSs were prepared using 3D printed photosensitive resin molds.Direct shear tests were carried out under three kinds of normal stress(ranging from 0.5 to 3.0 MPa)to analyze the shear strength and contact zones of DDJCS during shearing.The results show that the contact zones of DDJCS during shearing are scattered in the steep zones facing the shear direction.It is verified that Grasselli and Develi’s directional surface roughness characterization method can be used to predict the shear-induced potential contact zones of DDJCS.When the critical apparent dip angle is equal to the peak dilation angle,the predicted contact area agrees well with the actual contact area.A 3D directional roughness parameter with clear physical meaning was introduced to characterize discontinuity surface roughness.A 3D modified joint roughness coefficient-joint wall compressive strength(JRC-JCS)criterion that can both predict the shear strength of DDJCS and DIJCS was proposed based on the newly defined roughness parameter.The proposed criterion was validated by 77 direct shear tests presented by this study and 163 direct shear tests presented by other investigators.The results show that the proposed criterion was generally reliable for the peak shear strength prediction of DDJCS and DIJCS(within 16%).It is also found that the new criterion can capture the anisotropy of the peak shear strength of DDJCS.The anisotropy of DDJCS decreases with increasing normal stress.It should be noted that the anisotropy of the shear strength of DDJCS was not investigated experimentally,and further experiments should be conducted to verify it.展开更多
For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is dif...For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.展开更多
基金Project supported by the National Postdoctoral Science Foundation of China (No.20060400317)the Education Foundation of Zhejiang Province (No.20061459)the Young Foundation of Zhejiang Province (No.0202303005),China
文摘An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models,general solutions cal-culating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening prop-erties. If classical elastic theory is adopted and strain-softening properties are neglected,rather large errors may be the result.
基金Project(GZB202405561)supported by the China Postdoctoral Fellowship ProgramProject(42377154)supported by the National Natural Science Foundation of China。
文摘The determination of discontinuity shear strength is an important concern in rock engineering.Previous research mainly focused on the shear behavior of discontinuities with identical joint wall compressive strengths(DIJCS).However,the shear behavior of discontinuities with different joint wall compressive strengths(DDJCS)and 3D surface morphology had been rarely reported.In this study,matched mortar DDJCSs were prepared using 3D printed photosensitive resin molds.Direct shear tests were carried out under three kinds of normal stress(ranging from 0.5 to 3.0 MPa)to analyze the shear strength and contact zones of DDJCS during shearing.The results show that the contact zones of DDJCS during shearing are scattered in the steep zones facing the shear direction.It is verified that Grasselli and Develi’s directional surface roughness characterization method can be used to predict the shear-induced potential contact zones of DDJCS.When the critical apparent dip angle is equal to the peak dilation angle,the predicted contact area agrees well with the actual contact area.A 3D directional roughness parameter with clear physical meaning was introduced to characterize discontinuity surface roughness.A 3D modified joint roughness coefficient-joint wall compressive strength(JRC-JCS)criterion that can both predict the shear strength of DDJCS and DIJCS was proposed based on the newly defined roughness parameter.The proposed criterion was validated by 77 direct shear tests presented by this study and 163 direct shear tests presented by other investigators.The results show that the proposed criterion was generally reliable for the peak shear strength prediction of DDJCS and DIJCS(within 16%).It is also found that the new criterion can capture the anisotropy of the peak shear strength of DDJCS.The anisotropy of DDJCS decreases with increasing normal stress.It should be noted that the anisotropy of the shear strength of DDJCS was not investigated experimentally,and further experiments should be conducted to verify it.
文摘For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.