期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Cuckoo Search Detector Generation-based Negative Selection Algorithm
1
作者 Ayodele Lasisi Ali M.Aseere 《Computer Systems Science & Engineering》 SCIE EI 2021年第8期183-195,共13页
The negative selection algorithm(NSA)is an adaptive technique inspired by how the biological immune system discriminates the self from nonself.It asserts itself as one of the most important algorithms of the artificia... The negative selection algorithm(NSA)is an adaptive technique inspired by how the biological immune system discriminates the self from nonself.It asserts itself as one of the most important algorithms of the artificial immune system.A key element of the NSA is its great dependency on the random detectors in monitoring for any abnormalities.However,these detectors have limited performance.Redundant detectors are generated,leading to difficulties for detectors to effectively occupy the non-self space.To alleviate this problem,we propose the nature-inspired metaheuristic cuckoo search(CS),a stochastic global search algorithm,which improves the random generation of detectors in the NSA.Inbuilt characteristics such as mutation,crossover,and selection operators make the CS attain global convergence.With the use of Lévy flight and a distance measure,efficient detectors are produced.Experimental results show that integrating CS into the negative selection algorithm elevated the detection performance of the NSA,with an average increase of 3.52%detection rate on the tested datasets.The proposed method shows superiority over other models,and detection rates of 98%and 99.29%on Fisher’s IRIS and Breast Cancer datasets,respectively.Thus,the generation of highest detection rates and lowest false alarm rates can be achieved. 展开更多
关键词 Negative selection algorithm detector generation cuckoo search OPTIMIZATION
在线阅读 下载PDF
LP-CRI:Label Propagation Immune Generation Algorithm Based on Clustering and Rebound Mechanism
2
作者 Hao Huang Kongyu Yang 《Computers, Materials & Continua》 2025年第6期5373-5391,共19页
Many existing immune detection algorithms rely on a large volume of labeled self-training samples,which are often difficult to obtain in practical scenarios,thus limiting the training of detection models.Furthermore,n... Many existing immune detection algorithms rely on a large volume of labeled self-training samples,which are often difficult to obtain in practical scenarios,thus limiting the training of detection models.Furthermore,noise inherent in the samples can substantially degrade the detection accuracy of these algorithms.To overcome these challenges,we propose an immune generation algorithm that leverages clustering and a rebound mechanism for label propagation(LP-CRI).The dataset is randomly partitioned into multiple subsets,each of which undergoes clustering followed by label propagation and evaluation.The rebound mechanism assesses the model’s performance after propagation and determines whether to revert to its previous state,initiating a subsequent round of propagation to ensure stable and effective training.Experimental results demonstrate that the proposed method is both computationally efficient and easy to train,significantly enhancing detector performance and outperforming traditional immune detection algorithms. 展开更多
关键词 Artificial immunity label propagation detector generation unsupervised clustering
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部