Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is propose...Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is proposed based on the improved fully convolutional one-stage object detection(FCOS)algorithm.The regression performance of bounding boxes was optimized by introducing the complete intersection over union loss function into the improved algorithm.The feature fusion network structure is modified by adding adaptive fusion paths to the feature fusion network structure,which makes full use of the features of accurate localization and semantics of multi-scale feature fusion networks.Finally,the network structure was trained and validated by using the X-ray image dataset of damages in conveyor belts with steel rope cores provided by a flaw detection equipment manufacturer.In addition,the data enhancement methods such as rotating,mirroring,and scaling,were employed to enrich the image dataset so that the model is adequately trained.Experimental results showed that the improved FCOS algorithm promoted the precision rate and the recall rate by 20.9%and 14.8%respectively,compared with the original algorithm.Meanwhile,compared with Fast R-CNN,Faster R-CNN,SSD,and YOLOv3,the improved FCOS algorithm has obvious advantages;detection precision rate and recall rate of the modified network reached 95.8%and 97.0%respectively.Furthermore,it demonstrated a higher detection accuracy without affecting the speed.The results of this work have some reference significance for the automatic identification and detection of steel core conveyor belt damage.展开更多
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki...Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.展开更多
High-precision methane gas detection is of great importance in industrial safety, energy production and environmental protection, etc. However, in the existing measurement techniques, the methane gas concentration inf...High-precision methane gas detection is of great importance in industrial safety, energy production and environmental protection, etc. However, in the existing measurement techniques, the methane gas concentration information is susceptible to noise, which leads to its useful signal being drowned by noise. A fusion algorithm of variational modal decomposition(VMD) and improved wavelet threshold filtering is proposed, which is used in combination with tunable diode laser absorption spectroscopy(TDLAS) to implement a non-contact, high-resolution methane gas concentration detection. The fusion algorithm can perform noise reduction and further segmentation of the methane gas detection signal. And the simulation and experiment verify the effectiveness of the fusion algorithm, and the experimental results show that for the detection of air containing 10 ppm, 30 ppm, 60 ppm, 80 ppm, and 99 ppm methane, the errors are 12.75%, 8.18%, 3.37%, 2.46%, and 1.78%, respectively.展开更多
Peridynamics(PD)is an effective method for simulating the spontaneous initiation and propagation of tensile cracks in materials.However,it faces great challenges in simulating compression-shear cracking of geomaterial...Peridynamics(PD)is an effective method for simulating the spontaneous initiation and propagation of tensile cracks in materials.However,it faces great challenges in simulating compression-shear cracking of geomaterials due to the lack of efficient contact-friction models.This paper introduces an original contact-friction model that leverages twin mesh and potential function principles within PD to model rock cracking under tensile and compressive stresses.The contact detection algorithm,based on space segmentation axis-aligned bounding box(AABB)tree data structure,is used to address the significant challenge of highly efficient contact detection in compression and shear problems.In this method,the twin mesh and potential function are utilized to quantify contact detection and contact degree,as well as friction behavior.This is in contrast to the distance and circular contact area model,which lacks physical significance in the classical PD method.As demonstrated by the tests on specimens containing cracks,the proposed model can capture 8 types of secondary fractures,reduce the contact detection error by about 29%e56%,and increase the contact retrieval efficiency by over 1600 times compared to the classic PD models.This significantly enhances the capability of PD to simulate the initiation,expansion,and coalescence of intricate compression-shear cracks.展开更多
Planetary surfaces,shaped by billions of years of geologic evolution,display numerous impact craters whose distribution of size,density,and spatial arrangement reveals the celestial body's history.Identifying thes...Planetary surfaces,shaped by billions of years of geologic evolution,display numerous impact craters whose distribution of size,density,and spatial arrangement reveals the celestial body's history.Identifying these craters is essential for planetary science and is currently mainly achieved with deep learning-driven detection algorithms.However,because impact crater characteristics are substantially affected by the geologic environment,surface materials,and atmospheric conditions,the performance of deep learning models can be inconsistent between celestial bodies.In this paper,we first examine how the surface characteristics of the Moon,Mars,and Earth,along with the differences in their impact crater features,affect model performance.Then,we compare crater detection across celestial bodies by analyzing enhanced convolutional neural networks and U-shaped Convolutional Neural Network-based models to highlight how geology,data,and model design affect accuracy and generalization.Finally,we address current deep learning challenges,suggest directions for model improvement,such as multimodal data fusion and cross-planet learning and list available impact crater databases.This review can provide necessary technical support for deep space exploration and planetary science,as well as new ideas and directions for future research on automatic detection of impact craters on celestial body surfaces and on planetary geology.展开更多
As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canist...As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canister,have grown increasingly complex.However,deficiencies still exist in the current launch modeling theory for BMLRS.In this study,a multi-rigid-flexible-body launch dynamics model coupling the launch platform and rocket was established using the multibody system transfer matrix method and the Newton-Euler formulation.Furthermore,considering the bending of the launch canister,a detection algorithm for slider-guide plane clearance contact was proposed.To quantify the contact force and friction effect between the slider and guide,the contact force model and modified Coulomb model were introduced.Both the modal and launch tests were conducted.Additionally,the modal convergence was verified.By comparing the modal experiments and simulation results,the maximum relative error of the eigenfrequency is 3.29%.thereby verifying the accuracy of the developed BMLRS dynamics model.Furthermore,the launch test validated the proposed plane clearance contact model.Moreover,the study investigated the influence of various model parameters on the dynamic characteristics of BMLRS,including launch canister bending stiffness,slider and guide material,slider-guide clearance,slider length and layout.This analysis of influencing factors provides a foundation for future optimization in BMLRS design.展开更多
Forest carbon sinks are crucial for mitigating urban climate change.Their effectiveness depends on the balance between gross carbon losses and gains.However,quantitative and continuous monitoring of forest change/dist...Forest carbon sinks are crucial for mitigating urban climate change.Their effectiveness depends on the balance between gross carbon losses and gains.However,quantitative and continuous monitoring of forest change/disturbance carbon fluxes is still insufficient.To address this gap,we integrated an improved spatial carbon bookkeeping(SBK)model with the continuous change detection and classification(CCDC)algorithm,long-term Landsat observations,and ground measurements to track carbon emissions,uptakes,and net changes from forest cover changes in the Yangtze River Delta(YRD)of China from 2000 to 2020.The SBK model was refined by incorporating heterogeneous carbon response functions.Our results reveal that carbon emissions(-3.88 Tg C·year^(-1))were four times greater than carbon uptakes(0.93 Tg C·year^(-1))from forest cover changes in the YRD during 2000-2020,despite a net forest cover gain of 10.95×10^(4) ha.These findings indicate that the carbon effect per hectare of forest cover loss is approximately 4.5 times that of forest cover gain.The asymmetric carbon effect suggests that forest cover change may act as a carbon source even with net-zero or net-positive forest cover change.Furthermore,carbon uptakes from forest gains in the YRD during 2000-2020 could only offset 0.28% of energy-related carbon emissions from 2000 to 2019.Urban and agricultural expansions accounted for 37% and 10% of carbon emissions,respectively,while the Grain for Green Project contributed to 45% of carbon uptakes.Our findings underscore the necessity of understanding the asymmetric carbon effects of forest cover loss and gain to accurately assess the capacity of forest carbon sinks.展开更多
: This paper proposes a new sequential similarity detection algorithm (SSDA), which can overcome matching error caused by grayscale distortion; meanwhile, time consumption is much less than that of regular algorith...: This paper proposes a new sequential similarity detection algorithm (SSDA), which can overcome matching error caused by grayscale distortion; meanwhile, time consumption is much less than that of regular algorithms based on image feature. The algorithm adopts Sobel operator to deal with subgraph and template image, and regards the region which has maximum relevance as final result. In order to solve time-consuming problem existing in original algorithm, a coarse-to-fine matching method is put forward. Besides, the location correlation keeps updating and remains the minimum value in the whole scanning process, which can significantly decrease time consumption. Experiments show that the algorithm proposed in this article can not only overcome gray distortion, but also ensure accuracy. Time consumption is at least one time orders of magnitude shorter than that of primal algorithm.展开更多
A ceramic ball is a basic part widely used in precision bearings.There is no perfect testing equipment for ceramic ball surface defects at present.A fast visual detection algorithm for ceramic ball surface defects bas...A ceramic ball is a basic part widely used in precision bearings.There is no perfect testing equipment for ceramic ball surface defects at present.A fast visual detection algorithm for ceramic ball surface defects based on fringe reflection is designed.By means of image preprocessing,grayscale value accumulative differential positioning,edge detection,pixel-value row difference and template matching,the algorithm can locate feature points and judge whether the spherical surface has defects by the number of points.Taking black silicon nitride ceramic balls with a diameter of 6.35 mm as an example,the defect detection time for a single gray scale image is 0.78 s,and the detection limit is 16.5μm.展开更多
With the help of surgical navigation system,doctors can operate on patients more intuitively and accurately.The positioning accuracy and real-time performance of surgical instruments are very important to the whole sy...With the help of surgical navigation system,doctors can operate on patients more intuitively and accurately.The positioning accuracy and real-time performance of surgical instruments are very important to the whole system.In this paper,we analyze and design the detection algorithm of surgical instrument location mark,and estimate the posture of surgical instrument.In addition,we optimized the pose by remapping.Finally,the algorithm of location mark detection proposed in this paper and the posture analysis data of surgical instruments are verified and analyzed through experiments.The final result shows a high accuracy.展开更多
In the current 4th generation(4G)communication network,the base station with the same frequency transmission makes a serious interference among adjacent cells,and information transmission is susceptible to interferenc...In the current 4th generation(4G)communication network,the base station with the same frequency transmission makes a serious interference among adjacent cells,and information transmission is susceptible to interference such as channel multipath fading and occlusion effect.Detecting effectively spectrum signal under low signal-to-noise ratio(SNR),directly affects the whole performance of the wireless communication network system.This paper designs an energy signal detection algorithm based on stochastic resonance technology which transforms noise's signal energy into useful signal energy,and improves output SNR.The energy signal detection algorithm realizes the function of providing effective detection of signal under low SNR,and promotes the performance of the whole communication system.展开更多
In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate r...In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate results and diverges by time. This study introduces an adaptive SRCKF algorithm with the filter gain correction for the case of measurement malfunctions. By proposing a switching criterion, an optimal filter is selected from the adaptive and conventional SRCKF according to the measurement quality. A subsystem soft fault detection algorithm is built with the filter residual. Utilizing a clear subsystem fault coefficient, the faulty subsystem is isolated as a result of the system reconstruction. In order to improve the performance of the multi-sensor system, a hybrid fusion algorithm is presented based on the adaptive SRCKF. The state and error covariance matrix are also predicted by the priori fusion estimates, and are updated by the predicted and estimated information of subsystems. The proposed algorithms were applied to the vessel dynamic positioning system simulation. They were compared with normal SRCKF and local estimation weighted fusion algorithm. The simulation results show that the presented adaptive SRCKF improves the robustness of subsystem filtering, and the hybrid fusion algorithm has the better performance. The simulation verifies the effectiveness of the proposed algorithms.展开更多
In traffic-monitoring systems,numerous vision-based approaches have been used to detect vehicle parameters.However,few of these approaches have been used in waterway transport because of the complexity created by fact...In traffic-monitoring systems,numerous vision-based approaches have been used to detect vehicle parameters.However,few of these approaches have been used in waterway transport because of the complexity created by factors such as rippling water and lack of calibration object.In this paper,we present an approach to detecting the parameters of a moving ship in an inland river.This approach involves interactive calibration without a calibration reference.We detect a moving ship using an optimized visual foreground detection algorithm that eliminates false detection in dynamic water scenarios,and we detect ship length,width,speed,and flow.We trialed our parameter-detection technique in the Beijing-Hangzhou Grand Canal and found that detection accuracy was greater than 90%for all parameters.展开更多
The thermal front in the oceanic system is believed to have a significant effect on biological activity.During an era of climate change,changes in heat regulation between the atmosphere and oceanic interior can alter ...The thermal front in the oceanic system is believed to have a significant effect on biological activity.During an era of climate change,changes in heat regulation between the atmosphere and oceanic interior can alter the characteristics of this important feature.Using the simulation results of the 3D Regional Ocean Modelling System(ROMS),we identified the location of thermal fronts and determined their dynamic variability in the area between the southern Andaman Sea and northern Malacca Strait.The Single Image Edge Detection(SIED)algorithm was used to detect the thermal front from model-derived temperature.Results show that a thermal front occurred every year from 2002 to 2012 with the temperature gradient at the location of the front was 0.3°C/km.Compared to the years affected by El Ni?o and negative Indian Ocean Dipole(IOD),the normal years(e.g.,May 2003)show the presence of the thermal front at every selected depth(10,25,50,and 75 m),whereas El Ni?o and negative IOD during 2010 show the presence of the thermal front only at depth of 75 m due to greater warming,leading to the thermocline deepening and enhanced stratification.During May 2003,the thermal front was separated by cooler SST in the southern Andaman Sea and warmer SST in the northern Malacca Strait.The higher SST in the northern Malacca Strait was believed due to the besieged Malacca Strait,which trapped the heat and make it difficult to release while higher chlorophyll a in Malacca Strait is due to the freshwater conduit from nearby rivers(Klang,Langat,Perak,and Selangor).Furthermore,compared to the southern Andaman Sea,the chlorophyll a in the northern Malacca Strait is easier to reach the surface area due to the shallower thermocline,which allows nutrients in the area to reach the surface faster.展开更多
Baggage screening is crucial for airport security. This paper examines various algorithms for firearm detection in X-ray images of baggage. The focus is on identifying steel barrel bores, which are essential for deton...Baggage screening is crucial for airport security. This paper examines various algorithms for firearm detection in X-ray images of baggage. The focus is on identifying steel barrel bores, which are essential for detonation. For this, the study uses a set of 22,000 X-ray scanned images. After preprocessing with filtering techniques to improve image quality, deep learning methods, such as Convolutional Neural Networks (CNNs), are applied for classification. The results are also compared with Autoencoder and Random Forest algorithms. The results are validated on a second dataset, highlighting the advantages of the adopted approach. Baggage screening is a very important part of the risk assessment and security screening process at airports. Automating the detection of dangerous objects from passenger baggage X-ray scanners can speed up and increase the efficiency of the entire security procedure.展开更多
On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both ...On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both theoretical interpreting and computer simulation, explains how to measure the wavefront slope difference between two sub apertures through the determination of image displacements on detector plane. It includes a fast and accurate digital algorithm for detecting wavefront disturbance, which is much suitable for realization in such electrical hardwares as digital signal processors.展开更多
6 hours scanning of view field was conducted by Grapes-3DVar detection system.The process is based on cloud detection,combining Grapes-3DVar system with AIRS instrument characteristics to eliminate field of view conta...6 hours scanning of view field was conducted by Grapes-3DVar detection system.The process is based on cloud detection,combining Grapes-3DVar system with AIRS instrument characteristics to eliminate field of view contaminated by cloud,which lays a solid foundation for application of AIRS data in 3-dimensional variational assimilation system.展开更多
Impacted craters are commonly found on the surface of planets, satellites, asteroids and other solar system bodies. In order to speed up the rate of constructing the database of craters, it is important to develop cra...Impacted craters are commonly found on the surface of planets, satellites, asteroids and other solar system bodies. In order to speed up the rate of constructing the database of craters, it is important to develop crater detection algorithms. This paper presents a novel approach to automatically detect craters on planetary surfaces. The approach contains two parts: crater candidate region selection and crater detection. In the first part, crater candidate region selection is achieved by Kanade-Lucas-Tomasi (KLT) detector. Matrix-pattern-oriented least squares support vector machine (MatLSSVM), as the matrixization version of least square support vector machine (SVM), inherits the advantages of least squares support vector machine (LSSVM), reduces storage space greatly and reserves spatial redundancies within each image matrix compared with general LSSVM. The second part of the approach employs MatLSSVM to design classifier for crater detection. Experimental results on the dataset which comprises 160 preprocessed image patches from Google Mars demonstrate that the accuracy rate of crater detection can be up to 88%. In addition, the outstanding feature of the approach introduced in this paper is that it takes resized crater candidate region as input pattern directly to finish crater detection. The results of the last experiment demonstrate that MatLSSVM-based classifier can detect crater regions effectively on the basis of KLT-based crater candidate region selection.展开更多
A new climatology of cyclones in the Southern Ocean is generated by applying an automated cyclone detection and tracking algorithm (developed by Hodges at the Reading University) for an improved and relatively high-...A new climatology of cyclones in the Southern Ocean is generated by applying an automated cyclone detection and tracking algorithm (developed by Hodges at the Reading University) for an improved and relatively high- resolution European Centre for Medium-Range Weather Forecasts atmospheric reanalysis during 1979-2013. A validation shows that identified cyclone tracks are in good agreement with a available analyzed cyclone product. The climatological characteristics of the Southern Ocean cyclones are then analyzed, including track, number, density, intensity, deepening rate and explosive events. An analysis shows that the number of cyclones in the Southern Ocean has increased for 1979-2013, but only statistically significant in summer. Coincident with the circumpolar trough, a single high-density band of cyclones is observed in 55^-67~S, and cyclone density has generally increased in north of this band for 1979-2013, except summer. The intensity of up to 70% cyclones in the Southern Ocean is less than 980 hPa, and only a few cyclones with pressure less than 920 hPa are detected for 1979-2013. Further analysis shows that a high frequency of explosive cyclones is located in the band of 45^-55~S, and the Atlantic Ocean sector has much higher frequent occurrence of the explosive cyclones than that in the Pacific Ocean sector. Additionally, the relationship between cyclone activities in the Southern Ocean and the Southern Annular Mode is discussed.展开更多
Azimuth ambiguities (ghost targets) discrimination is of great interest with the development of a synthet- ic aperture radar (SAR). And the azimuth ambiguities are often mistaken as actual targets and cause false ...Azimuth ambiguities (ghost targets) discrimination is of great interest with the development of a synthet- ic aperture radar (SAR). And the azimuth ambiguities are often mistaken as actual targets and cause false alarms. For actual targets, HV channel signals acquired by a fully polarimetric SAR are approximately equal to a VH channel in magnitude and phase, i.e., the reciprocity theorem applies, but shifted in phase about ±π for the first-order azimuth ambiguities. Exploiting this physical behavior, the real part of the product of the two cross-polarized channels, i.e. (SHVSVH), hereafter called A12r, is employed as a new parameter for a target detection at sea. Compared with other parameters, the contrast of A12r image between a target and the surrounding sea surface will be obviously increased when A12r image is processed by mean filtering algo- rithm. Here, in order to detect target with constant false-alarm rates (CFARs), an analytical expression for the probability density function (pdf) ofA12r is derived based on the complexWishart-distribution. Because a value of A12r is greater/less than 0 for real target/its azimuth ambiguities, the first-order azimuth ambiguities can be completely removed by this A12r-based CFAR technology. Experiments accomplished over C-band RADARSAT-2 fully polarimetric imageries confirm the validity.展开更多
文摘Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is proposed based on the improved fully convolutional one-stage object detection(FCOS)algorithm.The regression performance of bounding boxes was optimized by introducing the complete intersection over union loss function into the improved algorithm.The feature fusion network structure is modified by adding adaptive fusion paths to the feature fusion network structure,which makes full use of the features of accurate localization and semantics of multi-scale feature fusion networks.Finally,the network structure was trained and validated by using the X-ray image dataset of damages in conveyor belts with steel rope cores provided by a flaw detection equipment manufacturer.In addition,the data enhancement methods such as rotating,mirroring,and scaling,were employed to enrich the image dataset so that the model is adequately trained.Experimental results showed that the improved FCOS algorithm promoted the precision rate and the recall rate by 20.9%and 14.8%respectively,compared with the original algorithm.Meanwhile,compared with Fast R-CNN,Faster R-CNN,SSD,and YOLOv3,the improved FCOS algorithm has obvious advantages;detection precision rate and recall rate of the modified network reached 95.8%and 97.0%respectively.Furthermore,it demonstrated a higher detection accuracy without affecting the speed.The results of this work have some reference significance for the automatic identification and detection of steel core conveyor belt damage.
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)National Natural Science Foundation of China(Nos.61771123 and 62171116)+1 种基金Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2022044)。
文摘Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.
基金supported by the Project Grant from Heilongjiang Bayi Agricultural Reclamation University,Heilongjiang,China (No.XDB201813)。
文摘High-precision methane gas detection is of great importance in industrial safety, energy production and environmental protection, etc. However, in the existing measurement techniques, the methane gas concentration information is susceptible to noise, which leads to its useful signal being drowned by noise. A fusion algorithm of variational modal decomposition(VMD) and improved wavelet threshold filtering is proposed, which is used in combination with tunable diode laser absorption spectroscopy(TDLAS) to implement a non-contact, high-resolution methane gas concentration detection. The fusion algorithm can perform noise reduction and further segmentation of the methane gas detection signal. And the simulation and experiment verify the effectiveness of the fusion algorithm, and the experimental results show that for the detection of air containing 10 ppm, 30 ppm, 60 ppm, 80 ppm, and 99 ppm methane, the errors are 12.75%, 8.18%, 3.37%, 2.46%, and 1.78%, respectively.
基金supported by the National Natural Science Foundation of China(Grant No.52278333)the China Scholarship Council(CSC)and the Science and Technology Department of Liaoning Province(Grant No.2024JH2/102500069).
文摘Peridynamics(PD)is an effective method for simulating the spontaneous initiation and propagation of tensile cracks in materials.However,it faces great challenges in simulating compression-shear cracking of geomaterials due to the lack of efficient contact-friction models.This paper introduces an original contact-friction model that leverages twin mesh and potential function principles within PD to model rock cracking under tensile and compressive stresses.The contact detection algorithm,based on space segmentation axis-aligned bounding box(AABB)tree data structure,is used to address the significant challenge of highly efficient contact detection in compression and shear problems.In this method,the twin mesh and potential function are utilized to quantify contact detection and contact degree,as well as friction behavior.This is in contrast to the distance and circular contact area model,which lacks physical significance in the classical PD method.As demonstrated by the tests on specimens containing cracks,the proposed model can capture 8 types of secondary fractures,reduce the contact detection error by about 29%e56%,and increase the contact retrieval efficiency by over 1600 times compared to the classic PD models.This significantly enhances the capability of PD to simulate the initiation,expansion,and coalescence of intricate compression-shear cracks.
基金funded by the National Natural Science Foundation of China(12363009 and 12103020)Natural Science Foundation of Jiangxi Province(20224BAB211011)+1 种基金Youth Talent Project of Science and Technology Plan of Ganzhou(2022CXRC9191 and 2023CYZ26970)Jiangxi Province Graduate Innovation Special Funds Project(YC2024-S529 and YC2023-S672).
文摘Planetary surfaces,shaped by billions of years of geologic evolution,display numerous impact craters whose distribution of size,density,and spatial arrangement reveals the celestial body's history.Identifying these craters is essential for planetary science and is currently mainly achieved with deep learning-driven detection algorithms.However,because impact crater characteristics are substantially affected by the geologic environment,surface materials,and atmospheric conditions,the performance of deep learning models can be inconsistent between celestial bodies.In this paper,we first examine how the surface characteristics of the Moon,Mars,and Earth,along with the differences in their impact crater features,affect model performance.Then,we compare crater detection across celestial bodies by analyzing enhanced convolutional neural networks and U-shaped Convolutional Neural Network-based models to highlight how geology,data,and model design affect accuracy and generalization.Finally,we address current deep learning challenges,suggest directions for model improvement,such as multimodal data fusion and cross-planet learning and list available impact crater databases.This review can provide necessary technical support for deep space exploration and planetary science,as well as new ideas and directions for future research on automatic detection of impact craters on celestial body surfaces and on planetary geology.
基金supported by National Natural Science Foundation of China(Grant No.92266201).
文摘As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canister,have grown increasingly complex.However,deficiencies still exist in the current launch modeling theory for BMLRS.In this study,a multi-rigid-flexible-body launch dynamics model coupling the launch platform and rocket was established using the multibody system transfer matrix method and the Newton-Euler formulation.Furthermore,considering the bending of the launch canister,a detection algorithm for slider-guide plane clearance contact was proposed.To quantify the contact force and friction effect between the slider and guide,the contact force model and modified Coulomb model were introduced.Both the modal and launch tests were conducted.Additionally,the modal convergence was verified.By comparing the modal experiments and simulation results,the maximum relative error of the eigenfrequency is 3.29%.thereby verifying the accuracy of the developed BMLRS dynamics model.Furthermore,the launch test validated the proposed plane clearance contact model.Moreover,the study investigated the influence of various model parameters on the dynamic characteristics of BMLRS,including launch canister bending stiffness,slider and guide material,slider-guide clearance,slider length and layout.This analysis of influencing factors provides a foundation for future optimization in BMLRS design.
基金supported by the Natural Science Foundation of Zhejiang Province(No.ZCLQN25C0301)the National Key Research and Development Program of China(No.2016YFC0502700)the General Program of Education Department of Zhejiang(No.23056209-F).
文摘Forest carbon sinks are crucial for mitigating urban climate change.Their effectiveness depends on the balance between gross carbon losses and gains.However,quantitative and continuous monitoring of forest change/disturbance carbon fluxes is still insufficient.To address this gap,we integrated an improved spatial carbon bookkeeping(SBK)model with the continuous change detection and classification(CCDC)algorithm,long-term Landsat observations,and ground measurements to track carbon emissions,uptakes,and net changes from forest cover changes in the Yangtze River Delta(YRD)of China from 2000 to 2020.The SBK model was refined by incorporating heterogeneous carbon response functions.Our results reveal that carbon emissions(-3.88 Tg C·year^(-1))were four times greater than carbon uptakes(0.93 Tg C·year^(-1))from forest cover changes in the YRD during 2000-2020,despite a net forest cover gain of 10.95×10^(4) ha.These findings indicate that the carbon effect per hectare of forest cover loss is approximately 4.5 times that of forest cover gain.The asymmetric carbon effect suggests that forest cover change may act as a carbon source even with net-zero or net-positive forest cover change.Furthermore,carbon uptakes from forest gains in the YRD during 2000-2020 could only offset 0.28% of energy-related carbon emissions from 2000 to 2019.Urban and agricultural expansions accounted for 37% and 10% of carbon emissions,respectively,while the Grain for Green Project contributed to 45% of carbon uptakes.Our findings underscore the necessity of understanding the asymmetric carbon effects of forest cover loss and gain to accurately assess the capacity of forest carbon sinks.
基金the National Natural Science Foundation of China(No.61165008)
文摘: This paper proposes a new sequential similarity detection algorithm (SSDA), which can overcome matching error caused by grayscale distortion; meanwhile, time consumption is much less than that of regular algorithms based on image feature. The algorithm adopts Sobel operator to deal with subgraph and template image, and regards the region which has maximum relevance as final result. In order to solve time-consuming problem existing in original algorithm, a coarse-to-fine matching method is put forward. Besides, the location correlation keeps updating and remains the minimum value in the whole scanning process, which can significantly decrease time consumption. Experiments show that the algorithm proposed in this article can not only overcome gray distortion, but also ensure accuracy. Time consumption is at least one time orders of magnitude shorter than that of primal algorithm.
基金National Science and Technology Major Project of China(No.2016ZX04003001)。
文摘A ceramic ball is a basic part widely used in precision bearings.There is no perfect testing equipment for ceramic ball surface defects at present.A fast visual detection algorithm for ceramic ball surface defects based on fringe reflection is designed.By means of image preprocessing,grayscale value accumulative differential positioning,edge detection,pixel-value row difference and template matching,the algorithm can locate feature points and judge whether the spherical surface has defects by the number of points.Taking black silicon nitride ceramic balls with a diameter of 6.35 mm as an example,the defect detection time for a single gray scale image is 0.78 s,and the detection limit is 16.5μm.
基金supported by the Sichuan Science and Technology Program(2021YFQ0003).
文摘With the help of surgical navigation system,doctors can operate on patients more intuitively and accurately.The positioning accuracy and real-time performance of surgical instruments are very important to the whole system.In this paper,we analyze and design the detection algorithm of surgical instrument location mark,and estimate the posture of surgical instrument.In addition,we optimized the pose by remapping.Finally,the algorithm of location mark detection proposed in this paper and the posture analysis data of surgical instruments are verified and analyzed through experiments.The final result shows a high accuracy.
基金the Natural Science Foundation of Heilongjiang Province(No.F2015019)the Postdoctoral Foundation of Heilongjiang Province(No.LBHZ16054)the Undergraduate Basic Scientific Research Service Fee Project of Heilongjiang Province(No.Hkdqg201806)
文摘In the current 4th generation(4G)communication network,the base station with the same frequency transmission makes a serious interference among adjacent cells,and information transmission is susceptible to interference such as channel multipath fading and occlusion effect.Detecting effectively spectrum signal under low signal-to-noise ratio(SNR),directly affects the whole performance of the wireless communication network system.This paper designs an energy signal detection algorithm based on stochastic resonance technology which transforms noise's signal energy into useful signal energy,and improves output SNR.The energy signal detection algorithm realizes the function of providing effective detection of signal under low SNR,and promotes the performance of the whole communication system.
基金Supported by the National Natural Science Foundation of China (50979017, NSFC60775060) the National High Technology Ship Research Project of China (GJCB09001)
文摘In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate results and diverges by time. This study introduces an adaptive SRCKF algorithm with the filter gain correction for the case of measurement malfunctions. By proposing a switching criterion, an optimal filter is selected from the adaptive and conventional SRCKF according to the measurement quality. A subsystem soft fault detection algorithm is built with the filter residual. Utilizing a clear subsystem fault coefficient, the faulty subsystem is isolated as a result of the system reconstruction. In order to improve the performance of the multi-sensor system, a hybrid fusion algorithm is presented based on the adaptive SRCKF. The state and error covariance matrix are also predicted by the priori fusion estimates, and are updated by the predicted and estimated information of subsystems. The proposed algorithms were applied to the vessel dynamic positioning system simulation. They were compared with normal SRCKF and local estimation weighted fusion algorithm. The simulation results show that the presented adaptive SRCKF improves the robustness of subsystem filtering, and the hybrid fusion algorithm has the better performance. The simulation verifies the effectiveness of the proposed algorithms.
基金supported by Fund of National Science&Technology monumental projects under Grants NO.61401239,NO.2012-364-641-209
文摘In traffic-monitoring systems,numerous vision-based approaches have been used to detect vehicle parameters.However,few of these approaches have been used in waterway transport because of the complexity created by factors such as rippling water and lack of calibration object.In this paper,we present an approach to detecting the parameters of a moving ship in an inland river.This approach involves interactive calibration without a calibration reference.We detect a moving ship using an optimized visual foreground detection algorithm that eliminates false detection in dynamic water scenarios,and we detect ship length,width,speed,and flow.We trialed our parameter-detection technique in the Beijing-Hangzhou Grand Canal and found that detection accuracy was greater than 90%for all parameters.
基金the Higher Education Ministry research grant,under the Long-Term Research Grant Scheme(No.LRGS/1/2020/UMT/01/1/2)the Universiti Malaysia Terengganu Scholarship(BUMT)。
文摘The thermal front in the oceanic system is believed to have a significant effect on biological activity.During an era of climate change,changes in heat regulation between the atmosphere and oceanic interior can alter the characteristics of this important feature.Using the simulation results of the 3D Regional Ocean Modelling System(ROMS),we identified the location of thermal fronts and determined their dynamic variability in the area between the southern Andaman Sea and northern Malacca Strait.The Single Image Edge Detection(SIED)algorithm was used to detect the thermal front from model-derived temperature.Results show that a thermal front occurred every year from 2002 to 2012 with the temperature gradient at the location of the front was 0.3°C/km.Compared to the years affected by El Ni?o and negative Indian Ocean Dipole(IOD),the normal years(e.g.,May 2003)show the presence of the thermal front at every selected depth(10,25,50,and 75 m),whereas El Ni?o and negative IOD during 2010 show the presence of the thermal front only at depth of 75 m due to greater warming,leading to the thermocline deepening and enhanced stratification.During May 2003,the thermal front was separated by cooler SST in the southern Andaman Sea and warmer SST in the northern Malacca Strait.The higher SST in the northern Malacca Strait was believed due to the besieged Malacca Strait,which trapped the heat and make it difficult to release while higher chlorophyll a in Malacca Strait is due to the freshwater conduit from nearby rivers(Klang,Langat,Perak,and Selangor).Furthermore,compared to the southern Andaman Sea,the chlorophyll a in the northern Malacca Strait is easier to reach the surface area due to the shallower thermocline,which allows nutrients in the area to reach the surface faster.
文摘Baggage screening is crucial for airport security. This paper examines various algorithms for firearm detection in X-ray images of baggage. The focus is on identifying steel barrel bores, which are essential for detonation. For this, the study uses a set of 22,000 X-ray scanned images. After preprocessing with filtering techniques to improve image quality, deep learning methods, such as Convolutional Neural Networks (CNNs), are applied for classification. The results are also compared with Autoencoder and Random Forest algorithms. The results are validated on a second dataset, highlighting the advantages of the adopted approach. Baggage screening is a very important part of the risk assessment and security screening process at airports. Automating the detection of dangerous objects from passenger baggage X-ray scanners can speed up and increase the efficiency of the entire security procedure.
文摘On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both theoretical interpreting and computer simulation, explains how to measure the wavefront slope difference between two sub apertures through the determination of image displacements on detector plane. It includes a fast and accurate digital algorithm for detecting wavefront disturbance, which is much suitable for realization in such electrical hardwares as digital signal processors.
文摘6 hours scanning of view field was conducted by Grapes-3DVar detection system.The process is based on cloud detection,combining Grapes-3DVar system with AIRS instrument characteristics to eliminate field of view contaminated by cloud,which lays a solid foundation for application of AIRS data in 3-dimensional variational assimilation system.
基金co-supported by the National Natural Science Foundation of China (No. 61203170)the Fundamental Research Funds for the Central Universities (No. NS2012026)Startup Foundation for Introduced Talents of Nanjing University of Aeronautics and Astronautics (No. 1007-YAH10047)
文摘Impacted craters are commonly found on the surface of planets, satellites, asteroids and other solar system bodies. In order to speed up the rate of constructing the database of craters, it is important to develop crater detection algorithms. This paper presents a novel approach to automatically detect craters on planetary surfaces. The approach contains two parts: crater candidate region selection and crater detection. In the first part, crater candidate region selection is achieved by Kanade-Lucas-Tomasi (KLT) detector. Matrix-pattern-oriented least squares support vector machine (MatLSSVM), as the matrixization version of least square support vector machine (SVM), inherits the advantages of least squares support vector machine (LSSVM), reduces storage space greatly and reserves spatial redundancies within each image matrix compared with general LSSVM. The second part of the approach employs MatLSSVM to design classifier for crater detection. Experimental results on the dataset which comprises 160 preprocessed image patches from Google Mars demonstrate that the accuracy rate of crater detection can be up to 88%. In addition, the outstanding feature of the approach introduced in this paper is that it takes resized crater candidate region as input pattern directly to finish crater detection. The results of the last experiment demonstrate that MatLSSVM-based classifier can detect crater regions effectively on the basis of KLT-based crater candidate region selection.
基金The National Natural Science Foundation of China under contract No.41206186the Chinese Polar Environment Comprehensive Investigation and Assessment Programmes under contract No.2015-04-03
文摘A new climatology of cyclones in the Southern Ocean is generated by applying an automated cyclone detection and tracking algorithm (developed by Hodges at the Reading University) for an improved and relatively high- resolution European Centre for Medium-Range Weather Forecasts atmospheric reanalysis during 1979-2013. A validation shows that identified cyclone tracks are in good agreement with a available analyzed cyclone product. The climatological characteristics of the Southern Ocean cyclones are then analyzed, including track, number, density, intensity, deepening rate and explosive events. An analysis shows that the number of cyclones in the Southern Ocean has increased for 1979-2013, but only statistically significant in summer. Coincident with the circumpolar trough, a single high-density band of cyclones is observed in 55^-67~S, and cyclone density has generally increased in north of this band for 1979-2013, except summer. The intensity of up to 70% cyclones in the Southern Ocean is less than 980 hPa, and only a few cyclones with pressure less than 920 hPa are detected for 1979-2013. Further analysis shows that a high frequency of explosive cyclones is located in the band of 45^-55~S, and the Atlantic Ocean sector has much higher frequent occurrence of the explosive cyclones than that in the Pacific Ocean sector. Additionally, the relationship between cyclone activities in the Southern Ocean and the Southern Annular Mode is discussed.
基金The National Natural Science Foundation of China under contract Nos 41376179 and 41106153
文摘Azimuth ambiguities (ghost targets) discrimination is of great interest with the development of a synthet- ic aperture radar (SAR). And the azimuth ambiguities are often mistaken as actual targets and cause false alarms. For actual targets, HV channel signals acquired by a fully polarimetric SAR are approximately equal to a VH channel in magnitude and phase, i.e., the reciprocity theorem applies, but shifted in phase about ±π for the first-order azimuth ambiguities. Exploiting this physical behavior, the real part of the product of the two cross-polarized channels, i.e. (SHVSVH), hereafter called A12r, is employed as a new parameter for a target detection at sea. Compared with other parameters, the contrast of A12r image between a target and the surrounding sea surface will be obviously increased when A12r image is processed by mean filtering algo- rithm. Here, in order to detect target with constant false-alarm rates (CFARs), an analytical expression for the probability density function (pdf) ofA12r is derived based on the complexWishart-distribution. Because a value of A12r is greater/less than 0 for real target/its azimuth ambiguities, the first-order azimuth ambiguities can be completely removed by this A12r-based CFAR technology. Experiments accomplished over C-band RADARSAT-2 fully polarimetric imageries confirm the validity.