A novel stochastic resonance algorithm was employed to enhance the signal-to-noise ratio (SNR) of signals of analytical chemistry. By using a gas chromatographic data set, it was proven that the SNR was greatly impro...A novel stochastic resonance algorithm was employed to enhance the signal-to-noise ratio (SNR) of signals of analytical chemistry. By using a gas chromatographic data set, it was proven that the SNR was greatly improved and the quantitative relationship between concentrations and chromatographic responses remained simultaneously. The linear range was extended beyond the instrumental detection limit.展开更多
In SPECT, noise is one of the major limitations that degrade image quality. To suppress the noisy signals in an image, digital filters are most commonly applied. However, in SPECT image reconstruction, selection of an...In SPECT, noise is one of the major limitations that degrade image quality. To suppress the noisy signals in an image, digital filters are most commonly applied. However, in SPECT image reconstruction, selection of an appropriate filter and its functions has always remained a difficult task. In this work an attempt was made to investigate the effects of varying cut-off frequencies and in keeping the order of Butterworth filter constant on detectability and contrast of hot and cold re-gions images. A new insert simulating hot and cold regions which provides similar views in a reconstructed image was placed in the phantom’s cylindrical source tank and imaged. Tc-99m radionuclide was distributed uniformly in the phantom. SPECT data were collected in a 20% energy window centered at 140 keV by a Philips ADAC Forte dual head gamma camera mounted with a LEHR collimator. Images were generated by using the filtered backprojection technique. A Butterworth filter of order 5 with cut-off frequencies 0.35 and 0.45 cycles·cm<sup>-1</sup> was applied. Images were examined in terms of hot and cold regions, detectability and contrast. Results show that the hot and cold regions’ detectability and contrast vary with the change of cut-off frequency. With a 0.45 cycles·cm<sup>-1</sup> cut-off frequency, a significant enhancement in contrast of cold regions was achieved as compared to a 0.35 cycles·cm<sup>-1</sup> cut-off frequency. Furthermore, the detectability of hot and cold regions improved with the use of a 0.45 cycles·cm<sup>-1</sup> cut-off frequency. In conclusion, image quality of hot and cold regions affected in a different way with a change of cut-off frequency. Thus, care should be taken in selecting the filter cut-off frequency prior to reconstruction of images;particularly, when both types of regions are expected in the reconstructed image.展开更多
The behavior of resistive short defects in FPGA interconnects is investigated through simulation and theoretical analysis.The results show that these defects result in timing failures and even Boolean faults for small...The behavior of resistive short defects in FPGA interconnects is investigated through simulation and theoretical analysis.The results show that these defects result in timing failures and even Boolean faults for small defect resistance values.The best detection situations for large resistance defect happen when the path under test makes a v-to-v′ transition and another path causing short faults remains at value v.Small defects can be detected easily through static analysis.Under the best test situations,the effects of supply voltage and temperature on test results are evaluated.The results verify that lower voltage helps to improve detectability.If short material has positive temperature coefficient,low temperature is better;otherwise,high temperature is better.展开更多
Rotating stall and surge are two violent unstable phenomena of an aero-engine compressor.The early detection of rotating stall is a critical and difficult issue in the operation of a compressor.Recently,a deterministi...Rotating stall and surge are two violent unstable phenomena of an aero-engine compressor.The early detection of rotating stall is a critical and difficult issue in the operation of a compressor.Recently,a deterministic learning based stall inception detection approach(SIDA)has been developed for modeling and detecting stall inception in aero-engine compressors.This paper considers the derivation of analytical results on the detection capabilities for the SIDA based on deterministic learning.First,by utilizing the input/output stability of the residual system,a detectability condition of the SIDA is presented,and how to choose the parameters of the diagnostic system is also analyzed.Second,based on the relationship between NN approximation capabilities and radial basis function(RBF)network structures,the influence of RBF network structures on the performance properties of the SIDA is analyzed.Finally,a simulation study is presented,in which the Mansoux-C2 compressor model is utilized to verify the effectiveness of the proposed SIDA.展开更多
The detectability and reliability analysis for the local seismic network is performed employing by Bungum and Husebye technique. The events were relocated using standard computer codes for hypocentral locations. The d...The detectability and reliability analysis for the local seismic network is performed employing by Bungum and Husebye technique. The events were relocated using standard computer codes for hypocentral locations. The detectability levels are estimated from the twenty-five years of recorded data in terms of 50%, 90% and 100% cumulative detectability thresholds, which were derived from frequency-magnitude distribution. From this analysis the 100% level of detectability of the network is M L=1.7 for events which occur within the network. The accuracy in hypocentral solutions of the network is investigated by considering the fixed real hypocenter within the network. The epicentral errors are found to be less than 4 km when the events occur within the network. Finally, the problems faced during continuous operation of the local network, which effects its detectability, are discussed.展开更多
This paper mainly discusses stabilizatbility, exact observability and exact detectability of discrete stochastic systems with both static and control dependent noise via the spectrum technique. The authors put forward...This paper mainly discusses stabilizatbility, exact observability and exact detectability of discrete stochastic systems with both static and control dependent noise via the spectrum technique. The authors put forward a definition of the spectrum and give some theorems based on the spectrum. Then the relation between discrete generalized Lyapunov equation and discrete generalized algebraic Riccati equation is also analyzed.展开更多
Phase identification procedures for teleseismic events at Syowa Station (69.0°S, 39.6°E;SYO), East Antarctica have been carried out since 1967 after the International Geophysical Year (IGY;1957-1958). Since ...Phase identification procedures for teleseismic events at Syowa Station (69.0°S, 39.6°E;SYO), East Antarctica have been carried out since 1967 after the International Geophysical Year (IGY;1957-1958). Since the development of INTELSAT telecommunication link, digital waveform data have been transmitted to the National Institute of Polar Research (NIPR) for the utilization of phase identification. Arrival times of teleseismic phases, P, PKP, PP, S, SKS have been detected manually and reported to the International Seismological Centre (ISC), and published by “JARE Data Reports” from NIPR. In this paper, hypocentral distribution and time variations for detected earthquakes are demonstrated over the last four decades in 1967-2010. Characteristics of detected events, magnitude dependency, spatial distributions, seasonal variations, together with classification by focal depth are investigated. Besides the natural increase in the occurrence of teleseismic events on the globe, a technical advance in the observing system and station infrastructure, as well as the improvement of procedures for reading seismic phases, could all combine to produce the increase in detection of events in last few decades. Variations in teleseismic detectability for longer terms may be possible by association with the meteorological environment and seaice spreading area around the Antarctic continent. Recorded teleseismic and local seismic signals have sufficient quality for many analyses on dynamics and structure of the Earth as viewed from Antarctica. The continuously recorded data are applied not only to lithospheric studies but also to the Earth’s deep interiors, as a significant contribution to the Federation of Digital Seismological Networks (FDSN) from high southern latitude.展开更多
The hidden water-bearing structures near the roadway tunnelling face are very likely to cause water seepage accidents in coal mines.Currently,transient electromagnetic(EM)technology has be-come an important method to ...The hidden water-bearing structures near the roadway tunnelling face are very likely to cause water seepage accidents in coal mines.Currently,transient electromagnetic(EM)technology has be-come an important method to detect water damage in advance of roadway excavation.In this paper,the time-domain finite element algorithm based on unstructured tetrahedron grids is used to accurate-ly simulate the geological body in front of the roadway excavation face and analyze its response.The authors detect the distance between the roadway excavation face and the low-resistivity water-bearing body,the resistivity difference between the low-resistivity body and surrounding rock,and the influence of the size of the low-resistivity body on the transient EM response.Furthermore,the common types of low-resistivity bodies in the roadway drivage process are used for modeling to analyze the attenuation of the detected EM response when there are low-resistivity bodies in front of the roadway.The research in this paper can help effectively detecting the water-bearing low-resistivity body in front of the roadway drivage and lay a foundation for reducing the risk of water seepage accidents.展开更多
The authors consider the property of detectability of discrete event systems in the presence of sensor attacks in the context of cyber-security.The authors model the system using an automaton and study the general not...The authors consider the property of detectability of discrete event systems in the presence of sensor attacks in the context of cyber-security.The authors model the system using an automaton and study the general notion of detectability where a given set of state pairs needs to be(eventually or periodically)distinguished in any estimate of the state of the system.The authors adopt the ALTER sensor attack model from previous work and formulate four notions of CA-detectability in the context of this attack model based on the following attributes:strong or weak;eventual or periodic.The authors present verification methods for strong CA-detectability and weak CA-detectability.The authors present definitions of strong and weak periodic CA-detectability that are based on the construction of a verifier automaton called the augmented CA-observer.The development also resulted in relaxing assumptions in prior results on D-detectability,which is a special case of CA-detectability.展开更多
This paper presents the notions of exact observability and exact detectability for Markov jump linear stochastic systems of Ito type with multiplieative noise (for short, MJLSS). Stochastic Popov-Belevith-Hautus (...This paper presents the notions of exact observability and exact detectability for Markov jump linear stochastic systems of Ito type with multiplieative noise (for short, MJLSS). Stochastic Popov-Belevith-Hautus (PBH) Criterions for exact observability and exact detectability are respectively obtained. As an application, stochastic H2/H∞ control for such MJLSS is discussed under exact detectability.展开更多
This paper mainly studies observability and detectability for continuous-time stochastic Markov jump systems.Two concepts called W-observability and W-detectability for such systems are introduced,which are shown to c...This paper mainly studies observability and detectability for continuous-time stochastic Markov jump systems.Two concepts called W-observability and W-detectability for such systems are introduced,which are shown to coincide with various notions of observability and detectability reported recently in literature,such as exact observability,exact detectability and detectability.Besides,by introducing an accumulated energy function,some efficient criteria and interesting properties for both W-observability and W-detectability are obtained.展开更多
Aiming at the drawbacks of low contrast and high noise in the thermal images, a novel method based on the combination of the thermal image sequence reconstruction and the first-order differential processing is propose...Aiming at the drawbacks of low contrast and high noise in the thermal images, a novel method based on the combination of the thermal image sequence reconstruction and the first-order differential processing is proposed in this work, which is comprised of the following procedures. Firstly, the specimen with four fabricated defects with different sizes is detected by using pulsed infrared thennography. Then, a piecewise fitting based method is proposed to reconstruct the thermal image sequence to compress the data and remove the temporal noise of each pixel in the thermal image. Finally, the first-order differential processing based method is proposed to enhance the contrast. An experimental investigation into the specimen containing de-bond defects between the steel and the heat insulation layer is carried out to validate the effectiveness of the proposed method via the above procedures. The obtained results show that the proposed method can remove the noise, enhance the contrast, and even compress the data reaching at 99.1%, thus improving the detectability of pulsed infrared thermography on metal defects.展开更多
Aims to determine the detectability of a global weedy perennial weed Hypochaeris radicata and its relationship with five common observer,species and environmental variables.Methods trained independent observers conduc...Aims to determine the detectability of a global weedy perennial weed Hypochaeris radicata and its relationship with five common observer,species and environmental variables.Methods trained independent observers conducted time-limited repeat sur-veys of H.radicata during autumn in an endangered grassy box-gum woodland ecosystem in south-east australia.single-species single-season site-occupancy modelling was used to determine if detectability of H.radicata was altered by five covariates,observer,litter height,grazing,maximum plant height and flowering state.Important Findings Detectability for H.radicata varied significantly with observer,litter height,plant maximum height and flowering state,but not with graz-ing.Despite significant observer-specific variation,there was a con-sistent increase in detectability with plant height and when plants are in flower for all observers.Detectability generally decreased as litter height increases.Perfect or constant detection rates cannot be assumed in plant surveys,even for easily recognizable plants in simple survey conditions.understanding how detectability is influ-enced by common survey variables can help improve the efficacy of plant monitoring programs by quantifying the extent of uncertainty in inferences made from survey data,or by determining optimal sur-vey conditions to increase the reliability of collected data.For plants with traits similar to H.radicata,surveying when most plants are at maximum height or in flower,increasing search intensity when litter levels are high and minimizing observer-related heterogeneity are potentially simple and effective ways to reduce detection errors.We speculate that detection rates may be lower,more variable and involve additional covariates when surveying during the peak flow-ering spring season with the presence of more warm season and taller annual species.展开更多
Seed traits play an important role in affecting seed preference and hoarding behaviors of small rodents.Despite greatly affected by seed traits,seed detectability of competitors represents pilfering risks and may also...Seed traits play an important role in affecting seed preference and hoarding behaviors of small rodents.Despite greatly affected by seed traits,seed detectability of competitors represents pilfering risks and may also modify seed hoarding preference of animals.However,whether seed traits and seed detectability show consistent effects on seed hoarding preference of animals remain largely unknown.Here,we explored how seed traits and seed detectability correlate with seed hoarding preference of Leopoldamys edwardsi and Apodemus chevrieri in a subtropical forest.Despite the effects of seed coat thickness and caloric value on hoarding preference of L.edwardsi,we detected no significant effects of other seed traits on hording preference of the 2 rodent species.There was no correlation between larder-hoarding preference and inter-or intra-specific seed detectability of L.edwardsi;however,seed detectability of L.edwardsi was negatively correlated with its own scatter-hoarding preference.Although scatter-hoarding preference of A.chevrieri was not correlated with inter-and intra-specific seed detectability,larder-hoarding preference of A.chevrieri was positively correlated with intra-specific seed detectability.Our study may provide evidence that intra-specific seed detectability rather than seed traits and inter-specific pilfering risks play an important role in modifying seed hoarding preference of rodents.展开更多
Monochromatic y-rays are thought to be the smoking gun signal for identifying dark matter annihilation. However, the flux of monochromatic y-rays is usually suppressed by virtual quantum effects since dark matter shou...Monochromatic y-rays are thought to be the smoking gun signal for identifying dark matter annihilation. However, the flux of monochromatic y-rays is usually suppressed by virtual quantum effects since dark matter should be neutral and does not couple with y-rays directly. In this work, we study the detection strategy of the monochromatic y-rays in a future space-based detector. The flux of monochromatic y-rays between 50 GeV and several TeV is calculated by assuming the supersymmetric neutralino as a typical dark matter candidate. The detection both by focusing on the Galactic center and in a scan mode that detects y-rays from the whole Galactic halo are compared. The detector performance for the purpose of monochromatic y-ray detection, with different energy and angular resolution, field of view, and background rejection efficiencies, is carefully studied with both analytical and fast Monte-Carlo methods.展开更多
With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comp...With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy.展开更多
Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0.Manual inspection of products on assembly lines remains inefficient,prone t...Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0.Manual inspection of products on assembly lines remains inefficient,prone to errors and lacks consistency,emphasizing the need for a reliable and automated inspection system.Leveraging both object detection and image segmentation approaches,this research proposes a vision-based solution for the detection of various kinds of tools in the toolkit using deep learning(DL)models.Two Intel RealSense D455f depth cameras were arranged in a top down configuration to capture both RGB and depth images of the toolkits.After applying multiple constraints and enhancing them through preprocessing and augmentation,a dataset consisting of 3300 annotated RGB-D photos was generated.Several DL models were selected through a comprehensive assessment of mean Average Precision(mAP),precision-recall equilibrium,inference latency(target≥30 FPS),and computational burden,resulting in a preference for YOLO and Region-based Convolutional Neural Networks(R-CNN)variants over ViT-based models due to the latter’s increased latency and resource requirements.YOLOV5,YOLOV8,YOLOV11,Faster R-CNN,and Mask R-CNN were trained on the annotated dataset and evaluated using key performance metrics(Recall,Accuracy,F1-score,and Precision).YOLOV11 demonstrated balanced excellence with 93.0%precision,89.9%recall,and a 90.6%F1-score in object detection,as well as 96.9%precision,95.3%recall,and a 96.5%F1-score in instance segmentation with an average inference time of 25 ms per frame(≈40 FPS),demonstrating real-time performance.Leveraging these results,a YOLOV11-based windows application was successfully deployed in a real-time assembly line environment,where it accurately processed live video streams to detect and segment tools within toolkits,demonstrating its practical effectiveness in industrial automation.The application is capable of precisely measuring socket dimensions by utilising edge detection techniques on YOLOv11 segmentation masks,in addition to detection and segmentation.This makes it possible to do specification-level quality control right on the assembly line,which improves the ability to examine things in real time.The implementation is a big step forward for intelligent manufacturing in the Industry 4.0 paradigm.It provides a scalable,efficient,and accurate way to do automated inspection and dimensional verification activities.展开更多
Traffic sign detection is an important part of autonomous driving,and its recognition accuracy and speed are directly related to road traffic safety.Although convolutional neural networks(CNNs)have made certain breakt...Traffic sign detection is an important part of autonomous driving,and its recognition accuracy and speed are directly related to road traffic safety.Although convolutional neural networks(CNNs)have made certain breakthroughs in this field,in the face of complex scenes,such as image blur and target occlusion,the traffic sign detection continues to exhibit limited accuracy,accompanied by false positives and missed detections.To address the above problems,a traffic sign detection algorithm,You Only Look Once-based Skip Dynamic Way(YOLO-SDW)based on You Only Look Once version 8 small(YOLOv8s),is proposed.Firstly,a Skip Connection Reconstruction(SCR)module is introduced to efficiently integrate fine-grained feature information and enhance the detection accuracy of the algorithm in complex scenes.Secondly,a C2f module based on Dynamic Snake Convolution(C2f-DySnake)is proposed to dynamically adjust the receptive field information,improve the algorithm’s feature extraction ability for blurred or occluded targets,and reduce the occurrence of false detections and missed detections.Finally,the Wise Powerful IoU v2(WPIoUv2)loss function is proposed to further improve the detection accuracy of the algorithm.Experimental results show that the average precision mAP@0.5 of YOLO-SDW on the TT100K dataset is 89.2%,and mAP@0.5:0.95 is 68.5%,which is 4%and 3.3%higher than the YOLOv8s baseline,respectively.YOLO-SDW ensures real-time performance while having higher accuracy.展开更多
This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagno...This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements.展开更多
In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds...In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds in current intelligent inspection algorithms,this paper proposes CG-YOLOv8,a lightweight and improved model based on YOLOv8n for PCB surface defect detection.The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy,thereby enhancing the capability of identifying diverse defects under complex conditions.Specifically,a cascaded multi-receptive field(CMRF)module is adopted to replace the SPPF module in the backbone to improve feature perception,and an inverted residual mobile block(IRMB)is integrated into the C2f module to further enhance performance.Additionally,conventional convolution layers are replaced with GSConv to reduce computational cost,and a lightweight Convolutional Block Attention Module based Convolution(CBAMConv)module is introduced after Grouped Spatial Convolution(GSConv)to preserve accuracy through attention mechanisms.The detection head is also optimized by removing medium and large-scale detection layers,thereby enhancing the model’s ability to detect small-scale defects and further reducing complexity.Experimental results show that,compared to the original YOLOv8n,the proposed CG-YOLOv8 reduces parameter count by 53.9%,improves mAP@0.5 by 2.2%,and increases precision and recall by 2.0%and 1.8%,respectively.These improvements demonstrate that CG-YOLOv8 offers an efficient and lightweight solution for PCB surface defect detection.展开更多
基金supported by the National Natural Science Foundation of China (No.20075024).
文摘A novel stochastic resonance algorithm was employed to enhance the signal-to-noise ratio (SNR) of signals of analytical chemistry. By using a gas chromatographic data set, it was proven that the SNR was greatly improved and the quantitative relationship between concentrations and chromatographic responses remained simultaneously. The linear range was extended beyond the instrumental detection limit.
文摘In SPECT, noise is one of the major limitations that degrade image quality. To suppress the noisy signals in an image, digital filters are most commonly applied. However, in SPECT image reconstruction, selection of an appropriate filter and its functions has always remained a difficult task. In this work an attempt was made to investigate the effects of varying cut-off frequencies and in keeping the order of Butterworth filter constant on detectability and contrast of hot and cold re-gions images. A new insert simulating hot and cold regions which provides similar views in a reconstructed image was placed in the phantom’s cylindrical source tank and imaged. Tc-99m radionuclide was distributed uniformly in the phantom. SPECT data were collected in a 20% energy window centered at 140 keV by a Philips ADAC Forte dual head gamma camera mounted with a LEHR collimator. Images were generated by using the filtered backprojection technique. A Butterworth filter of order 5 with cut-off frequencies 0.35 and 0.45 cycles·cm<sup>-1</sup> was applied. Images were examined in terms of hot and cold regions, detectability and contrast. Results show that the hot and cold regions’ detectability and contrast vary with the change of cut-off frequency. With a 0.45 cycles·cm<sup>-1</sup> cut-off frequency, a significant enhancement in contrast of cold regions was achieved as compared to a 0.35 cycles·cm<sup>-1</sup> cut-off frequency. Furthermore, the detectability of hot and cold regions improved with the use of a 0.45 cycles·cm<sup>-1</sup> cut-off frequency. In conclusion, image quality of hot and cold regions affected in a different way with a change of cut-off frequency. Thus, care should be taken in selecting the filter cut-off frequency prior to reconstruction of images;particularly, when both types of regions are expected in the reconstructed image.
文摘The behavior of resistive short defects in FPGA interconnects is investigated through simulation and theoretical analysis.The results show that these defects result in timing failures and even Boolean faults for small defect resistance values.The best detection situations for large resistance defect happen when the path under test makes a v-to-v′ transition and another path causing short faults remains at value v.Small defects can be detected easily through static analysis.Under the best test situations,the effects of supply voltage and temperature on test results are evaluated.The results verify that lower voltage helps to improve detectability.If short material has positive temperature coefficient,low temperature is better;otherwise,high temperature is better.
基金This work was supported in part by the Major Program of the National Natural Science Foundation of China(No.61890922)in part by the Major Basic Program of Shandong Provincial Natural Science Foundation(No.ZR2020ZD40).
文摘Rotating stall and surge are two violent unstable phenomena of an aero-engine compressor.The early detection of rotating stall is a critical and difficult issue in the operation of a compressor.Recently,a deterministic learning based stall inception detection approach(SIDA)has been developed for modeling and detecting stall inception in aero-engine compressors.This paper considers the derivation of analytical results on the detection capabilities for the SIDA based on deterministic learning.First,by utilizing the input/output stability of the residual system,a detectability condition of the SIDA is presented,and how to choose the parameters of the diagnostic system is also analyzed.Second,based on the relationship between NN approximation capabilities and radial basis function(RBF)network structures,the influence of RBF network structures on the performance properties of the SIDA is analyzed.Finally,a simulation study is presented,in which the Mansoux-C2 compressor model is utilized to verify the effectiveness of the proposed SIDA.
文摘The detectability and reliability analysis for the local seismic network is performed employing by Bungum and Husebye technique. The events were relocated using standard computer codes for hypocentral locations. The detectability levels are estimated from the twenty-five years of recorded data in terms of 50%, 90% and 100% cumulative detectability thresholds, which were derived from frequency-magnitude distribution. From this analysis the 100% level of detectability of the network is M L=1.7 for events which occur within the network. The accuracy in hypocentral solutions of the network is investigated by considering the fixed real hypocenter within the network. The epicentral errors are found to be less than 4 km when the events occur within the network. Finally, the problems faced during continuous operation of the local network, which effects its detectability, are discussed.
文摘This paper mainly discusses stabilizatbility, exact observability and exact detectability of discrete stochastic systems with both static and control dependent noise via the spectrum technique. The authors put forward a definition of the spectrum and give some theorems based on the spectrum. Then the relation between discrete generalized Lyapunov equation and discrete generalized algebraic Riccati equation is also analyzed.
文摘Phase identification procedures for teleseismic events at Syowa Station (69.0°S, 39.6°E;SYO), East Antarctica have been carried out since 1967 after the International Geophysical Year (IGY;1957-1958). Since the development of INTELSAT telecommunication link, digital waveform data have been transmitted to the National Institute of Polar Research (NIPR) for the utilization of phase identification. Arrival times of teleseismic phases, P, PKP, PP, S, SKS have been detected manually and reported to the International Seismological Centre (ISC), and published by “JARE Data Reports” from NIPR. In this paper, hypocentral distribution and time variations for detected earthquakes are demonstrated over the last four decades in 1967-2010. Characteristics of detected events, magnitude dependency, spatial distributions, seasonal variations, together with classification by focal depth are investigated. Besides the natural increase in the occurrence of teleseismic events on the globe, a technical advance in the observing system and station infrastructure, as well as the improvement of procedures for reading seismic phases, could all combine to produce the increase in detection of events in last few decades. Variations in teleseismic detectability for longer terms may be possible by association with the meteorological environment and seaice spreading area around the Antarctic continent. Recorded teleseismic and local seismic signals have sufficient quality for many analyses on dynamics and structure of the Earth as viewed from Antarctica. The continuously recorded data are applied not only to lithospheric studies but also to the Earth’s deep interiors, as a significant contribution to the Federation of Digital Seismological Networks (FDSN) from high southern latitude.
文摘The hidden water-bearing structures near the roadway tunnelling face are very likely to cause water seepage accidents in coal mines.Currently,transient electromagnetic(EM)technology has be-come an important method to detect water damage in advance of roadway excavation.In this paper,the time-domain finite element algorithm based on unstructured tetrahedron grids is used to accurate-ly simulate the geological body in front of the roadway excavation face and analyze its response.The authors detect the distance between the roadway excavation face and the low-resistivity water-bearing body,the resistivity difference between the low-resistivity body and surrounding rock,and the influence of the size of the low-resistivity body on the transient EM response.Furthermore,the common types of low-resistivity bodies in the roadway drivage process are used for modeling to analyze the attenuation of the detected EM response when there are low-resistivity bodies in front of the roadway.The research in this paper can help effectively detecting the water-bearing low-resistivity body in front of the roadway drivage and lay a foundation for reducing the risk of water seepage accidents.
基金supported in part by the US National Science Foundation under Grant Nos.ECCS-2146615 and ECCS-2144416.
文摘The authors consider the property of detectability of discrete event systems in the presence of sensor attacks in the context of cyber-security.The authors model the system using an automaton and study the general notion of detectability where a given set of state pairs needs to be(eventually or periodically)distinguished in any estimate of the state of the system.The authors adopt the ALTER sensor attack model from previous work and formulate four notions of CA-detectability in the context of this attack model based on the following attributes:strong or weak;eventual or periodic.The authors present verification methods for strong CA-detectability and weak CA-detectability.The authors present definitions of strong and weak periodic CA-detectability that are based on the construction of a verifier automaton called the augmented CA-observer.The development also resulted in relaxing assumptions in prior results on D-detectability,which is a special case of CA-detectability.
基金supported by National Natural Science Foundation of China under Grant Nos 60774020, 60736028,and 60821091
文摘This paper presents the notions of exact observability and exact detectability for Markov jump linear stochastic systems of Ito type with multiplieative noise (for short, MJLSS). Stochastic Popov-Belevith-Hautus (PBH) Criterions for exact observability and exact detectability are respectively obtained. As an application, stochastic H2/H∞ control for such MJLSS is discussed under exact detectability.
基金supported by the Natural Science Foundation of China under Grant No.61174078the Research Fund for the Taishan Scholar Project of Shandong Province of China+1 种基金the SDUST Research Fund under Grant No.2011KYTD105the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant No.LAPS13018
文摘This paper mainly studies observability and detectability for continuous-time stochastic Markov jump systems.Two concepts called W-observability and W-detectability for such systems are introduced,which are shown to coincide with various notions of observability and detectability reported recently in literature,such as exact observability,exact detectability and detectability.Besides,by introducing an accumulated energy function,some efficient criteria and interesting properties for both W-observability and W-detectability are obtained.
基金the National Natural Science Foundation of China (Grant Nos.51575516 and 51605481)Xi'an Science and Technology Project(Grant No. 2017089CG/RC052 HJKC001).
文摘Aiming at the drawbacks of low contrast and high noise in the thermal images, a novel method based on the combination of the thermal image sequence reconstruction and the first-order differential processing is proposed in this work, which is comprised of the following procedures. Firstly, the specimen with four fabricated defects with different sizes is detected by using pulsed infrared thennography. Then, a piecewise fitting based method is proposed to reconstruct the thermal image sequence to compress the data and remove the temporal noise of each pixel in the thermal image. Finally, the first-order differential processing based method is proposed to enhance the contrast. An experimental investigation into the specimen containing de-bond defects between the steel and the heat insulation layer is carried out to validate the effectiveness of the proposed method via the above procedures. The obtained results show that the proposed method can remove the noise, enhance the contrast, and even compress the data reaching at 99.1%, thus improving the detectability of pulsed infrared thermography on metal defects.
文摘Aims to determine the detectability of a global weedy perennial weed Hypochaeris radicata and its relationship with five common observer,species and environmental variables.Methods trained independent observers conducted time-limited repeat sur-veys of H.radicata during autumn in an endangered grassy box-gum woodland ecosystem in south-east australia.single-species single-season site-occupancy modelling was used to determine if detectability of H.radicata was altered by five covariates,observer,litter height,grazing,maximum plant height and flowering state.Important Findings Detectability for H.radicata varied significantly with observer,litter height,plant maximum height and flowering state,but not with graz-ing.Despite significant observer-specific variation,there was a con-sistent increase in detectability with plant height and when plants are in flower for all observers.Detectability generally decreased as litter height increases.Perfect or constant detection rates cannot be assumed in plant surveys,even for easily recognizable plants in simple survey conditions.understanding how detectability is influ-enced by common survey variables can help improve the efficacy of plant monitoring programs by quantifying the extent of uncertainty in inferences made from survey data,or by determining optimal sur-vey conditions to increase the reliability of collected data.For plants with traits similar to H.radicata,surveying when most plants are at maximum height or in flower,increasing search intensity when litter levels are high and minimizing observer-related heterogeneity are potentially simple and effective ways to reduce detection errors.We speculate that detection rates may be lower,more variable and involve additional covariates when surveying during the peak flow-ering spring season with the presence of more warm season and taller annual species.
基金supported by the National Natural Science Foundation of China(32070447 and 31760156)Youth Talent Introduction and Education Program of Shandong Province(20190601).
文摘Seed traits play an important role in affecting seed preference and hoarding behaviors of small rodents.Despite greatly affected by seed traits,seed detectability of competitors represents pilfering risks and may also modify seed hoarding preference of animals.However,whether seed traits and seed detectability show consistent effects on seed hoarding preference of animals remain largely unknown.Here,we explored how seed traits and seed detectability correlate with seed hoarding preference of Leopoldamys edwardsi and Apodemus chevrieri in a subtropical forest.Despite the effects of seed coat thickness and caloric value on hoarding preference of L.edwardsi,we detected no significant effects of other seed traits on hording preference of the 2 rodent species.There was no correlation between larder-hoarding preference and inter-or intra-specific seed detectability of L.edwardsi;however,seed detectability of L.edwardsi was negatively correlated with its own scatter-hoarding preference.Although scatter-hoarding preference of A.chevrieri was not correlated with inter-and intra-specific seed detectability,larder-hoarding preference of A.chevrieri was positively correlated with intra-specific seed detectability.Our study may provide evidence that intra-specific seed detectability rather than seed traits and inter-specific pilfering risks play an important role in modifying seed hoarding preference of rodents.
基金Supported by Natural Science Foundation of China (10435070,10773011,10721140381,10099630)China Ministry of Science and Technology (2007CB16101,2010CB833000)
文摘Monochromatic y-rays are thought to be the smoking gun signal for identifying dark matter annihilation. However, the flux of monochromatic y-rays is usually suppressed by virtual quantum effects since dark matter should be neutral and does not couple with y-rays directly. In this work, we study the detection strategy of the monochromatic y-rays in a future space-based detector. The flux of monochromatic y-rays between 50 GeV and several TeV is calculated by assuming the supersymmetric neutralino as a typical dark matter candidate. The detection both by focusing on the Galactic center and in a scan mode that detects y-rays from the whole Galactic halo are compared. The detector performance for the purpose of monochromatic y-ray detection, with different energy and angular resolution, field of view, and background rejection efficiencies, is carefully studied with both analytical and fast Monte-Carlo methods.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2023-00235509Development of security monitoring technology based network behavior against encrypted cyber threats in ICT convergence environment).
文摘With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy.
基金National Science and Technology Council,the Republic of China,under grants NSTC 113-2221-E-194-011-MY3 and Research Center on Artificial Intelligence and Sustainability,National Chung Cheng University under the research project grant titled“Generative Digital Twin System Design for Sustainable Smart City Development in Taiwan.
文摘Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0.Manual inspection of products on assembly lines remains inefficient,prone to errors and lacks consistency,emphasizing the need for a reliable and automated inspection system.Leveraging both object detection and image segmentation approaches,this research proposes a vision-based solution for the detection of various kinds of tools in the toolkit using deep learning(DL)models.Two Intel RealSense D455f depth cameras were arranged in a top down configuration to capture both RGB and depth images of the toolkits.After applying multiple constraints and enhancing them through preprocessing and augmentation,a dataset consisting of 3300 annotated RGB-D photos was generated.Several DL models were selected through a comprehensive assessment of mean Average Precision(mAP),precision-recall equilibrium,inference latency(target≥30 FPS),and computational burden,resulting in a preference for YOLO and Region-based Convolutional Neural Networks(R-CNN)variants over ViT-based models due to the latter’s increased latency and resource requirements.YOLOV5,YOLOV8,YOLOV11,Faster R-CNN,and Mask R-CNN were trained on the annotated dataset and evaluated using key performance metrics(Recall,Accuracy,F1-score,and Precision).YOLOV11 demonstrated balanced excellence with 93.0%precision,89.9%recall,and a 90.6%F1-score in object detection,as well as 96.9%precision,95.3%recall,and a 96.5%F1-score in instance segmentation with an average inference time of 25 ms per frame(≈40 FPS),demonstrating real-time performance.Leveraging these results,a YOLOV11-based windows application was successfully deployed in a real-time assembly line environment,where it accurately processed live video streams to detect and segment tools within toolkits,demonstrating its practical effectiveness in industrial automation.The application is capable of precisely measuring socket dimensions by utilising edge detection techniques on YOLOv11 segmentation masks,in addition to detection and segmentation.This makes it possible to do specification-level quality control right on the assembly line,which improves the ability to examine things in real time.The implementation is a big step forward for intelligent manufacturing in the Industry 4.0 paradigm.It provides a scalable,efficient,and accurate way to do automated inspection and dimensional verification activities.
基金funded by Key research and development Program of Henan Province(No.251111211200)National Natural Science Foundation of China(Grant No.U2004163).
文摘Traffic sign detection is an important part of autonomous driving,and its recognition accuracy and speed are directly related to road traffic safety.Although convolutional neural networks(CNNs)have made certain breakthroughs in this field,in the face of complex scenes,such as image blur and target occlusion,the traffic sign detection continues to exhibit limited accuracy,accompanied by false positives and missed detections.To address the above problems,a traffic sign detection algorithm,You Only Look Once-based Skip Dynamic Way(YOLO-SDW)based on You Only Look Once version 8 small(YOLOv8s),is proposed.Firstly,a Skip Connection Reconstruction(SCR)module is introduced to efficiently integrate fine-grained feature information and enhance the detection accuracy of the algorithm in complex scenes.Secondly,a C2f module based on Dynamic Snake Convolution(C2f-DySnake)is proposed to dynamically adjust the receptive field information,improve the algorithm’s feature extraction ability for blurred or occluded targets,and reduce the occurrence of false detections and missed detections.Finally,the Wise Powerful IoU v2(WPIoUv2)loss function is proposed to further improve the detection accuracy of the algorithm.Experimental results show that the average precision mAP@0.5 of YOLO-SDW on the TT100K dataset is 89.2%,and mAP@0.5:0.95 is 68.5%,which is 4%and 3.3%higher than the YOLOv8s baseline,respectively.YOLO-SDW ensures real-time performance while having higher accuracy.
文摘This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements.
基金funded by the Joint Funds of the National Natural Science Foundation of China(U2341223)the Beijing Municipal Natural Science Foundation(No.4232067).
文摘In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds in current intelligent inspection algorithms,this paper proposes CG-YOLOv8,a lightweight and improved model based on YOLOv8n for PCB surface defect detection.The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy,thereby enhancing the capability of identifying diverse defects under complex conditions.Specifically,a cascaded multi-receptive field(CMRF)module is adopted to replace the SPPF module in the backbone to improve feature perception,and an inverted residual mobile block(IRMB)is integrated into the C2f module to further enhance performance.Additionally,conventional convolution layers are replaced with GSConv to reduce computational cost,and a lightweight Convolutional Block Attention Module based Convolution(CBAMConv)module is introduced after Grouped Spatial Convolution(GSConv)to preserve accuracy through attention mechanisms.The detection head is also optimized by removing medium and large-scale detection layers,thereby enhancing the model’s ability to detect small-scale defects and further reducing complexity.Experimental results show that,compared to the original YOLOv8n,the proposed CG-YOLOv8 reduces parameter count by 53.9%,improves mAP@0.5 by 2.2%,and increases precision and recall by 2.0%and 1.8%,respectively.These improvements demonstrate that CG-YOLOv8 offers an efficient and lightweight solution for PCB surface defect detection.