A spice formulation study in Burkina Faso was carried out using local ingredients for the benefit of households. The objective of this study was to propose some spice formulations based on local ingredients in order t...A spice formulation study in Burkina Faso was carried out using local ingredients for the benefit of households. The objective of this study was to propose some spice formulations based on local ingredients in order to reduce the use of chemical spices in the preparation of different dishes. The Design of Experiments (DOE) methodology was used for the formulation of the spices and their physicochemical, nutritional and sensory characteristics were evaluated by standardized and standard methods. The results obtained showed lipid contents (g/100 g DM) ranging from 10.41 ± 0.26 to 15.64 ± 0.68, total sugars from 4.39 ± 0.32 to 5.46 ± 0.31, protein from 3.65 ± 0.17 to 12.04 ± 0.35 and ash from 5.83 ± 0.01 to 7.02 ± 0.01. The polyphenol content ranged from 9.09 ± 1.60 to 11.33 ± 0.90, and the flavonoid content ranged from 0.65 ± 0.03 to 1.08 ± 0.13. The sensory analysis carried out showed that the spices have generally satisfactory organoleptic characteristics. These results constitute new information in the diet of populations and are an alternative to the chemical spices used in their cooking.展开更多
The order-of-addition experiments are widely used in many fields,including food and industrial production,but the relative research under prior constraints is limited.The purpose of this paper is to select an optimal ...The order-of-addition experiments are widely used in many fields,including food and industrial production,but the relative research under prior constraints is limited.The purpose of this paper is to select an optimal sequence under the restriction that component i is added before component j,while it is unachievable to compare all sequences when the number of components m is large.To achieve this,a constrained PWO model is first provided,and then the D-optimal designs for order-of addition experiments with minimal-points via the modified threshold accepting algorithm is established.The effectiveness of the proposed method is demonstrated through a job scheduling problem with a prior constraint for teaching cases.展开更多
Paper and pulp mills generate substantial volumes of wastewater containing lignin-derived compounds that are challenging to degrade using conventional wastewater treatment methods.This study presents a novel biofilm-b...Paper and pulp mills generate substantial volumes of wastewater containing lignin-derived compounds that are challenging to degrade using conventional wastewater treatment methods.This study presents a novel biofilm-based process for enhanced lignin removal in wastewater using the fungus Neurospora discreta,which effectively degrades lignin and forms robust biofilms at the air–liquid interface under specific conditions.The process was optimised using the Taguchi design of experiments approach,and three factors including pH,copper sulphate concentration,and trace element concentration were evaluated at three levels.Experimental data were analysed against three responses:lignin degradation efficiency and the activities of two ligninolytic enzymes(polyphenol oxidase and versatile peroxidase).The results indicated that wastewater pH was the most significant parameter affecting lignin degradation efficiency and enzyme activities.Over 70%lignin degradation was achieved at pH levels of 5 and 6 with copper sulphate concentrations above 4 mg/L,while degradation efficiency drastically dropped to 45%at a pH value of 7.Reversed-phase high-performance liquid chromatography analysis demonstrated the effects of the three factors on the polar and non-polar components of lignin in wastewater,revealing a clear decrease in all peak areas after treatment.Additionally,significant relationships were observed between biofilm properties(including porosity,water retention value,polysaccharide content,and protein content)and lignin removal efficiency.This study also reported for the first time the presence of versatile peroxidase,a ligninolytic enzyme,in Neurospora sp.展开更多
Food production demand is constantly growing,entailing a proportional increment in fertilisers and pharmaceuticals use,which are eventually introduced to the environment,leading,among others,to an imbalance in the nit...Food production demand is constantly growing,entailing a proportional increment in fertilisers and pharmaceuticals use,which are eventually introduced to the environment,leading,among others,to an imbalance in the nitrogen cycle.Electrochemical nitrate reduction reaction is a delocalised route for nitrates elimination and green ammonia production.In the present study,we carry out nitrates electroreduction over a commercial MoS_(2)catalyst,focusing on optimising selected input factors affecting the reaction.Concretely,Doehlert design of experiment and response surface methodology are employed to find the proper combination of supporting salt concentration in the electrolyte,applied potential,and catalyst loading at the working electrode,with the overall aim to boost Faradaic efficiency(FE)and ammonia production.As a matter of fact,varying these input factors,the obtained FE values ranged from∼2%to∼80%,highlighting the strength of the newly conceived approach.Moreover,our multivariate strategy allows the quantification of each factor effect and elucidates hidden interactions between them.Finally,successful extended durability tests are performed for 100 h at both FE and productivity(P)optimal conditions.In parallel,cell electrodes are characterised by in-depth structural,morphological,and surface techniques,before and after ageing,overall demonstrating the outstanding stability of the proposed electrochemical reactor.展开更多
How exhibitions of revolutionary cultural relics affect and enhance the audience’s comprehensive experiences was discussed from aspects of bodily perception,spatial interaction,emotional resonance,and value identific...How exhibitions of revolutionary cultural relics affect and enhance the audience’s comprehensive experiences was discussed from aspects of bodily perception,spatial interaction,emotional resonance,and value identification,and the experience design of exhibitions of revolutionary cultural relics was further studied to better carry and convey the spirit of the revolution.Guided by embodied theory,this study was provided with methodological support from various perspectives,and analyzed the current development and existing problems of exhibitions of revolutionary cultural relics through field investigations.Currently,embodied theory is gradually being applied in exhibition design,and the focus of exhibitions is shifted from“objects”to“people”.By collecting direct feelings and feedback from the audience on the exhibitions of revolutionary cultural relics,and theoretical construction and practical application for the experience design of these exhibitions are solidly supported.The needs for emotional and inspirational awakening,education and learning,participation and interaction were revealed.Based on the audience’s behavior,a four-step design method was proposed:enhancing the sense of place,enriching sensory experience,strengthening interactive experiences,and fostering a sense of belonging.Through the application of experiential design in these four dimensions,it aims to reshape the methods of exhibitions of revolutionary cultural relics and promote a deep integration between the exhibitions and embodied theory.展开更多
Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, c...Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, computer modeling of nickel ore leaching process be- came a need and a challenge. In this paper, the design of experiments (DOE) theory was used to determine the optimal experimental design plan matrix based on the D optimality criterion. In the high-pressure sulfuric acid leaching (HPSAL) process for nickel laterite in "Rudjinci" ore in Serbia, the temperature, the sulfuric acid to ore ratio, the stirring speed, and the leaching time as the predictor variables, and the degree of nickel extraction as the response have been considered. To model the process, the multiple linear regression (MLR) and response surface method (RSM), together with the two-level and four-factor full factorial central composite design (CCD) plan, were used. The proposed re- gression models have not been proven adequate. Therefore, the artificial neural network (ANN) approach with the same experimental plan was used in order to reduce operational costs, give a better modeling accuracy, and provide a more successful process optimization. The model is based on the multi-layer neural networks with the back-propagation (BP) learning algorithm and the bipolar sigmoid activation function.展开更多
Recently, some results have been acquired with the Monte- Carlo statistical experiments in the design of ocean en gineering. The results show that Monte-Carlo statistical experiments can be widely used in estimating t...Recently, some results have been acquired with the Monte- Carlo statistical experiments in the design of ocean en gineering. The results show that Monte-Carlo statistical experiments can be widely used in estimating the parameters of wave statistical distributions, checking the probability model of the long- term wave extreme value distribution under a typhoon condition and calculating the failure probability of the ocean platforms.展开更多
One promising joining method for NiTi-SMA (shape memory alloy)-components is laser welding. This joining technology bears huge potential regarding process automation and mechanical properties as well as durability, ...One promising joining method for NiTi-SMA (shape memory alloy)-components is laser welding. This joining technology bears huge potential regarding process automation and mechanical properties as well as durability, especially within the field of small- and medium-sized actuators. However, there is still need for research due to unsolved issues influencing the microstructure and thus effecting mechanical properties as well as SMA-characteristics of these joints. Therefore, the purpose of this paper is the evaluation of quality parameters of NiTi-NiTi-wire-joints. For this purpose, design of experiments with a fractional factorial design is used for the investigation, because of its high potential to decrease experimental effort. This paper provides a basis for future research in the field of SMA-actuators and joining.展开更多
The paper is devoted to the elastostatic calibration of industrial robots,which is used for precise machining of large-dimensional parts made of composite materials.In this technological process,the interaction betwee...The paper is devoted to the elastostatic calibration of industrial robots,which is used for precise machining of large-dimensional parts made of composite materials.In this technological process,the interaction between the robot and the workpiece causes essential elastic deflections of the manipulator components that should be compensated by the robot controller using relevant elastostatic model of this mechanism.To estimate parameters of this model,an advanced calibration technique is applied that is based on the non-linear experiment design theory,which is adopted for this particular application.In contrast to previous works,it is proposed a concept of the user-defined test-pose,which is used to evaluate the calibration experiments quality.In the frame of this concept,the related optimization problem is defined and numerical routines are developed,which allow generating optimal set of manipulator configurations and corresponding forces/torques for a given number of the calibration experiments.Some specific kinematic constraints are also taken into account,which insure feasibility of calibration experiments for the obtained configurations and allow avoiding collision between the robotic manipulator and the measurement equipment.The efficiency of the developed technique is illustrated by an application example that deals with elastostatic calibration of the serial manipulator used for robot-based machining.展开更多
The design of new Satellite Launch Vehicle (SLV) is of interest, especially when a combination of Solid and Liquid Propulsion is included. Proposed is a conceptual design and optimization technique for multistage Lo...The design of new Satellite Launch Vehicle (SLV) is of interest, especially when a combination of Solid and Liquid Propulsion is included. Proposed is a conceptual design and optimization technique for multistage Low Earth Orbit (LEO) bound SLV comprising of solid and liquid stages with the use of Genetic Algorithm (GA) as global optimizer. Convergence of GA is improved by introducing initial population based on the Design of Experiments (DOE) Technique. Latin Hypercube Sampling (LHS)-DOE is used for its good space filling properties. LHS is a stratified random procedure that provides an efficient way of sampling variables from their multivariate distributions. In SLV design minimum Gross Lift offWeight (GLOW) concept is traditionally being sought. Since the development costs tend to vary as a function of GLOW, this minimum GLOW is considered as a minimum development cost concept. The design approach is meaningful to initial design sizing purpose for its computational efficiency gives a quick insight into the vehicle performance prior to detailed design.展开更多
In this study, a design of experiments (DoE) approach was used to develop a PLA open-cell foam morphology using the compression molding technique. The effect of three molding parameters (foaming time, mold opening tem...In this study, a design of experiments (DoE) approach was used to develop a PLA open-cell foam morphology using the compression molding technique. The effect of three molding parameters (foaming time, mold opening temperature, and weight concentration of the ADA blowing agent) on the cellular structure was investigated. A regression equation relating the average cell size to the above three processing parameters was developed from the DoE and the analysis of variance (ANOVA) was used to find the best dimensional fitting parameters based on the experimental data. With the help of the DoE technique, we were able to develop various foam morphologies having different average cell size distribution levels, which is important in the development of open-cell PLA scaffolds for bone regeneration for which the control of cell morphology is crucial for osteoblasts proliferation. For example, at a constant ADA weight concentration of 5.95 wt%, we were able to develop a narrow average cell size distribution ranging between 275 and 300 μm by varying the mold opening temperature between 106°C and 112°C, while maintaining the foaming time constant at 8 min, or by varying the mold foaming time between 6 and 11 min and maintaining the mold opening temperature at 109°C.展开更多
As a highly tempting technology to close the carbon cycle,electrochemical CO_(2)reduction calls for the development of highly efficient and durable electrocatalysts.In the current study,Design of Experiments utilizing...As a highly tempting technology to close the carbon cycle,electrochemical CO_(2)reduction calls for the development of highly efficient and durable electrocatalysts.In the current study,Design of Experiments utilizing the response surface method is exploited to predict the optimal process variables for preparing high-performance Cu catalysts,unraveling that the selectivity towards methane or ethylene can be simply modulated by varying the evaporation parameters,among which the Cu film thickness is the most pivotal factor to determine the product selectivity.The predicted optimal catalyst with a low Cu thickness affords a high methane Faradaic efficiency of 70.6%at the partial current density of 211.8 m A cm^(-2),whereas that of a high Cu thickness achieves a high ethylene selectivity of 66.8%at267.2 m A cm^(-2)in the flow cell.Further structure-performance correlation and in-situ electrospectroscopic measurements attribute the high methane selectivity to isolated Cu clusters with low packing density and monotonous lattice structure,and the high ethylene efficiency to coalesced Cu nanoparticles with rich grain boundaries and lattice defects.The high Cu packing density and crystallographic diversity is of essence to promoting C–C coupling by stabilizing*CO and suppressing*H coverage on the catalyst surface.This work highlights the implementation of scientific and mathematic methods to uncover optimal catalysts and mechanistic understandings toward selective electrochemical CO_(2)reduction.展开更多
For optimization of production processes and product quality,often knowledge of the factors influencing the process outcome is compulsory.Thus,process analytical technology(PAT)that allows deeper insight into the proc...For optimization of production processes and product quality,often knowledge of the factors influencing the process outcome is compulsory.Thus,process analytical technology(PAT)that allows deeper insight into the process and results in a mathematical description of the process behavior as a simple function based on the most important process factors can help to achieve higher production efficiency and quality.The present study aims at characterizing a well-known industrial process,the transesterification reaction of rapeseed oil with methanol to produce fatty acid methyl esters(FAME)for usage as biodiesel in a continuous micro reactor set-up.To this end,a design of experiment approach is applied,where the effects of two process factors,the molar ratio and the total flow rate of the reactants,are investigated.The optimized process target response is the FAME mass fraction in the purified nonpolar phase of the product as a measure of reaction yield.The quantification is performed using attenuated total reflection infrared spectroscopy in combination with partial least squares regression.The data retrieved during the conduction of the DoE experimental plan were used for statistical analysis.A non-linear model indicating a synergistic interaction between the studied factors describes the reactor behavior with a high coefficient of determination(R^(2))of 0.9608.Thus,we applied a PAT approach to generate further insight into this established industrial process.展开更多
Due to operational or physical considerations, standard factorial and response surface method (RSM) design of experiments (DOE) often prove to be unsuitable. In such cases a computer-generated statistically-optima...Due to operational or physical considerations, standard factorial and response surface method (RSM) design of experiments (DOE) often prove to be unsuitable. In such cases a computer-generated statistically-optimal design fills the breech. This article explores vital mathematical properties for evaluating alternative designs with a focus on what is really important for industrial experimenters. To assess "goodness of design" such evaluations must consider the model choice, specific optimality criteria (in particular D and I), precision of estimation based on the fraction of design space (FDS), the number of runs to achieve required precision, lack-of-fit testing, and so forth. With a focus on RSM, all these issues are considered at a practical level, keeping engineers and scientists in mind. This brings to the forefront such considerations as subject-matter knowledge from first principles and experience, factor choice and the feasibility of the experiment design.展开更多
Objective:Quality by design integration is exceedingly imperative for industries dealing with pharmaceuticals,but it diminishes product variability and delivers an extraordinary degree of assurance that the product wo...Objective:Quality by design integration is exceedingly imperative for industries dealing with pharmaceuticals,but it diminishes product variability and delivers an extraordinary degree of assurance that the product would achieve the purpose for which it was formulated.The objective of the manuscript is to strengthen the understanding of the design of experimentation approach from the primary level.Hence,this review paper aims to get one experience with a course emphasizing product quality during its development process.Methods:The present work describes how experimental statistical designs can optimize the process.It is a strategy to improve the manufacturing of products and discuss the main factors involved in the production.The review describes different designs,advantages,disadvantages and design of experiments requirements concerning regulatory submissions.Results:Quality by design encourages the pharmaceutical industry to deal with risk management and proper understanding of products and manufacturing processes,assuring a good quality product.Having knowledge of quality by design and design of experiments in the formulation and process development will be beneficial for the optimization of drug delivery systems in upcoming times.Conclusion:Implementing quality by design at different phases in pharmaceutical manufacturing,the final product with a great degree of reproducible quality may be assured,depending upon experimental data.This contains valuable information in guiding new researchers about the importance and ways of using the design of experiments.展开更多
Lattice structures are three-dimensional structures composed of repeated geometrical shapes with multiple interconnected nodes,providing high strength-to-weight ratios,customizable properties,and efficient use of mate...Lattice structures are three-dimensional structures composed of repeated geometrical shapes with multiple interconnected nodes,providing high strength-to-weight ratios,customizable properties,and efficient use of materials.A smart use of materials leads to reduced fuel consumption and lower operating costs,making them highly desirable for aircraft manufacturers.Furthermore,the customizable properties of lattice structures allow for tailoring to specific design requirements,leading to improved performance and safety for aircraft.These advantages make lattice structures an important focus for research and development in the aviation industry.This paper presents an experimental evaluation of the mechanical compression properties of lattice trusses made with Ti6Al4V,designed for use in an anti-ice system.The truss structures were manufactured using additive manufacturing techniques and tested under compressive loads to determine mechanical properties.Results showed that lattice trusses exhibited high levels of compressive strength,making them suitable for use in applications where mechanical resistance and durability are critical,such as in anti-ice systems.We also highlight the potential of additive manufacturing techniques for the fabrication of lattice trusses with tailored mechanical properties.The study provides valuable insights into the mechanical behavior of Ti6Al4V lattice trusses and their potential applications in anti-ice systems,as well as other areas where high strength-to-weight ratios are required.The results of this research contribute to the development of lightweight,efficient,and durable anti-ice systems for use in aviation and other industries.展开更多
The present work is aimed at determining the optimal geometry layout of a wave energy converter platform for plate energy harvesting performance.A linear potential fluid theory method was applied to analyzing the inte...The present work is aimed at determining the optimal geometry layout of a wave energy converter platform for plate energy harvesting performance.A linear potential fluid theory method was applied to analyzing the interaction between the platform and plate.Three factors of layout geometry were tested and the performance of the plate was analyzed.The methodology of design of experiments was used to confirm factor significance and build response surface model.The 1st order model and the 2nd order model were built to describe the relation between factors and plate performance.The significance of two factors and their interactions were revealed,and an optimal parameter set was found.The wave form in front of the plate confirmed the interactions.It is clear that a wide entrance and enclosing channel for waves can maximize the plate performance.展开更多
Extensive use of lambda-cyhalothrin(LC)for agricultural and domestic pest control leads to the accumulation of its residues in soil and water,which poses a serious threat to the environment.Remediation of LC at the po...Extensive use of lambda-cyhalothrin(LC)for agricultural and domestic pest control leads to the accumulation of its residues in soil and water,which poses a serious threat to the environment.Remediation of LC at the point source is the most effective way to avoid its spread and harmful effects.Therefore,this study was planned to investigate the potential of indigenously isolated bacteria for the remediation of LC in cotton-vegetated soils.Three potent LC-degrading bacteria,Brucella intermedia Halol,Alcaligenes faecalis CH1S,and Aquamicrobium terrae CH1T,were isolated from a pyrethroid-contaminated soil.A consortium CHST comprising these three strains was found to exhibit a higher potential for LC degradation as compared to the individual strains.The degradation of LC by CHST was optimized for four varying factors,i.e.,pH,inoculum density(ID),carbon source(CS),and initial pesticide(i.e.,LC)concentration(PC),by applying Taguchi design of experiment.The contributions of these factors to the biodegradation of LC were found to be in the order of pH>CS>PC>ID.The enhanced degradation of LC(84%)was attained at pH 7.0 in minimum salt medium containing 10 mg L^(-1)LC and 3%inoculum.The consortium CHST was also augmented in sterilized and unsterilized soil microcosms at three PCs,i.e.,2,5,and 10 mg kg^(-1).After 21 d of incubation,complete LC degradation was achieved at 2 mg kg^(-1)PC in sterilized as well as unsterilized soil,whereas at higher PCs,the extent of degradation was comparatively less.At PC of 5 mg kg^(-1),88%and 96%LC degradation were observed in sterilized and unsterilized soils,respectively,compared to 79%and90%degradation at 10 mg kg^(-1),respectively.During biodegradation,the major metabolite of LC,i.e.,3-phenoxybenzoic acid,was produced and further degraded.In a cotton-planted soil spiked with 10 mg kg^(-1)LC,the consortium degraded 91.8%LC,as well as improving the agronomic parameters of the cotton plants.In a nutshell,the consortium CHST was found to be a promising candidate for the remediation of LC contamination at the point source.展开更多
Alumina–spinel refractories used in slit-type purging plugs are susceptible to cross-sectional damage,resulting in a serious mismatch between their service life and that of ladle.Alumina–calcium hexaluminate refract...Alumina–spinel refractories used in slit-type purging plugs are susceptible to cross-sectional damage,resulting in a serious mismatch between their service life and that of ladle.Alumina–calcium hexaluminate refractories have gradually become the new trend in purging plug materials with the development of refining technology.The thermomechanical damage of slit-type purging plugs with alumina–calcium hexaluminate refractory was investigated by the thermo-solid coupling simulation.Combined with the polynomial fitting and design of experiments methods,the influence of thermophysical parameters on temperature and thermal stress of alumina–calcium hexaluminate refractories for purging plugs was systematically analyzed.The results show that the maximum thermal stress of the purging plugs appears during the stages of steel transporting and stirring,and the vulnerable parts are located above Y=0.323 m.The thermal conductivity and the coefficient of thermal expansion of the material are the most sensitive parameters to the temperature and thermal stress inside the structure,respectively.The addition of more calcium hexaluminate can relieve the stress concentration and large deformation around the slits.Consequently,when the content of calcium hexaluminate is 47 wt.%and in the form of aggregate-binder,the temperature and thermal stress distribution inside the refractory are optimal,which can effectively improve the service life of the slit-type purging plug.展开更多
This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a...This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.展开更多
文摘A spice formulation study in Burkina Faso was carried out using local ingredients for the benefit of households. The objective of this study was to propose some spice formulations based on local ingredients in order to reduce the use of chemical spices in the preparation of different dishes. The Design of Experiments (DOE) methodology was used for the formulation of the spices and their physicochemical, nutritional and sensory characteristics were evaluated by standardized and standard methods. The results obtained showed lipid contents (g/100 g DM) ranging from 10.41 ± 0.26 to 15.64 ± 0.68, total sugars from 4.39 ± 0.32 to 5.46 ± 0.31, protein from 3.65 ± 0.17 to 12.04 ± 0.35 and ash from 5.83 ± 0.01 to 7.02 ± 0.01. The polyphenol content ranged from 9.09 ± 1.60 to 11.33 ± 0.90, and the flavonoid content ranged from 0.65 ± 0.03 to 1.08 ± 0.13. The sensory analysis carried out showed that the spices have generally satisfactory organoleptic characteristics. These results constitute new information in the diet of populations and are an alternative to the chemical spices used in their cooking.
基金supported by National Natural Science Foundation of China(Grant Nos.11971204,12271270)Natural Science Foundation of Jiangsu Province of China(Grant No.BK20200108)the Zhongwu Youth Innovative Talent Program of Jiangsu University of Technology and the Third Level Training Object of the Sixth“333 Project”in Jiangsu Province。
文摘The order-of-addition experiments are widely used in many fields,including food and industrial production,but the relative research under prior constraints is limited.The purpose of this paper is to select an optimal sequence under the restriction that component i is added before component j,while it is unachievable to compare all sequences when the number of components m is large.To achieve this,a constrained PWO model is first provided,and then the D-optimal designs for order-of addition experiments with minimal-points via the modified threshold accepting algorithm is established.The effectiveness of the proposed method is demonstrated through a job scheduling problem with a prior constraint for teaching cases.
基金supported by the Leverhulme Trust Research Project(Grant No.RPG-2020-021).
文摘Paper and pulp mills generate substantial volumes of wastewater containing lignin-derived compounds that are challenging to degrade using conventional wastewater treatment methods.This study presents a novel biofilm-based process for enhanced lignin removal in wastewater using the fungus Neurospora discreta,which effectively degrades lignin and forms robust biofilms at the air–liquid interface under specific conditions.The process was optimised using the Taguchi design of experiments approach,and three factors including pH,copper sulphate concentration,and trace element concentration were evaluated at three levels.Experimental data were analysed against three responses:lignin degradation efficiency and the activities of two ligninolytic enzymes(polyphenol oxidase and versatile peroxidase).The results indicated that wastewater pH was the most significant parameter affecting lignin degradation efficiency and enzyme activities.Over 70%lignin degradation was achieved at pH levels of 5 and 6 with copper sulphate concentrations above 4 mg/L,while degradation efficiency drastically dropped to 45%at a pH value of 7.Reversed-phase high-performance liquid chromatography analysis demonstrated the effects of the three factors on the polar and non-polar components of lignin in wastewater,revealing a clear decrease in all peak areas after treatment.Additionally,significant relationships were observed between biofilm properties(including porosity,water retention value,polysaccharide content,and protein content)and lignin removal efficiency.This study also reported for the first time the presence of versatile peroxidase,a ligninolytic enzyme,in Neurospora sp.
基金This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 948769, project title: SuN_2rise)the 《HYDREAM》 project–funded by European Union-Next Generation EU–within the PRIN 2022 program (D.D. 104-02/02/2022 Ministero dell’Università e della Ricerca)supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101107906
文摘Food production demand is constantly growing,entailing a proportional increment in fertilisers and pharmaceuticals use,which are eventually introduced to the environment,leading,among others,to an imbalance in the nitrogen cycle.Electrochemical nitrate reduction reaction is a delocalised route for nitrates elimination and green ammonia production.In the present study,we carry out nitrates electroreduction over a commercial MoS_(2)catalyst,focusing on optimising selected input factors affecting the reaction.Concretely,Doehlert design of experiment and response surface methodology are employed to find the proper combination of supporting salt concentration in the electrolyte,applied potential,and catalyst loading at the working electrode,with the overall aim to boost Faradaic efficiency(FE)and ammonia production.As a matter of fact,varying these input factors,the obtained FE values ranged from∼2%to∼80%,highlighting the strength of the newly conceived approach.Moreover,our multivariate strategy allows the quantification of each factor effect and elucidates hidden interactions between them.Finally,successful extended durability tests are performed for 100 h at both FE and productivity(P)optimal conditions.In parallel,cell electrodes are characterised by in-depth structural,morphological,and surface techniques,before and after ageing,overall demonstrating the outstanding stability of the proposed electrochemical reactor.
基金Sponsored by the Spacial Project of Research on Revolutionary Cultural Relics for College Students in 2024(2024DXSGMWW50)Innovation Fund Project for Postgraduates of Jiangxi Provincial Department of Education(YC2024-S228).
文摘How exhibitions of revolutionary cultural relics affect and enhance the audience’s comprehensive experiences was discussed from aspects of bodily perception,spatial interaction,emotional resonance,and value identification,and the experience design of exhibitions of revolutionary cultural relics was further studied to better carry and convey the spirit of the revolution.Guided by embodied theory,this study was provided with methodological support from various perspectives,and analyzed the current development and existing problems of exhibitions of revolutionary cultural relics through field investigations.Currently,embodied theory is gradually being applied in exhibition design,and the focus of exhibitions is shifted from“objects”to“people”.By collecting direct feelings and feedback from the audience on the exhibitions of revolutionary cultural relics,and theoretical construction and practical application for the experience design of these exhibitions are solidly supported.The needs for emotional and inspirational awakening,education and learning,participation and interaction were revealed.Based on the audience’s behavior,a four-step design method was proposed:enhancing the sense of place,enriching sensory experience,strengthening interactive experiences,and fostering a sense of belonging.Through the application of experiential design in these four dimensions,it aims to reshape the methods of exhibitions of revolutionary cultural relics and promote a deep integration between the exhibitions and embodied theory.
文摘Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, computer modeling of nickel ore leaching process be- came a need and a challenge. In this paper, the design of experiments (DOE) theory was used to determine the optimal experimental design plan matrix based on the D optimality criterion. In the high-pressure sulfuric acid leaching (HPSAL) process for nickel laterite in "Rudjinci" ore in Serbia, the temperature, the sulfuric acid to ore ratio, the stirring speed, and the leaching time as the predictor variables, and the degree of nickel extraction as the response have been considered. To model the process, the multiple linear regression (MLR) and response surface method (RSM), together with the two-level and four-factor full factorial central composite design (CCD) plan, were used. The proposed re- gression models have not been proven adequate. Therefore, the artificial neural network (ANN) approach with the same experimental plan was used in order to reduce operational costs, give a better modeling accuracy, and provide a more successful process optimization. The model is based on the multi-layer neural networks with the back-propagation (BP) learning algorithm and the bipolar sigmoid activation function.
文摘Recently, some results have been acquired with the Monte- Carlo statistical experiments in the design of ocean en gineering. The results show that Monte-Carlo statistical experiments can be widely used in estimating the parameters of wave statistical distributions, checking the probability model of the long- term wave extreme value distribution under a typhoon condition and calculating the failure probability of the ocean platforms.
文摘One promising joining method for NiTi-SMA (shape memory alloy)-components is laser welding. This joining technology bears huge potential regarding process automation and mechanical properties as well as durability, especially within the field of small- and medium-sized actuators. However, there is still need for research due to unsolved issues influencing the microstructure and thus effecting mechanical properties as well as SMA-characteristics of these joints. Therefore, the purpose of this paper is the evaluation of quality parameters of NiTi-NiTi-wire-joints. For this purpose, design of experiments with a fractional factorial design is used for the investigation, because of its high potential to decrease experimental effort. This paper provides a basis for future research in the field of SMA-actuators and joining.
文摘The paper is devoted to the elastostatic calibration of industrial robots,which is used for precise machining of large-dimensional parts made of composite materials.In this technological process,the interaction between the robot and the workpiece causes essential elastic deflections of the manipulator components that should be compensated by the robot controller using relevant elastostatic model of this mechanism.To estimate parameters of this model,an advanced calibration technique is applied that is based on the non-linear experiment design theory,which is adopted for this particular application.In contrast to previous works,it is proposed a concept of the user-defined test-pose,which is used to evaluate the calibration experiments quality.In the frame of this concept,the related optimization problem is defined and numerical routines are developed,which allow generating optimal set of manipulator configurations and corresponding forces/torques for a given number of the calibration experiments.Some specific kinematic constraints are also taken into account,which insure feasibility of calibration experiments for the obtained configurations and allow avoiding collision between the robotic manipulator and the measurement equipment.The efficiency of the developed technique is illustrated by an application example that deals with elastostatic calibration of the serial manipulator used for robot-based machining.
文摘The design of new Satellite Launch Vehicle (SLV) is of interest, especially when a combination of Solid and Liquid Propulsion is included. Proposed is a conceptual design and optimization technique for multistage Low Earth Orbit (LEO) bound SLV comprising of solid and liquid stages with the use of Genetic Algorithm (GA) as global optimizer. Convergence of GA is improved by introducing initial population based on the Design of Experiments (DOE) Technique. Latin Hypercube Sampling (LHS)-DOE is used for its good space filling properties. LHS is a stratified random procedure that provides an efficient way of sampling variables from their multivariate distributions. In SLV design minimum Gross Lift offWeight (GLOW) concept is traditionally being sought. Since the development costs tend to vary as a function of GLOW, this minimum GLOW is considered as a minimum development cost concept. The design approach is meaningful to initial design sizing purpose for its computational efficiency gives a quick insight into the vehicle performance prior to detailed design.
文摘In this study, a design of experiments (DoE) approach was used to develop a PLA open-cell foam morphology using the compression molding technique. The effect of three molding parameters (foaming time, mold opening temperature, and weight concentration of the ADA blowing agent) on the cellular structure was investigated. A regression equation relating the average cell size to the above three processing parameters was developed from the DoE and the analysis of variance (ANOVA) was used to find the best dimensional fitting parameters based on the experimental data. With the help of the DoE technique, we were able to develop various foam morphologies having different average cell size distribution levels, which is important in the development of open-cell PLA scaffolds for bone regeneration for which the control of cell morphology is crucial for osteoblasts proliferation. For example, at a constant ADA weight concentration of 5.95 wt%, we were able to develop a narrow average cell size distribution ranging between 275 and 300 μm by varying the mold opening temperature between 106°C and 112°C, while maintaining the foaming time constant at 8 min, or by varying the mold foaming time between 6 and 11 min and maintaining the mold opening temperature at 109°C.
基金supported by the National Key R&D Program of China(2020YFB1505703)the National Natural Science Foundation of China(22072101,22075193)+2 种基金supported by the Natural Science Foundation of Jiangsu Province(BK20211306)the Six Talent Peaks Project in Jiangsu Province(TD-XCL-006)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions。
文摘As a highly tempting technology to close the carbon cycle,electrochemical CO_(2)reduction calls for the development of highly efficient and durable electrocatalysts.In the current study,Design of Experiments utilizing the response surface method is exploited to predict the optimal process variables for preparing high-performance Cu catalysts,unraveling that the selectivity towards methane or ethylene can be simply modulated by varying the evaporation parameters,among which the Cu film thickness is the most pivotal factor to determine the product selectivity.The predicted optimal catalyst with a low Cu thickness affords a high methane Faradaic efficiency of 70.6%at the partial current density of 211.8 m A cm^(-2),whereas that of a high Cu thickness achieves a high ethylene selectivity of 66.8%at267.2 m A cm^(-2)in the flow cell.Further structure-performance correlation and in-situ electrospectroscopic measurements attribute the high methane selectivity to isolated Cu clusters with low packing density and monotonous lattice structure,and the high ethylene efficiency to coalesced Cu nanoparticles with rich grain boundaries and lattice defects.The high Cu packing density and crystallographic diversity is of essence to promoting C–C coupling by stabilizing*CO and suppressing*H coverage on the catalyst surface.This work highlights the implementation of scientific and mathematic methods to uncover optimal catalysts and mechanistic understandings toward selective electrochemical CO_(2)reduction.
文摘For optimization of production processes and product quality,often knowledge of the factors influencing the process outcome is compulsory.Thus,process analytical technology(PAT)that allows deeper insight into the process and results in a mathematical description of the process behavior as a simple function based on the most important process factors can help to achieve higher production efficiency and quality.The present study aims at characterizing a well-known industrial process,the transesterification reaction of rapeseed oil with methanol to produce fatty acid methyl esters(FAME)for usage as biodiesel in a continuous micro reactor set-up.To this end,a design of experiment approach is applied,where the effects of two process factors,the molar ratio and the total flow rate of the reactants,are investigated.The optimized process target response is the FAME mass fraction in the purified nonpolar phase of the product as a measure of reaction yield.The quantification is performed using attenuated total reflection infrared spectroscopy in combination with partial least squares regression.The data retrieved during the conduction of the DoE experimental plan were used for statistical analysis.A non-linear model indicating a synergistic interaction between the studied factors describes the reactor behavior with a high coefficient of determination(R^(2))of 0.9608.Thus,we applied a PAT approach to generate further insight into this established industrial process.
文摘Due to operational or physical considerations, standard factorial and response surface method (RSM) design of experiments (DOE) often prove to be unsuitable. In such cases a computer-generated statistically-optimal design fills the breech. This article explores vital mathematical properties for evaluating alternative designs with a focus on what is really important for industrial experimenters. To assess "goodness of design" such evaluations must consider the model choice, specific optimality criteria (in particular D and I), precision of estimation based on the fraction of design space (FDS), the number of runs to achieve required precision, lack-of-fit testing, and so forth. With a focus on RSM, all these issues are considered at a practical level, keeping engineers and scientists in mind. This brings to the forefront such considerations as subject-matter knowledge from first principles and experience, factor choice and the feasibility of the experiment design.
文摘Objective:Quality by design integration is exceedingly imperative for industries dealing with pharmaceuticals,but it diminishes product variability and delivers an extraordinary degree of assurance that the product would achieve the purpose for which it was formulated.The objective of the manuscript is to strengthen the understanding of the design of experimentation approach from the primary level.Hence,this review paper aims to get one experience with a course emphasizing product quality during its development process.Methods:The present work describes how experimental statistical designs can optimize the process.It is a strategy to improve the manufacturing of products and discuss the main factors involved in the production.The review describes different designs,advantages,disadvantages and design of experiments requirements concerning regulatory submissions.Results:Quality by design encourages the pharmaceutical industry to deal with risk management and proper understanding of products and manufacturing processes,assuring a good quality product.Having knowledge of quality by design and design of experiments in the formulation and process development will be beneficial for the optimization of drug delivery systems in upcoming times.Conclusion:Implementing quality by design at different phases in pharmaceutical manufacturing,the final product with a great degree of reproducible quality may be assured,depending upon experimental data.This contains valuable information in guiding new researchers about the importance and ways of using the design of experiments.
文摘Lattice structures are three-dimensional structures composed of repeated geometrical shapes with multiple interconnected nodes,providing high strength-to-weight ratios,customizable properties,and efficient use of materials.A smart use of materials leads to reduced fuel consumption and lower operating costs,making them highly desirable for aircraft manufacturers.Furthermore,the customizable properties of lattice structures allow for tailoring to specific design requirements,leading to improved performance and safety for aircraft.These advantages make lattice structures an important focus for research and development in the aviation industry.This paper presents an experimental evaluation of the mechanical compression properties of lattice trusses made with Ti6Al4V,designed for use in an anti-ice system.The truss structures were manufactured using additive manufacturing techniques and tested under compressive loads to determine mechanical properties.Results showed that lattice trusses exhibited high levels of compressive strength,making them suitable for use in applications where mechanical resistance and durability are critical,such as in anti-ice systems.We also highlight the potential of additive manufacturing techniques for the fabrication of lattice trusses with tailored mechanical properties.The study provides valuable insights into the mechanical behavior of Ti6Al4V lattice trusses and their potential applications in anti-ice systems,as well as other areas where high strength-to-weight ratios are required.The results of this research contribute to the development of lightweight,efficient,and durable anti-ice systems for use in aviation and other industries.
基金the Marine Renewable Energy Special Fund of China(No.QDME2013ZB01)the National Research Program for High Technology Ship Development of China(No.MIIT 2014-498)。
文摘The present work is aimed at determining the optimal geometry layout of a wave energy converter platform for plate energy harvesting performance.A linear potential fluid theory method was applied to analyzing the interaction between the platform and plate.Three factors of layout geometry were tested and the performance of the plate was analyzed.The methodology of design of experiments was used to confirm factor significance and build response surface model.The 1st order model and the 2nd order model were built to describe the relation between factors and plate performance.The significance of two factors and their interactions were revealed,and an optimal parameter set was found.The wave form in front of the plate confirmed the interactions.It is clear that a wide entrance and enclosing channel for waves can maximize the plate performance.
基金supported by the Higher Education Commission(HEC),Pakistan(No.NRPU 9570)。
文摘Extensive use of lambda-cyhalothrin(LC)for agricultural and domestic pest control leads to the accumulation of its residues in soil and water,which poses a serious threat to the environment.Remediation of LC at the point source is the most effective way to avoid its spread and harmful effects.Therefore,this study was planned to investigate the potential of indigenously isolated bacteria for the remediation of LC in cotton-vegetated soils.Three potent LC-degrading bacteria,Brucella intermedia Halol,Alcaligenes faecalis CH1S,and Aquamicrobium terrae CH1T,were isolated from a pyrethroid-contaminated soil.A consortium CHST comprising these three strains was found to exhibit a higher potential for LC degradation as compared to the individual strains.The degradation of LC by CHST was optimized for four varying factors,i.e.,pH,inoculum density(ID),carbon source(CS),and initial pesticide(i.e.,LC)concentration(PC),by applying Taguchi design of experiment.The contributions of these factors to the biodegradation of LC were found to be in the order of pH>CS>PC>ID.The enhanced degradation of LC(84%)was attained at pH 7.0 in minimum salt medium containing 10 mg L^(-1)LC and 3%inoculum.The consortium CHST was also augmented in sterilized and unsterilized soil microcosms at three PCs,i.e.,2,5,and 10 mg kg^(-1).After 21 d of incubation,complete LC degradation was achieved at 2 mg kg^(-1)PC in sterilized as well as unsterilized soil,whereas at higher PCs,the extent of degradation was comparatively less.At PC of 5 mg kg^(-1),88%and 96%LC degradation were observed in sterilized and unsterilized soils,respectively,compared to 79%and90%degradation at 10 mg kg^(-1),respectively.During biodegradation,the major metabolite of LC,i.e.,3-phenoxybenzoic acid,was produced and further degraded.In a cotton-planted soil spiked with 10 mg kg^(-1)LC,the consortium degraded 91.8%LC,as well as improving the agronomic parameters of the cotton plants.In a nutshell,the consortium CHST was found to be a promising candidate for the remediation of LC contamination at the point source.
基金financial support from the National Natural Science Foundation of China(U20A20270,2020BHB010,51702240,51872211 and 51802230).
文摘Alumina–spinel refractories used in slit-type purging plugs are susceptible to cross-sectional damage,resulting in a serious mismatch between their service life and that of ladle.Alumina–calcium hexaluminate refractories have gradually become the new trend in purging plug materials with the development of refining technology.The thermomechanical damage of slit-type purging plugs with alumina–calcium hexaluminate refractory was investigated by the thermo-solid coupling simulation.Combined with the polynomial fitting and design of experiments methods,the influence of thermophysical parameters on temperature and thermal stress of alumina–calcium hexaluminate refractories for purging plugs was systematically analyzed.The results show that the maximum thermal stress of the purging plugs appears during the stages of steel transporting and stirring,and the vulnerable parts are located above Y=0.323 m.The thermal conductivity and the coefficient of thermal expansion of the material are the most sensitive parameters to the temperature and thermal stress inside the structure,respectively.The addition of more calcium hexaluminate can relieve the stress concentration and large deformation around the slits.Consequently,when the content of calcium hexaluminate is 47 wt.%and in the form of aggregate-binder,the temperature and thermal stress distribution inside the refractory are optimal,which can effectively improve the service life of the slit-type purging plug.
基金This research was funded by the Faculty of Engineering,King Mongkut’s University of Technology North Bangkok.Contract No.ENG-NEW-66-39.
文摘This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.