A spice formulation study in Burkina Faso was carried out using local ingredients for the benefit of households. The objective of this study was to propose some spice formulations based on local ingredients in order t...A spice formulation study in Burkina Faso was carried out using local ingredients for the benefit of households. The objective of this study was to propose some spice formulations based on local ingredients in order to reduce the use of chemical spices in the preparation of different dishes. The Design of Experiments (DOE) methodology was used for the formulation of the spices and their physicochemical, nutritional and sensory characteristics were evaluated by standardized and standard methods. The results obtained showed lipid contents (g/100 g DM) ranging from 10.41 ± 0.26 to 15.64 ± 0.68, total sugars from 4.39 ± 0.32 to 5.46 ± 0.31, protein from 3.65 ± 0.17 to 12.04 ± 0.35 and ash from 5.83 ± 0.01 to 7.02 ± 0.01. The polyphenol content ranged from 9.09 ± 1.60 to 11.33 ± 0.90, and the flavonoid content ranged from 0.65 ± 0.03 to 1.08 ± 0.13. The sensory analysis carried out showed that the spices have generally satisfactory organoleptic characteristics. These results constitute new information in the diet of populations and are an alternative to the chemical spices used in their cooking.展开更多
Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, c...Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, computer modeling of nickel ore leaching process be- came a need and a challenge. In this paper, the design of experiments (DOE) theory was used to determine the optimal experimental design plan matrix based on the D optimality criterion. In the high-pressure sulfuric acid leaching (HPSAL) process for nickel laterite in "Rudjinci" ore in Serbia, the temperature, the sulfuric acid to ore ratio, the stirring speed, and the leaching time as the predictor variables, and the degree of nickel extraction as the response have been considered. To model the process, the multiple linear regression (MLR) and response surface method (RSM), together with the two-level and four-factor full factorial central composite design (CCD) plan, were used. The proposed re- gression models have not been proven adequate. Therefore, the artificial neural network (ANN) approach with the same experimental plan was used in order to reduce operational costs, give a better modeling accuracy, and provide a more successful process optimization. The model is based on the multi-layer neural networks with the back-propagation (BP) learning algorithm and the bipolar sigmoid activation function.展开更多
Recently, some results have been acquired with the Monte- Carlo statistical experiments in the design of ocean en gineering. The results show that Monte-Carlo statistical experiments can be widely used in estimating t...Recently, some results have been acquired with the Monte- Carlo statistical experiments in the design of ocean en gineering. The results show that Monte-Carlo statistical experiments can be widely used in estimating the parameters of wave statistical distributions, checking the probability model of the long- term wave extreme value distribution under a typhoon condition and calculating the failure probability of the ocean platforms.展开更多
One promising joining method for NiTi-SMA (shape memory alloy)-components is laser welding. This joining technology bears huge potential regarding process automation and mechanical properties as well as durability, ...One promising joining method for NiTi-SMA (shape memory alloy)-components is laser welding. This joining technology bears huge potential regarding process automation and mechanical properties as well as durability, especially within the field of small- and medium-sized actuators. However, there is still need for research due to unsolved issues influencing the microstructure and thus effecting mechanical properties as well as SMA-characteristics of these joints. Therefore, the purpose of this paper is the evaluation of quality parameters of NiTi-NiTi-wire-joints. For this purpose, design of experiments with a fractional factorial design is used for the investigation, because of its high potential to decrease experimental effort. This paper provides a basis for future research in the field of SMA-actuators and joining.展开更多
The paper is devoted to the elastostatic calibration of industrial robots,which is used for precise machining of large-dimensional parts made of composite materials.In this technological process,the interaction betwee...The paper is devoted to the elastostatic calibration of industrial robots,which is used for precise machining of large-dimensional parts made of composite materials.In this technological process,the interaction between the robot and the workpiece causes essential elastic deflections of the manipulator components that should be compensated by the robot controller using relevant elastostatic model of this mechanism.To estimate parameters of this model,an advanced calibration technique is applied that is based on the non-linear experiment design theory,which is adopted for this particular application.In contrast to previous works,it is proposed a concept of the user-defined test-pose,which is used to evaluate the calibration experiments quality.In the frame of this concept,the related optimization problem is defined and numerical routines are developed,which allow generating optimal set of manipulator configurations and corresponding forces/torques for a given number of the calibration experiments.Some specific kinematic constraints are also taken into account,which insure feasibility of calibration experiments for the obtained configurations and allow avoiding collision between the robotic manipulator and the measurement equipment.The efficiency of the developed technique is illustrated by an application example that deals with elastostatic calibration of the serial manipulator used for robot-based machining.展开更多
The design of new Satellite Launch Vehicle (SLV) is of interest, especially when a combination of Solid and Liquid Propulsion is included. Proposed is a conceptual design and optimization technique for multistage Lo...The design of new Satellite Launch Vehicle (SLV) is of interest, especially when a combination of Solid and Liquid Propulsion is included. Proposed is a conceptual design and optimization technique for multistage Low Earth Orbit (LEO) bound SLV comprising of solid and liquid stages with the use of Genetic Algorithm (GA) as global optimizer. Convergence of GA is improved by introducing initial population based on the Design of Experiments (DOE) Technique. Latin Hypercube Sampling (LHS)-DOE is used for its good space filling properties. LHS is a stratified random procedure that provides an efficient way of sampling variables from their multivariate distributions. In SLV design minimum Gross Lift offWeight (GLOW) concept is traditionally being sought. Since the development costs tend to vary as a function of GLOW, this minimum GLOW is considered as a minimum development cost concept. The design approach is meaningful to initial design sizing purpose for its computational efficiency gives a quick insight into the vehicle performance prior to detailed design.展开更多
In this study, a design of experiments (DoE) approach was used to develop a PLA open-cell foam morphology using the compression molding technique. The effect of three molding parameters (foaming time, mold opening tem...In this study, a design of experiments (DoE) approach was used to develop a PLA open-cell foam morphology using the compression molding technique. The effect of three molding parameters (foaming time, mold opening temperature, and weight concentration of the ADA blowing agent) on the cellular structure was investigated. A regression equation relating the average cell size to the above three processing parameters was developed from the DoE and the analysis of variance (ANOVA) was used to find the best dimensional fitting parameters based on the experimental data. With the help of the DoE technique, we were able to develop various foam morphologies having different average cell size distribution levels, which is important in the development of open-cell PLA scaffolds for bone regeneration for which the control of cell morphology is crucial for osteoblasts proliferation. For example, at a constant ADA weight concentration of 5.95 wt%, we were able to develop a narrow average cell size distribution ranging between 275 and 300 μm by varying the mold opening temperature between 106°C and 112°C, while maintaining the foaming time constant at 8 min, or by varying the mold foaming time between 6 and 11 min and maintaining the mold opening temperature at 109°C.展开更多
As a highly tempting technology to close the carbon cycle,electrochemical CO_(2)reduction calls for the development of highly efficient and durable electrocatalysts.In the current study,Design of Experiments utilizing...As a highly tempting technology to close the carbon cycle,electrochemical CO_(2)reduction calls for the development of highly efficient and durable electrocatalysts.In the current study,Design of Experiments utilizing the response surface method is exploited to predict the optimal process variables for preparing high-performance Cu catalysts,unraveling that the selectivity towards methane or ethylene can be simply modulated by varying the evaporation parameters,among which the Cu film thickness is the most pivotal factor to determine the product selectivity.The predicted optimal catalyst with a low Cu thickness affords a high methane Faradaic efficiency of 70.6%at the partial current density of 211.8 m A cm^(-2),whereas that of a high Cu thickness achieves a high ethylene selectivity of 66.8%at267.2 m A cm^(-2)in the flow cell.Further structure-performance correlation and in-situ electrospectroscopic measurements attribute the high methane selectivity to isolated Cu clusters with low packing density and monotonous lattice structure,and the high ethylene efficiency to coalesced Cu nanoparticles with rich grain boundaries and lattice defects.The high Cu packing density and crystallographic diversity is of essence to promoting C–C coupling by stabilizing*CO and suppressing*H coverage on the catalyst surface.This work highlights the implementation of scientific and mathematic methods to uncover optimal catalysts and mechanistic understandings toward selective electrochemical CO_(2)reduction.展开更多
For optimization of production processes and product quality,often knowledge of the factors influencing the process outcome is compulsory.Thus,process analytical technology(PAT)that allows deeper insight into the proc...For optimization of production processes and product quality,often knowledge of the factors influencing the process outcome is compulsory.Thus,process analytical technology(PAT)that allows deeper insight into the process and results in a mathematical description of the process behavior as a simple function based on the most important process factors can help to achieve higher production efficiency and quality.The present study aims at characterizing a well-known industrial process,the transesterification reaction of rapeseed oil with methanol to produce fatty acid methyl esters(FAME)for usage as biodiesel in a continuous micro reactor set-up.To this end,a design of experiment approach is applied,where the effects of two process factors,the molar ratio and the total flow rate of the reactants,are investigated.The optimized process target response is the FAME mass fraction in the purified nonpolar phase of the product as a measure of reaction yield.The quantification is performed using attenuated total reflection infrared spectroscopy in combination with partial least squares regression.The data retrieved during the conduction of the DoE experimental plan were used for statistical analysis.A non-linear model indicating a synergistic interaction between the studied factors describes the reactor behavior with a high coefficient of determination(R^(2))of 0.9608.Thus,we applied a PAT approach to generate further insight into this established industrial process.展开更多
Due to operational or physical considerations, standard factorial and response surface method (RSM) design of experiments (DOE) often prove to be unsuitable. In such cases a computer-generated statistically-optima...Due to operational or physical considerations, standard factorial and response surface method (RSM) design of experiments (DOE) often prove to be unsuitable. In such cases a computer-generated statistically-optimal design fills the breech. This article explores vital mathematical properties for evaluating alternative designs with a focus on what is really important for industrial experimenters. To assess "goodness of design" such evaluations must consider the model choice, specific optimality criteria (in particular D and I), precision of estimation based on the fraction of design space (FDS), the number of runs to achieve required precision, lack-of-fit testing, and so forth. With a focus on RSM, all these issues are considered at a practical level, keeping engineers and scientists in mind. This brings to the forefront such considerations as subject-matter knowledge from first principles and experience, factor choice and the feasibility of the experiment design.展开更多
Objective:Quality by design integration is exceedingly imperative for industries dealing with pharmaceuticals,but it diminishes product variability and delivers an extraordinary degree of assurance that the product wo...Objective:Quality by design integration is exceedingly imperative for industries dealing with pharmaceuticals,but it diminishes product variability and delivers an extraordinary degree of assurance that the product would achieve the purpose for which it was formulated.The objective of the manuscript is to strengthen the understanding of the design of experimentation approach from the primary level.Hence,this review paper aims to get one experience with a course emphasizing product quality during its development process.Methods:The present work describes how experimental statistical designs can optimize the process.It is a strategy to improve the manufacturing of products and discuss the main factors involved in the production.The review describes different designs,advantages,disadvantages and design of experiments requirements concerning regulatory submissions.Results:Quality by design encourages the pharmaceutical industry to deal with risk management and proper understanding of products and manufacturing processes,assuring a good quality product.Having knowledge of quality by design and design of experiments in the formulation and process development will be beneficial for the optimization of drug delivery systems in upcoming times.Conclusion:Implementing quality by design at different phases in pharmaceutical manufacturing,the final product with a great degree of reproducible quality may be assured,depending upon experimental data.This contains valuable information in guiding new researchers about the importance and ways of using the design of experiments.展开更多
How exhibitions of revolutionary cultural relics affect and enhance the audience’s comprehensive experiences was discussed from aspects of bodily perception,spatial interaction,emotional resonance,and value identific...How exhibitions of revolutionary cultural relics affect and enhance the audience’s comprehensive experiences was discussed from aspects of bodily perception,spatial interaction,emotional resonance,and value identification,and the experience design of exhibitions of revolutionary cultural relics was further studied to better carry and convey the spirit of the revolution.Guided by embodied theory,this study was provided with methodological support from various perspectives,and analyzed the current development and existing problems of exhibitions of revolutionary cultural relics through field investigations.Currently,embodied theory is gradually being applied in exhibition design,and the focus of exhibitions is shifted from“objects”to“people”.By collecting direct feelings and feedback from the audience on the exhibitions of revolutionary cultural relics,and theoretical construction and practical application for the experience design of these exhibitions are solidly supported.The needs for emotional and inspirational awakening,education and learning,participation and interaction were revealed.Based on the audience’s behavior,a four-step design method was proposed:enhancing the sense of place,enriching sensory experience,strengthening interactive experiences,and fostering a sense of belonging.Through the application of experiential design in these four dimensions,it aims to reshape the methods of exhibitions of revolutionary cultural relics and promote a deep integration between the exhibitions and embodied theory.展开更多
[Objective] The aim was to explore the biological effect of low energy ion beam mediated parameters with fractional factorial design method. [Method] The twin-embryos seed of autotetraploid rice DER10-04-01 was taken ...[Objective] The aim was to explore the biological effect of low energy ion beam mediated parameters with fractional factorial design method. [Method] The twin-embryos seed of autotetraploid rice DER10-04-01 was taken as the receptor material,and the Elymus dahuricus Turcz. was used as materials to provide DNA to carry out the ion beam mediated experiment. And the fractional factorial design method was used to study the parameters of low enery N+ ion beam mediated foreign genes into rice. [Result] The implantation energy,dose,DNA concentrations and immersion time of DNA showed significant biological effects on the normal growth and development of DER10-04-01,in which the biological effects of implantation dose and DNA concentrations were relatively obvious. [Conclusion] The implantation energy,dose,DNA concentrations and immersion time of DNA were major factors showing important effects on the experimental result in ion beam mediated foreign genetic materials.展开更多
Device robust-design is inherently a multiple-objective optimization problem.Using design of experiments (DoE) combined with response surface methodology (RSM) can satisfy the great incentive to reduce the number of t...Device robust-design is inherently a multiple-objective optimization problem.Using design of experiments (DoE) combined with response surface methodology (RSM) can satisfy the great incentive to reduce the number of technology CAD(TCAD) simulations that need to be performed.However,the errors of RSM models might be large enough to diminish the validity of the results for some nonlinear problems.To find the feasible design space,a new method with objectives-oriented design in generations that takes the errors of RSM model into account is presented.After the augment design of experiments in promising space according to the results of RSM model in current generation,the feasible space will be emerging as the model errors deceasing.The results on FIBMOS examples show that the methodology is efficient.展开更多
Cavitation is one of the most important performance of centrifugal pumps. However, the current optimization works of centrifugal pump are mostly focusing on hydraulic efficiency only, which may result in poor cavitati...Cavitation is one of the most important performance of centrifugal pumps. However, the current optimization works of centrifugal pump are mostly focusing on hydraulic efficiency only, which may result in poor cavitation performance. Therefore, it is necessary to find an appropriate solution to improve cavitation performance with acceptable efficiency. In this paper, to improve the cavitation performance of a centrifugal pump with a vaned diffuser, the influence of impeller geometric parameters on the cavitation of the pump is investigated using the orthogonal design of experiment (DOE) based on computational fluid dynamics. The impeller inlet diameter D1, inlet incidence angle Aft, and blade wrap angle ~0 are selected as the main impeller geometric parameters and the orthogonal experiment of L9(3"3) is performed. Three-dimensional steady simulations for cavitation are conducted by using constant gas mass fraction model with second-order upwind, and the predicated cavitation performance is validated by laboratory experiment. The optimization results are obtained by the range analysis method to improve cavitation performance without obvious decreasing the efficiency of the centrifugal pump. The internal flow of the pump is analyzed in order to identify the flow behavior that can affect cavitation performance. The results show that D1 has the greatest influence on the pump cavitation and the final optimized impeller provides better flow distribution at blade leading edge. The final optimized impeller accomplishes better cavitation and hydraulic performance and the NPSHR decreases by 0.63m compared with the original one. The presented work supplies a feasible route in engineering practice to optimize a centrifugal pump impeller for better cavitation performance.展开更多
Tolerance design plays an important role in reliability design for electronic circuits. The traditional method only focuses on the consistency of output response. It is not able to meet the needs of increasing develop...Tolerance design plays an important role in reliability design for electronic circuits. The traditional method only focuses on the consistency of output response. It is not able to meet the needs of increasing development of electronic products. This paper researches the state of related fields and proposes a method of multi-objective reliability tolerance design. The characteristics of output response and operating stresses on critical components are both defined as design objectives. Critical components and their operating stresses are determined by failure mode and effect analysis (FMEA) and fault tree analysis (FTA). Sensitivity analysis is carried out to determine sensitive parameters that affect the design objectives significantly. Monte Carlo and worst-case analysis are utilized to explore the tolerance levels of sensitive parameters. Design of experiment and regression analysis are applied in this method. The optimal tolerance levels are selected in accord with a quality-cost model to improve consistency of output response and reduce failure rates of critical components synchronously. The application in light-emitting diode (LED) drivers indicates details and potential. It shows that the proposed method provides a more effective way to improve performance and reliability of electronic circuits.展开更多
Four process parameters, pad diameter, stencil thickness, ball diameter and stand-off were chosen as four control factors. By using an L25 (5^6 ) orthogonal array the ceramic ball grid array ( CBGA ) solder joints...Four process parameters, pad diameter, stencil thickness, ball diameter and stand-off were chosen as four control factors. By using an L25 (5^6 ) orthogonal array the ceramic ball grid array ( CBGA ) solder joints which have 25 different combinations of process parameters were designed. The numerical models of all the 25 CBGA solder joints were developed using the Sugrace Evolver. Utilizing the sugrace coordinate exported from the 25 CBGA solder joints numerical models, the finite element analysis models were set up and the nonlinear finite element analysis of the CBGA solder joints under thermal cycles were pegrormed by ANSYS. The thermal fatigue life of CBGA solder joint was calculated using Coffin-Manson equation. Based on the calculated thermal fatigue life results, the range analysis and the variance analysis were pegrormed. The results show that the fatigue life of CBGA solder joint is affected by the pad diameter, the stencil thickness, the ball diameter and the stand-off in a descending order, the best combination of process parameters results in the longest fatigue life is 0.07 mm stand-off, 0.125 mm stencil thickness of, 0.85 mm ball diameter and 0. 89 mm pad diameter. With 95% confidence the pad diameter has a significant effect on the reliability of CBGA solder joints whereas the stand-off, the stencil thickness and the ball diameter have little effect on the reliability of CBGA solder joints.展开更多
Efficient experiment design is of great significance for the validation of simulation model with high nonlinearity and large input space.Excessive validation experiment raises the cost while insufficient test increase...Efficient experiment design is of great significance for the validation of simulation model with high nonlinearity and large input space.Excessive validation experiment raises the cost while insufficient test increases the risks of accepting an invalid model.In this paper,an adaptive sequential experiment design method combining global exploration criterion and local exploitation criterion is proposed.The exploration criterion utilizes discrepancy metric to improve the space-filling property of the design points while the exploitation criterion employs the leave one out error to discover informative points.To avoid the clustering of samples in the local region,an adaptive weight updating approach is provided to maintain the balance between exploration and exploitation.Besides,the credibility distribution function characterizing the relationship between the input and result credibility is introduced to support the model validation experiment design.Finally,six benchmark problems and an engineering case are applied to examine the performance of the proposed method.The experiments indicate that the proposed method achieves satisfactory performance for function approximation in accuracy and convergence.展开更多
The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these pa...The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these parameters were determined by the "trial and error" method, resulting in wastes of time and funds. In this paper, a new approach of regression orthogonal design with plasma simulation experiments is proposed to investigate the sensitivity of the structural parameters on the uniformity of plasma characteristics. The tool for simulating plasma is CFD-ACE+, which is commercial multi-physical modeling software that has been proven to be accurate for plasma simulation. The simulated experimental results are analyzed to get a regression equation on three structural parameters. Through this equation, engineers can compute the uniformity of the electron number density rapidly without modeling by CFD-ACE+. An optimization performed at the end produces good results.展开更多
Electromagnetic stir casting process of A357-Si C nanocomposite was discussed using the D-optimal design of experiment(DODOE) method. As the main objective, nine random experiments obtained by DX-7 software were perfo...Electromagnetic stir casting process of A357-Si C nanocomposite was discussed using the D-optimal design of experiment(DODOE) method. As the main objective, nine random experiments obtained by DX-7 software were performed. By this method, A357-Si C nanocomposites with 0.5, 1.0 and 1.5 wt.% Si C were fabricated at three different frequencies(10, 35 and 60 Hz) in the experimental stage. The microstructural evolution was characterized by scanning electron and optical microscopes, and the mechanical properties were investigated using hardness and roomtemperature uniaxial tensile tests. The results showed that the homogeneous distribution of Si C nanoparticles leads to the microstructure evolution from dendritic to non-dendritic form and a reduction of size by 73.9%. Additionally, based on DODOE, F-values of 44.80 and 179.64 were achieved for yield stress(YS) and ultimate tensile strength(UTS), respectively, implying that the model is significant and the variables(Si C fraction and stirring frequency) were appropriately selected. The optimum values of the Si C fraction and stirring frequency were found to be 1.5 wt.% and 60 Hz, respectively. In this case, YS and UTS for A357-Si C nanocomposites were obtained to be 120 and 188 MPa(57.7% and 57.9 % increase compared with those of the as-cast sample), respectively.展开更多
文摘A spice formulation study in Burkina Faso was carried out using local ingredients for the benefit of households. The objective of this study was to propose some spice formulations based on local ingredients in order to reduce the use of chemical spices in the preparation of different dishes. The Design of Experiments (DOE) methodology was used for the formulation of the spices and their physicochemical, nutritional and sensory characteristics were evaluated by standardized and standard methods. The results obtained showed lipid contents (g/100 g DM) ranging from 10.41 ± 0.26 to 15.64 ± 0.68, total sugars from 4.39 ± 0.32 to 5.46 ± 0.31, protein from 3.65 ± 0.17 to 12.04 ± 0.35 and ash from 5.83 ± 0.01 to 7.02 ± 0.01. The polyphenol content ranged from 9.09 ± 1.60 to 11.33 ± 0.90, and the flavonoid content ranged from 0.65 ± 0.03 to 1.08 ± 0.13. The sensory analysis carried out showed that the spices have generally satisfactory organoleptic characteristics. These results constitute new information in the diet of populations and are an alternative to the chemical spices used in their cooking.
文摘Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, computer modeling of nickel ore leaching process be- came a need and a challenge. In this paper, the design of experiments (DOE) theory was used to determine the optimal experimental design plan matrix based on the D optimality criterion. In the high-pressure sulfuric acid leaching (HPSAL) process for nickel laterite in "Rudjinci" ore in Serbia, the temperature, the sulfuric acid to ore ratio, the stirring speed, and the leaching time as the predictor variables, and the degree of nickel extraction as the response have been considered. To model the process, the multiple linear regression (MLR) and response surface method (RSM), together with the two-level and four-factor full factorial central composite design (CCD) plan, were used. The proposed re- gression models have not been proven adequate. Therefore, the artificial neural network (ANN) approach with the same experimental plan was used in order to reduce operational costs, give a better modeling accuracy, and provide a more successful process optimization. The model is based on the multi-layer neural networks with the back-propagation (BP) learning algorithm and the bipolar sigmoid activation function.
文摘Recently, some results have been acquired with the Monte- Carlo statistical experiments in the design of ocean en gineering. The results show that Monte-Carlo statistical experiments can be widely used in estimating the parameters of wave statistical distributions, checking the probability model of the long- term wave extreme value distribution under a typhoon condition and calculating the failure probability of the ocean platforms.
文摘One promising joining method for NiTi-SMA (shape memory alloy)-components is laser welding. This joining technology bears huge potential regarding process automation and mechanical properties as well as durability, especially within the field of small- and medium-sized actuators. However, there is still need for research due to unsolved issues influencing the microstructure and thus effecting mechanical properties as well as SMA-characteristics of these joints. Therefore, the purpose of this paper is the evaluation of quality parameters of NiTi-NiTi-wire-joints. For this purpose, design of experiments with a fractional factorial design is used for the investigation, because of its high potential to decrease experimental effort. This paper provides a basis for future research in the field of SMA-actuators and joining.
文摘The paper is devoted to the elastostatic calibration of industrial robots,which is used for precise machining of large-dimensional parts made of composite materials.In this technological process,the interaction between the robot and the workpiece causes essential elastic deflections of the manipulator components that should be compensated by the robot controller using relevant elastostatic model of this mechanism.To estimate parameters of this model,an advanced calibration technique is applied that is based on the non-linear experiment design theory,which is adopted for this particular application.In contrast to previous works,it is proposed a concept of the user-defined test-pose,which is used to evaluate the calibration experiments quality.In the frame of this concept,the related optimization problem is defined and numerical routines are developed,which allow generating optimal set of manipulator configurations and corresponding forces/torques for a given number of the calibration experiments.Some specific kinematic constraints are also taken into account,which insure feasibility of calibration experiments for the obtained configurations and allow avoiding collision between the robotic manipulator and the measurement equipment.The efficiency of the developed technique is illustrated by an application example that deals with elastostatic calibration of the serial manipulator used for robot-based machining.
文摘The design of new Satellite Launch Vehicle (SLV) is of interest, especially when a combination of Solid and Liquid Propulsion is included. Proposed is a conceptual design and optimization technique for multistage Low Earth Orbit (LEO) bound SLV comprising of solid and liquid stages with the use of Genetic Algorithm (GA) as global optimizer. Convergence of GA is improved by introducing initial population based on the Design of Experiments (DOE) Technique. Latin Hypercube Sampling (LHS)-DOE is used for its good space filling properties. LHS is a stratified random procedure that provides an efficient way of sampling variables from their multivariate distributions. In SLV design minimum Gross Lift offWeight (GLOW) concept is traditionally being sought. Since the development costs tend to vary as a function of GLOW, this minimum GLOW is considered as a minimum development cost concept. The design approach is meaningful to initial design sizing purpose for its computational efficiency gives a quick insight into the vehicle performance prior to detailed design.
文摘In this study, a design of experiments (DoE) approach was used to develop a PLA open-cell foam morphology using the compression molding technique. The effect of three molding parameters (foaming time, mold opening temperature, and weight concentration of the ADA blowing agent) on the cellular structure was investigated. A regression equation relating the average cell size to the above three processing parameters was developed from the DoE and the analysis of variance (ANOVA) was used to find the best dimensional fitting parameters based on the experimental data. With the help of the DoE technique, we were able to develop various foam morphologies having different average cell size distribution levels, which is important in the development of open-cell PLA scaffolds for bone regeneration for which the control of cell morphology is crucial for osteoblasts proliferation. For example, at a constant ADA weight concentration of 5.95 wt%, we were able to develop a narrow average cell size distribution ranging between 275 and 300 μm by varying the mold opening temperature between 106°C and 112°C, while maintaining the foaming time constant at 8 min, or by varying the mold foaming time between 6 and 11 min and maintaining the mold opening temperature at 109°C.
基金supported by the National Key R&D Program of China(2020YFB1505703)the National Natural Science Foundation of China(22072101,22075193)+2 种基金supported by the Natural Science Foundation of Jiangsu Province(BK20211306)the Six Talent Peaks Project in Jiangsu Province(TD-XCL-006)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions。
文摘As a highly tempting technology to close the carbon cycle,electrochemical CO_(2)reduction calls for the development of highly efficient and durable electrocatalysts.In the current study,Design of Experiments utilizing the response surface method is exploited to predict the optimal process variables for preparing high-performance Cu catalysts,unraveling that the selectivity towards methane or ethylene can be simply modulated by varying the evaporation parameters,among which the Cu film thickness is the most pivotal factor to determine the product selectivity.The predicted optimal catalyst with a low Cu thickness affords a high methane Faradaic efficiency of 70.6%at the partial current density of 211.8 m A cm^(-2),whereas that of a high Cu thickness achieves a high ethylene selectivity of 66.8%at267.2 m A cm^(-2)in the flow cell.Further structure-performance correlation and in-situ electrospectroscopic measurements attribute the high methane selectivity to isolated Cu clusters with low packing density and monotonous lattice structure,and the high ethylene efficiency to coalesced Cu nanoparticles with rich grain boundaries and lattice defects.The high Cu packing density and crystallographic diversity is of essence to promoting C–C coupling by stabilizing*CO and suppressing*H coverage on the catalyst surface.This work highlights the implementation of scientific and mathematic methods to uncover optimal catalysts and mechanistic understandings toward selective electrochemical CO_(2)reduction.
文摘For optimization of production processes and product quality,often knowledge of the factors influencing the process outcome is compulsory.Thus,process analytical technology(PAT)that allows deeper insight into the process and results in a mathematical description of the process behavior as a simple function based on the most important process factors can help to achieve higher production efficiency and quality.The present study aims at characterizing a well-known industrial process,the transesterification reaction of rapeseed oil with methanol to produce fatty acid methyl esters(FAME)for usage as biodiesel in a continuous micro reactor set-up.To this end,a design of experiment approach is applied,where the effects of two process factors,the molar ratio and the total flow rate of the reactants,are investigated.The optimized process target response is the FAME mass fraction in the purified nonpolar phase of the product as a measure of reaction yield.The quantification is performed using attenuated total reflection infrared spectroscopy in combination with partial least squares regression.The data retrieved during the conduction of the DoE experimental plan were used for statistical analysis.A non-linear model indicating a synergistic interaction between the studied factors describes the reactor behavior with a high coefficient of determination(R^(2))of 0.9608.Thus,we applied a PAT approach to generate further insight into this established industrial process.
文摘Due to operational or physical considerations, standard factorial and response surface method (RSM) design of experiments (DOE) often prove to be unsuitable. In such cases a computer-generated statistically-optimal design fills the breech. This article explores vital mathematical properties for evaluating alternative designs with a focus on what is really important for industrial experimenters. To assess "goodness of design" such evaluations must consider the model choice, specific optimality criteria (in particular D and I), precision of estimation based on the fraction of design space (FDS), the number of runs to achieve required precision, lack-of-fit testing, and so forth. With a focus on RSM, all these issues are considered at a practical level, keeping engineers and scientists in mind. This brings to the forefront such considerations as subject-matter knowledge from first principles and experience, factor choice and the feasibility of the experiment design.
文摘Objective:Quality by design integration is exceedingly imperative for industries dealing with pharmaceuticals,but it diminishes product variability and delivers an extraordinary degree of assurance that the product would achieve the purpose for which it was formulated.The objective of the manuscript is to strengthen the understanding of the design of experimentation approach from the primary level.Hence,this review paper aims to get one experience with a course emphasizing product quality during its development process.Methods:The present work describes how experimental statistical designs can optimize the process.It is a strategy to improve the manufacturing of products and discuss the main factors involved in the production.The review describes different designs,advantages,disadvantages and design of experiments requirements concerning regulatory submissions.Results:Quality by design encourages the pharmaceutical industry to deal with risk management and proper understanding of products and manufacturing processes,assuring a good quality product.Having knowledge of quality by design and design of experiments in the formulation and process development will be beneficial for the optimization of drug delivery systems in upcoming times.Conclusion:Implementing quality by design at different phases in pharmaceutical manufacturing,the final product with a great degree of reproducible quality may be assured,depending upon experimental data.This contains valuable information in guiding new researchers about the importance and ways of using the design of experiments.
基金Sponsored by the Spacial Project of Research on Revolutionary Cultural Relics for College Students in 2024(2024DXSGMWW50)Innovation Fund Project for Postgraduates of Jiangxi Provincial Department of Education(YC2024-S228).
文摘How exhibitions of revolutionary cultural relics affect and enhance the audience’s comprehensive experiences was discussed from aspects of bodily perception,spatial interaction,emotional resonance,and value identification,and the experience design of exhibitions of revolutionary cultural relics was further studied to better carry and convey the spirit of the revolution.Guided by embodied theory,this study was provided with methodological support from various perspectives,and analyzed the current development and existing problems of exhibitions of revolutionary cultural relics through field investigations.Currently,embodied theory is gradually being applied in exhibition design,and the focus of exhibitions is shifted from“objects”to“people”.By collecting direct feelings and feedback from the audience on the exhibitions of revolutionary cultural relics,and theoretical construction and practical application for the experience design of these exhibitions are solidly supported.The needs for emotional and inspirational awakening,education and learning,participation and interaction were revealed.Based on the audience’s behavior,a four-step design method was proposed:enhancing the sense of place,enriching sensory experience,strengthening interactive experiences,and fostering a sense of belonging.Through the application of experiential design in these four dimensions,it aims to reshape the methods of exhibitions of revolutionary cultural relics and promote a deep integration between the exhibitions and embodied theory.
基金Supported by Basic Research Projects of Leading Science and Technology in Henan Province (82300433202)~~
文摘[Objective] The aim was to explore the biological effect of low energy ion beam mediated parameters with fractional factorial design method. [Method] The twin-embryos seed of autotetraploid rice DER10-04-01 was taken as the receptor material,and the Elymus dahuricus Turcz. was used as materials to provide DNA to carry out the ion beam mediated experiment. And the fractional factorial design method was used to study the parameters of low enery N+ ion beam mediated foreign genes into rice. [Result] The implantation energy,dose,DNA concentrations and immersion time of DNA showed significant biological effects on the normal growth and development of DER10-04-01,in which the biological effects of implantation dose and DNA concentrations were relatively obvious. [Conclusion] The implantation energy,dose,DNA concentrations and immersion time of DNA were major factors showing important effects on the experimental result in ion beam mediated foreign genetic materials.
文摘Device robust-design is inherently a multiple-objective optimization problem.Using design of experiments (DoE) combined with response surface methodology (RSM) can satisfy the great incentive to reduce the number of technology CAD(TCAD) simulations that need to be performed.However,the errors of RSM models might be large enough to diminish the validity of the results for some nonlinear problems.To find the feasible design space,a new method with objectives-oriented design in generations that takes the errors of RSM model into account is presented.After the augment design of experiments in promising space according to the results of RSM model in current generation,the feasible space will be emerging as the model errors deceasing.The results on FIBMOS examples show that the methodology is efficient.
基金Supported by National Science&Technology Pillar Program of China(Grant No.2014BAB08B01)National Natural Science Foundation of China(Grant No.51409123)+1 种基金Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20140554)Training Project for Young Core Teacher of Jiangsu University,China
文摘Cavitation is one of the most important performance of centrifugal pumps. However, the current optimization works of centrifugal pump are mostly focusing on hydraulic efficiency only, which may result in poor cavitation performance. Therefore, it is necessary to find an appropriate solution to improve cavitation performance with acceptable efficiency. In this paper, to improve the cavitation performance of a centrifugal pump with a vaned diffuser, the influence of impeller geometric parameters on the cavitation of the pump is investigated using the orthogonal design of experiment (DOE) based on computational fluid dynamics. The impeller inlet diameter D1, inlet incidence angle Aft, and blade wrap angle ~0 are selected as the main impeller geometric parameters and the orthogonal experiment of L9(3"3) is performed. Three-dimensional steady simulations for cavitation are conducted by using constant gas mass fraction model with second-order upwind, and the predicated cavitation performance is validated by laboratory experiment. The optimization results are obtained by the range analysis method to improve cavitation performance without obvious decreasing the efficiency of the centrifugal pump. The internal flow of the pump is analyzed in order to identify the flow behavior that can affect cavitation performance. The results show that D1 has the greatest influence on the pump cavitation and the final optimized impeller provides better flow distribution at blade leading edge. The final optimized impeller accomplishes better cavitation and hydraulic performance and the NPSHR decreases by 0.63m compared with the original one. The presented work supplies a feasible route in engineering practice to optimize a centrifugal pump impeller for better cavitation performance.
基金supported by National Defense Basic Research Program (No. 20112060303)
文摘Tolerance design plays an important role in reliability design for electronic circuits. The traditional method only focuses on the consistency of output response. It is not able to meet the needs of increasing development of electronic products. This paper researches the state of related fields and proposes a method of multi-objective reliability tolerance design. The characteristics of output response and operating stresses on critical components are both defined as design objectives. Critical components and their operating stresses are determined by failure mode and effect analysis (FMEA) and fault tree analysis (FTA). Sensitivity analysis is carried out to determine sensitive parameters that affect the design objectives significantly. Monte Carlo and worst-case analysis are utilized to explore the tolerance levels of sensitive parameters. Design of experiment and regression analysis are applied in this method. The optimal tolerance levels are selected in accord with a quality-cost model to improve consistency of output response and reduce failure rates of critical components synchronously. The application in light-emitting diode (LED) drivers indicates details and potential. It shows that the proposed method provides a more effective way to improve performance and reliability of electronic circuits.
基金This work was supported by Science Foundation of Guangxi Zhuang Autonomous Region (Contract No. 02336060).
文摘Four process parameters, pad diameter, stencil thickness, ball diameter and stand-off were chosen as four control factors. By using an L25 (5^6 ) orthogonal array the ceramic ball grid array ( CBGA ) solder joints which have 25 different combinations of process parameters were designed. The numerical models of all the 25 CBGA solder joints were developed using the Sugrace Evolver. Utilizing the sugrace coordinate exported from the 25 CBGA solder joints numerical models, the finite element analysis models were set up and the nonlinear finite element analysis of the CBGA solder joints under thermal cycles were pegrormed by ANSYS. The thermal fatigue life of CBGA solder joint was calculated using Coffin-Manson equation. Based on the calculated thermal fatigue life results, the range analysis and the variance analysis were pegrormed. The results show that the fatigue life of CBGA solder joint is affected by the pad diameter, the stencil thickness, the ball diameter and the stand-off in a descending order, the best combination of process parameters results in the longest fatigue life is 0.07 mm stand-off, 0.125 mm stencil thickness of, 0.85 mm ball diameter and 0. 89 mm pad diameter. With 95% confidence the pad diameter has a significant effect on the reliability of CBGA solder joints whereas the stand-off, the stencil thickness and the ball diameter have little effect on the reliability of CBGA solder joints.
基金supported by the National Natural Science Foundation of China(No.61627810)。
文摘Efficient experiment design is of great significance for the validation of simulation model with high nonlinearity and large input space.Excessive validation experiment raises the cost while insufficient test increases the risks of accepting an invalid model.In this paper,an adaptive sequential experiment design method combining global exploration criterion and local exploitation criterion is proposed.The exploration criterion utilizes discrepancy metric to improve the space-filling property of the design points while the exploitation criterion employs the leave one out error to discover informative points.To avoid the clustering of samples in the local region,an adaptive weight updating approach is provided to maintain the balance between exploration and exploitation.Besides,the credibility distribution function characterizing the relationship between the input and result credibility is introduced to support the model validation experiment design.Finally,six benchmark problems and an engineering case are applied to examine the performance of the proposed method.The experiments indicate that the proposed method achieves satisfactory performance for function approximation in accuracy and convergence.
基金supported by Important National Science & Technology Specific Projects of China (No.2) (Nos.2009ZX02001,2011ZX02403)
文摘The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these parameters were determined by the "trial and error" method, resulting in wastes of time and funds. In this paper, a new approach of regression orthogonal design with plasma simulation experiments is proposed to investigate the sensitivity of the structural parameters on the uniformity of plasma characteristics. The tool for simulating plasma is CFD-ACE+, which is commercial multi-physical modeling software that has been proven to be accurate for plasma simulation. The simulated experimental results are analyzed to get a regression equation on three structural parameters. Through this equation, engineers can compute the uniformity of the electron number density rapidly without modeling by CFD-ACE+. An optimization performed at the end produces good results.
文摘Electromagnetic stir casting process of A357-Si C nanocomposite was discussed using the D-optimal design of experiment(DODOE) method. As the main objective, nine random experiments obtained by DX-7 software were performed. By this method, A357-Si C nanocomposites with 0.5, 1.0 and 1.5 wt.% Si C were fabricated at three different frequencies(10, 35 and 60 Hz) in the experimental stage. The microstructural evolution was characterized by scanning electron and optical microscopes, and the mechanical properties were investigated using hardness and roomtemperature uniaxial tensile tests. The results showed that the homogeneous distribution of Si C nanoparticles leads to the microstructure evolution from dendritic to non-dendritic form and a reduction of size by 73.9%. Additionally, based on DODOE, F-values of 44.80 and 179.64 were achieved for yield stress(YS) and ultimate tensile strength(UTS), respectively, implying that the model is significant and the variables(Si C fraction and stirring frequency) were appropriately selected. The optimum values of the Si C fraction and stirring frequency were found to be 1.5 wt.% and 60 Hz, respectively. In this case, YS and UTS for A357-Si C nanocomposites were obtained to be 120 and 188 MPa(57.7% and 57.9 % increase compared with those of the as-cast sample), respectively.