Significant changes of geological and hydraulic behaviors of rock mass with depth was studied. The general regulation and the critical depth of qualitative change of rock mass geological and hydraulic changes with dep...Significant changes of geological and hydraulic behaviors of rock mass with depth was studied. The general regulation and the critical depth of qualitative change of rock mass geological and hydraulic changes with depth were studied. Preliminary research show that the mechanical properties of rock mass gradually change from solid to plastic with the increasing of its buried depth. The critical depth of this tendency was controlled by geological properties of rock mass and its overlying rock. The critical depths are different in different regions because of its different geological condition. The general change depth of rock mass from rigid property to plastic property in coal mine regions of North China is about 1 800-2 300 m. The hydraulic permeability of rock mass will change significantly with depth because of the geological and hydraulic mechanics changes from solid to plastic and the groundwater circulation condition in karst and fractured aquifer will also change. The results reflact that the stability, deformation, failure, permeability and groundwater hazardous condition of rock mass during deep mining process are quite different from that of shallow mining's.展开更多
The effective detection depth of the needle-like optical probe is studied. The light transport model in highly scattering tissue is the diffusion equation and the boundary is Neuman. The sensitivity matrix is related ...The effective detection depth of the needle-like optical probe is studied. The light transport model in highly scattering tissue is the diffusion equation and the boundary is Neuman. The sensitivity matrix is related to the position of the light source and the detector. It can be used to evaluate the effective detection depth. The sensitivity matrix is defined as the multiplication of the source and detector hght distribution. Six different groups about ix parameters including the source diameter and detector fibers, the core-to-core distance between the source and detector fibers, the opotode depth, the absorption, and reduced scattering coefficient, are used as experimental models. The relationship between the six parameters and the effective detection depth is analyzed. Resuits can be used to study the spatial resolution and the depth of multi-fibers.展开更多
Effective depth of dynamic compaction was summarized, and the advantages of dynamic compaction technology of effective depth were analyzed elaborately. The formula determining the reinforcement depth was deduced by us...Effective depth of dynamic compaction was summarized, and the advantages of dynamic compaction technology of effective depth were analyzed elaborately. The formula determining the reinforcement depth was deduced by using dimensional analysis method. The influential factors of hammer weight, hammer area, dry density of filling materials and filling materials types were comprehensively investigated. The formula of effective depth was established based on the definition of the dimensions analysis. Based on experimental results of in-situ dynamic compaction, the technology was applied to highway embankment filled with soils and rocks. From the comparison between the theoretical calculations and the experimental results, it is found that the theoretical results using the developed formula are close to experimental results.展开更多
The effect of signal sampling depth in SIMS on profile was not reported We have found that the maximum sampling depth in SIMS is considerably bigger than the mean penetration range of primary ions and can skew the pro...The effect of signal sampling depth in SIMS on profile was not reported We have found that the maximum sampling depth in SIMS is considerably bigger than the mean penetration range of primary ions and can skew the profile of secondary ion counts for implanted samples on the more deeper direction from the surface. The effect of maximum sampling depth is true not only for implanted samples but also for the samples in the middle of which there is an other impurity-rich layer. The action principle of signal sampling depth effect and the method of decreasing the error produced by the effect are discussed in this展开更多
Objective: To investigate the continuous humidification tube insertion depth of endotracheal intubation and the flow rate of the wetting effect. Methods: From October 2008 to May 2010, among 132 patients of oral and m...Objective: To investigate the continuous humidification tube insertion depth of endotracheal intubation and the flow rate of the wetting effect. Methods: From October 2008 to May 2010, among 132 patients of oral and maxillofacial surgery with tracheal intubation, continuous infusion can be adjusted to the wet method;according to the wet pipe, insertion depth of the flow rate is divided into four groups, by four different depths and velocities of the wetting effect, to be analyzed. Results: B group was significantly lower than other groups satisfied with indicators of four significantly different effects of humidification. Conclusion: When continuous humidification tube insertion depth of endotracheal intubation is 10 - 12 cm, and flow rate is 15 - 20 ml/h, the wetting effect will achieve greater satisfaction.展开更多
-In this paper, numerical modelling of the fluctuation of the thermocline in the Bohai Sea has been made using a two-dimensional nonlinear model in stratified ocean and the model for the depth of the thermocline under...-In this paper, numerical modelling of the fluctuation of the thermocline in the Bohai Sea has been made using a two-dimensional nonlinear model in stratified ocean and the model for the depth of the thermocline under the effects of wind stirring. The computed results depict the variations of the fluctuation of the thermocline driven by different kinds of wind fields. The fluctuation of the thermocline in the Bohai Sea varies somewhat with different directions, paths and locations of typhoon (cyclone). Under the effects of strong wind, the thermoclines both sink due to mixing and fluctuate. Furthermore, the fluctuation of the thermocline speeds up mixing. At last, the thermoclines disappear after 12-15 h when the strong wind increases from Force 6 to Force 9.展开更多
In order to solve the problem of depth classification of the underwater target in a very low frequency acoustic field, the active component of cross spectra of particle pressure and horizontal velocity (ACCSPPHV) is...In order to solve the problem of depth classification of the underwater target in a very low frequency acoustic field, the active component of cross spectra of particle pressure and horizontal velocity (ACCSPPHV) is adopted to distinguish the surface vessel and the underwater target. According to the effective depth of a Pekeris waveguide, the placing depth forecasting equations of passive vertical double vector hydrophones are proposed. Numerical examples show that when the sum of depths of two hydro- phones is the effective depth, the sign distribution of ACCSPPHV has nothing to do with horizontal distance; in addition, the sum of the first critical surface and the second critical surface is equal to the effective depth. By setting the first critical surface less than the difference between the effective water depth and the actual water depth, that is, the second critical surface is greater than the actual depth, the three positive and negative regions of the whole ocean volume are equivalent to two positive and negative regions and therefore the depth classification of the underwater target is obtained. Besides, when the 20 m water depth is taken as the first critical surface in the simulation of underwater targets (40 Hz, 50 Hz, and 60 Hz respectively), the effectiveness of the algorithm and the cor- reemess of relevant conclusions are verified, and the analysis of the corresponding forecasting performance is conducted.展开更多
Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Current...Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Currently, commercial calculation programs such as BING have limitations in simulating underwater soil movements. All of these processes can be consistently simulated through a smoothed particle hydrodynamics(SPH) depth integrated model. The basis of the model is a control equation that was developed to take into account the effects of soil consolidation and erosion. In this work, the frictional rheological mode has been used to perform a simulation study of submarine landslides. Time-history curves of the sliding body's velocity, height,and length under various conditions of water depth, slope gradient, contact friction coefficient, and erosion rate are compared; the maximum sliding distance and velocity are calculated; and patterns of variation are discussed.The findings of this study can provide a reference for disaster warnings and pipeline route selection.展开更多
A decay function for the layering effect during the projectile penetrating into layered targets is constructed, which is obtained via the theoretical solution of a dynamically expanding layered spherical cavity with f...A decay function for the layering effect during the projectile penetrating into layered targets is constructed, which is obtained via the theoretical solution of a dynamically expanding layered spherical cavity with finite radius in the layered targets that are assumed to be incom- pressible Mohr-Coulomb materials. By multiplying the decay function with the semi-empirical forcing functions that account for all the constitutive behavior of the targets, the forcing functions for the layered targets are obtained. Then, the forcing functions are used to represent the targets and are applied on the projectile surface as the pressure boundary condition where the projectile is modeled by an explicit transient dynamic finite element code. This methodology is implemented into ABAQUS explicit solver via the user subroutine VDLOAD, which eliminates the need for discretizing the targets and the need for the complex contact algorithm. In order to verify the proposed layering effect model, depth-of-penetration experiments of the 37 mm hard core pro-jectile penetrating into three sets of fiber concrete and soil layered targets are conducted. The predicted depths of penetration show good agreement with the experimental data. Furthermore, the influence of layering effect on projectile trajectory during earth penetration is investigated. It is found that the layering effect should be taken into account if the final position and trajectory of the projectile are the main concern.展开更多
Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measure...Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measurement accuracy. In this paper, first, we review the nonlinear effects of the projector-camera system in the phase-shifting structured light depth measurement method. We show that high order harmonic wave components lead to phase error in the phase-shifting method. Then a practical method based on frequency domain filtering is proposed for nonlinear error reduction. By using this method, the nonlinear calibration of the SL system is not required. Moreover, both the nonlinear effects of the projector and the camera can be effectively reduced. The simulations and experiments have verified our nonlinear correction method.展开更多
Meissner effect is one of the two fundamental properties of superconductors, it allows them to actively exclude external magnetic fields from their interior, leaving the field to decay quickly from the surface to the ...Meissner effect is one of the two fundamental properties of superconductors, it allows them to actively exclude external magnetic fields from their interior, leaving the field to decay quickly from the surface to the interior within a very thin layer whose thickness is characterized by the penetration depth . Based on the mechanism of “close-shell inversion” for superconductivity proposed earlier, we proceed in this paper to calculate the magnetic penetration depth. It is found that repelling the external magnetic field is just a spontaneous and dynamic response of conduction electrons in superconductors. Calculation results show that the net magnetic field decays exponentially, in consistent with the existing theories and experimental data. .展开更多
Based on μ-, T- and H-dependent pairing and number equations and the premise that μ(T) is predominantly the cause of the variation of the upper critical field H<sub>c</sub><sub>2</sub>(T), wh...Based on μ-, T- and H-dependent pairing and number equations and the premise that μ(T) is predominantly the cause of the variation of the upper critical field H<sub>c</sub><sub>2</sub>(T), where μ, T and H denote the chemical potential, temperature and the applied field, respectively, we provide in this paper fits to the empirical H<sub>c</sub><sub>2</sub>(T) data of H<sub>3</sub>S reported by Mozaffari, et al. (2019) and deal with the issue of whether or not H<sub>3</sub>S exhibits the Meissner effect. Employing a variant of the template given by Dogan and Cohen (2021), we examine in detail the results of Hirsch and Marsiglio (2022) who have claimed that H<sub>3</sub>S does not exhibit the Meissner effect and Minkov, et al. (2023) who have claimed that it does. We are thus led to suggest that monitoring the chemical potential (equivalently, the number density of Cooper pairs N<sub>s</sub> at T = T<sub>c</sub>) should shed new light on the issue being addressed.展开更多
文摘Significant changes of geological and hydraulic behaviors of rock mass with depth was studied. The general regulation and the critical depth of qualitative change of rock mass geological and hydraulic changes with depth were studied. Preliminary research show that the mechanical properties of rock mass gradually change from solid to plastic with the increasing of its buried depth. The critical depth of this tendency was controlled by geological properties of rock mass and its overlying rock. The critical depths are different in different regions because of its different geological condition. The general change depth of rock mass from rigid property to plastic property in coal mine regions of North China is about 1 800-2 300 m. The hydraulic permeability of rock mass will change significantly with depth because of the geological and hydraulic mechanics changes from solid to plastic and the groundwater circulation condition in karst and fractured aquifer will also change. The results reflact that the stability, deformation, failure, permeability and groundwater hazardous condition of rock mass during deep mining process are quite different from that of shallow mining's.
基金Supported by the Natural Science Foundation of Jiangsu Province (BK2009371)the National High Technology Research and Development Program of China ("863" Program) (2008AA02Z438)~~
文摘The effective detection depth of the needle-like optical probe is studied. The light transport model in highly scattering tissue is the diffusion equation and the boundary is Neuman. The sensitivity matrix is related to the position of the light source and the detector. It can be used to evaluate the effective detection depth. The sensitivity matrix is defined as the multiplication of the source and detector hght distribution. Six different groups about ix parameters including the source diameter and detector fibers, the core-to-core distance between the source and detector fibers, the opotode depth, the absorption, and reduced scattering coefficient, are used as experimental models. The relationship between the six parameters and the effective detection depth is analyzed. Resuits can be used to study the spatial resolution and the depth of multi-fibers.
文摘Effective depth of dynamic compaction was summarized, and the advantages of dynamic compaction technology of effective depth were analyzed elaborately. The formula determining the reinforcement depth was deduced by using dimensional analysis method. The influential factors of hammer weight, hammer area, dry density of filling materials and filling materials types were comprehensively investigated. The formula of effective depth was established based on the definition of the dimensions analysis. Based on experimental results of in-situ dynamic compaction, the technology was applied to highway embankment filled with soils and rocks. From the comparison between the theoretical calculations and the experimental results, it is found that the theoretical results using the developed formula are close to experimental results.
基金This work is supported by National Natural Science Fundation.
文摘The effect of signal sampling depth in SIMS on profile was not reported We have found that the maximum sampling depth in SIMS is considerably bigger than the mean penetration range of primary ions and can skew the profile of secondary ion counts for implanted samples on the more deeper direction from the surface. The effect of maximum sampling depth is true not only for implanted samples but also for the samples in the middle of which there is an other impurity-rich layer. The action principle of signal sampling depth effect and the method of decreasing the error produced by the effect are discussed in this
文摘Objective: To investigate the continuous humidification tube insertion depth of endotracheal intubation and the flow rate of the wetting effect. Methods: From October 2008 to May 2010, among 132 patients of oral and maxillofacial surgery with tracheal intubation, continuous infusion can be adjusted to the wet method;according to the wet pipe, insertion depth of the flow rate is divided into four groups, by four different depths and velocities of the wetting effect, to be analyzed. Results: B group was significantly lower than other groups satisfied with indicators of four significantly different effects of humidification. Conclusion: When continuous humidification tube insertion depth of endotracheal intubation is 10 - 12 cm, and flow rate is 15 - 20 ml/h, the wetting effect will achieve greater satisfaction.
文摘-In this paper, numerical modelling of the fluctuation of the thermocline in the Bohai Sea has been made using a two-dimensional nonlinear model in stratified ocean and the model for the depth of the thermocline under the effects of wind stirring. The computed results depict the variations of the fluctuation of the thermocline driven by different kinds of wind fields. The fluctuation of the thermocline in the Bohai Sea varies somewhat with different directions, paths and locations of typhoon (cyclone). Under the effects of strong wind, the thermoclines both sink due to mixing and fluctuate. Furthermore, the fluctuation of the thermocline speeds up mixing. At last, the thermoclines disappear after 12-15 h when the strong wind increases from Force 6 to Force 9.
基金supported by Public Science and Technology Research Funds Projects of Ocean(201405036-4)the National Natural Science Foundation of China(Grant Nos.11404406,51179034,41072176 and 11204109)+1 种基金Defense Technology Research(JSJC2013604C012)Postdoctoral Science Foundation of China(Grant No.2013 M531015)
文摘In order to solve the problem of depth classification of the underwater target in a very low frequency acoustic field, the active component of cross spectra of particle pressure and horizontal velocity (ACCSPPHV) is adopted to distinguish the surface vessel and the underwater target. According to the effective depth of a Pekeris waveguide, the placing depth forecasting equations of passive vertical double vector hydrophones are proposed. Numerical examples show that when the sum of depths of two hydro- phones is the effective depth, the sign distribution of ACCSPPHV has nothing to do with horizontal distance; in addition, the sum of the first critical surface and the second critical surface is equal to the effective depth. By setting the first critical surface less than the difference between the effective water depth and the actual water depth, that is, the second critical surface is greater than the actual depth, the three positive and negative regions of the whole ocean volume are equivalent to two positive and negative regions and therefore the depth classification of the underwater target is obtained. Besides, when the 20 m water depth is taken as the first critical surface in the simulation of underwater targets (40 Hz, 50 Hz, and 60 Hz respectively), the effectiveness of the algorithm and the cor- reemess of relevant conclusions are verified, and the analysis of the corresponding forecasting performance is conducted.
基金The Specialized Research Fund for the Doctoral Program of Higher Education under contract No.20120041130002the National Key Project of Science and Technology under contract No.2011ZX 05056-001-02the Fundamental Research Funds for the Central Universities under contract No.DUT14ZD220
文摘Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Currently, commercial calculation programs such as BING have limitations in simulating underwater soil movements. All of these processes can be consistently simulated through a smoothed particle hydrodynamics(SPH) depth integrated model. The basis of the model is a control equation that was developed to take into account the effects of soil consolidation and erosion. In this work, the frictional rheological mode has been used to perform a simulation study of submarine landslides. Time-history curves of the sliding body's velocity, height,and length under various conditions of water depth, slope gradient, contact friction coefficient, and erosion rate are compared; the maximum sliding distance and velocity are calculated; and patterns of variation are discussed.The findings of this study can provide a reference for disaster warnings and pipeline route selection.
基金supported by the National Natural Science Foundation of China(Nos.51321064 and 51378015)
文摘A decay function for the layering effect during the projectile penetrating into layered targets is constructed, which is obtained via the theoretical solution of a dynamically expanding layered spherical cavity with finite radius in the layered targets that are assumed to be incom- pressible Mohr-Coulomb materials. By multiplying the decay function with the semi-empirical forcing functions that account for all the constitutive behavior of the targets, the forcing functions for the layered targets are obtained. Then, the forcing functions are used to represent the targets and are applied on the projectile surface as the pressure boundary condition where the projectile is modeled by an explicit transient dynamic finite element code. This methodology is implemented into ABAQUS explicit solver via the user subroutine VDLOAD, which eliminates the need for discretizing the targets and the need for the complex contact algorithm. In order to verify the proposed layering effect model, depth-of-penetration experiments of the 37 mm hard core pro-jectile penetrating into three sets of fiber concrete and soil layered targets are conducted. The predicted depths of penetration show good agreement with the experimental data. Furthermore, the influence of layering effect on projectile trajectory during earth penetration is investigated. It is found that the layering effect should be taken into account if the final position and trajectory of the projectile are the main concern.
基金Project supported by the Science and Technology Major Projects of Zhejiang Province,China(Grant No.2013C03043-5)
文摘Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measurement accuracy. In this paper, first, we review the nonlinear effects of the projector-camera system in the phase-shifting structured light depth measurement method. We show that high order harmonic wave components lead to phase error in the phase-shifting method. Then a practical method based on frequency domain filtering is proposed for nonlinear error reduction. By using this method, the nonlinear calibration of the SL system is not required. Moreover, both the nonlinear effects of the projector and the camera can be effectively reduced. The simulations and experiments have verified our nonlinear correction method.
文摘Meissner effect is one of the two fundamental properties of superconductors, it allows them to actively exclude external magnetic fields from their interior, leaving the field to decay quickly from the surface to the interior within a very thin layer whose thickness is characterized by the penetration depth . Based on the mechanism of “close-shell inversion” for superconductivity proposed earlier, we proceed in this paper to calculate the magnetic penetration depth. It is found that repelling the external magnetic field is just a spontaneous and dynamic response of conduction electrons in superconductors. Calculation results show that the net magnetic field decays exponentially, in consistent with the existing theories and experimental data. .
文摘Based on μ-, T- and H-dependent pairing and number equations and the premise that μ(T) is predominantly the cause of the variation of the upper critical field H<sub>c</sub><sub>2</sub>(T), where μ, T and H denote the chemical potential, temperature and the applied field, respectively, we provide in this paper fits to the empirical H<sub>c</sub><sub>2</sub>(T) data of H<sub>3</sub>S reported by Mozaffari, et al. (2019) and deal with the issue of whether or not H<sub>3</sub>S exhibits the Meissner effect. Employing a variant of the template given by Dogan and Cohen (2021), we examine in detail the results of Hirsch and Marsiglio (2022) who have claimed that H<sub>3</sub>S does not exhibit the Meissner effect and Minkov, et al. (2023) who have claimed that it does. We are thus led to suggest that monitoring the chemical potential (equivalently, the number density of Cooper pairs N<sub>s</sub> at T = T<sub>c</sub>) should shed new light on the issue being addressed.