期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
IQABC-Based Hybrid Deployment Algorithm for Mobile Robotic Agents Providing Network Coverage
1
作者 Shuang Xu Xiaojie Liu +1 位作者 Dengao Li Jumin Zhao 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第2期589-604,共16页
Working as aerial base stations,mobile robotic agents can be formed as a wireless robotic network to provide network services for on-ground mobile devices in a target area.Herein,a challenging issue is how to deploy t... Working as aerial base stations,mobile robotic agents can be formed as a wireless robotic network to provide network services for on-ground mobile devices in a target area.Herein,a challenging issue is how to deploy these mobile robotic agents to provide network services with good quality for more users,while considering the mobility of on-ground devices.In this paper,to solve this issue,we decouple the coverage problem into the vertical dimension and the horizontal dimension without any loss of optimization and introduce the network coverage model with maximum coverage range.Then,we propose a hybrid deployment algorithm based on the improved quick artificial bee colony.The algorithm is composed of a centralized deployment algorithm and a distributed one.The proposed deployment algorithm deploy a given number of mobile robotic agents to provide network services for the on-ground devices that are independent and identically distributed.Simulation results have demonstrated that the proposed algorithm deploys agents appropriately to cover more ground area and provide better coverage uniformity. 展开更多
关键词 wireless robotic networks network coverage deployment algorithm improved quick artificial bee colony
原文传递
GBiDC-PEST:A novel lightweight model for real-time multiclass tiny pest detection and mobile platform deployment
2
作者 Weiyue Xu Ruxue Yang +2 位作者 Raghupathy Karthikeyan Yinhao Shi Qiong Su 《Journal of Integrative Agriculture》 2025年第7期2749-2769,共21页
Deep learning-based intelligent recognition algorithms are increasingly recognized for their potential to address the labor-intensive challenge of manual pest detection.However,their deployment on mobile devices has b... Deep learning-based intelligent recognition algorithms are increasingly recognized for their potential to address the labor-intensive challenge of manual pest detection.However,their deployment on mobile devices has been constrained by high computational demands.Here,we developed GBiDC-PEST,a mobile application that incorporates an improved,lightweight detection algorithm based on the You Only Look Once(YOLO)series singlestage architecture,for real-time detection of four tiny pests(wheat mites,sugarcane aphids,wheat aphids,and rice planthoppers).GBiDC-PEST incorporates several innovative modules,including GhostNet for lightweight feature extraction and architecture optimization by reconstructing the backbone,the bi-directional feature pyramid network(BiFPN)for enhanced multiscale feature fusion,depthwise convolution(DWConv)layers to reduce computational load,and the convolutional block attention module(CBAM)to enable precise feature focus.The newly developed GBiDC-PEST was trained and validated using a multitarget agricultural tiny pest dataset(Tpest-3960)that covered various field environments.GBiDC-PEST(2.8 MB)significantly reduced the model size to only 20%of the original model size,offering a smaller size than the YOLO series(v5-v10),higher detection accuracy than YOLOv10n and v10s,and faster detection speed than v8s,v9c,v10m and v10b.In Android deployment experiments,GBiDCPEST demonstrated enhanced performance in detecting pests against complex backgrounds,and the accuracy for wheat mites and rice planthoppers was improved by 4.5-7.5%compared with the original model.The GBiDC-PEST optimization algorithm and its mobile deployment proposed in this study offer a robust technical framework for the rapid,onsite identification and localization of tiny pests.This advancement provides valuable insights for effective pest monitoring,counting,and control in various agricultural settings. 展开更多
关键词 mobile counting real-time processing pest detection tiny object identification algorithm deployment
在线阅读 下载PDF
Wireless sensor networks in relic protection:deployment methodology and cross-layer design 被引量:1
3
作者 李栋 《High Technology Letters》 EI CAS 2009年第1期59-64,共6页
This paper describes the deployment optimization technology and the cross-layer design of a surveil-lance WSN system applied in relic protection.Facing the typical technical challenges in the applicationcontext of rel... This paper describes the deployment optimization technology and the cross-layer design of a surveil-lance WSN system applied in relic protection.Facing the typical technical challenges in the applicationcontext of relic protection,we firstly propose a deployment technology based on ant colony optimization al-gorithm(DT-ACO)to overcome the difficulties in communication connectivity and sensing coverage.Meanwhile,DT-ACO minimizes the overall cost of the system as much as possible.Secondly we proposea novel power-aware cross-layer scheme(PACS)to facilitate adjustable system lifetime and surveillanceaccuracy.The performance analysis shows that we achieve lower device cost,significant extension of thesystem lifetime and improvement on the data delivery rate compared with the traditional methods. 展开更多
关键词 wireless sensor network deployment algorithm cross-layer design
在线阅读 下载PDF
Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network 被引量:2
4
作者 Zhen-Zhen Zou Xu-Tao Yu Zai-Chen Zhang 《Frontiers of physics》 SCIE CSCD 2018年第2期1-12,共12页
At first, the entanglement source deployment problem is studied in a quantum multi-hop network, which has a significant influence on quantum connectivity. Two optimization algorithms are introduced with limited entang... At first, the entanglement source deployment problem is studied in a quantum multi-hop network, which has a significant influence on quantum connectivity. Two optimization algorithms are introduced with limited entanglement sources in this paper. A deployment algorithm based on node position (DNP) improves connectivity by guaranteeing that all overlapping areas of the distribution ranges of the entanglement sources contain nodes. In addition, a deployment algorithm based on an improved genetic algorithm (DIGA) is implemented by dividing the region into grids. From the simulation results, DNP and DIGA improve quantum connectivity by 213.73% and 248.83% compared to random deployment, respectively, and the latter performs better in terms of connectivity. However, DNP is more flexible and adaptive to change, as it stops running when all nodes are covered. 展开更多
关键词 entanglement source deployment quantum connectivity deployment algorithm
原文传递
Overbooking-Enabled Task Scheduling and Resource Allocation in Mobile Edge Computing Environments
5
作者 Jixun Gao Bingyi Hu +3 位作者 Jialei Liu Huaichen Wang Quanzhen Huang Yuanyuan Zhao 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期1-16,共16页
Mobile Edge Computing(MEC)is proposed to solve the needs of Inter-net of Things(IoT)users for high resource utilization,high reliability and low latency of service requests.However,the backup virtual machine is idle w... Mobile Edge Computing(MEC)is proposed to solve the needs of Inter-net of Things(IoT)users for high resource utilization,high reliability and low latency of service requests.However,the backup virtual machine is idle when its primary virtual machine is running normally,which will waste resources.Overbooking the backup virtual machine under the above circumstances can effectively improve resource utilization.First,these virtual machines are deployed into slots randomly,and then some tasks with cooperative relationship are off-loaded to virtual machines for processing.Different deployment locations have different resource utilization and average service response time.We want tofind a balanced solution that minimizes the average service response time of the IoT application while maximizing resource utilization.In this paper,we propose a task scheduler and exploit a Task Deployment Algorithm(TDA)to obtain an optimal virtual machine deployment scheme.Finally,the simulation results show that the TDA can significantly increase the resource utilization of the system,while redu-cing the average service response time of the application by comparing TDA with the other two classical methods.The experimental results confirm that the perfor-mance of TDA is better than that of other two methods. 展开更多
关键词 Mobile edge computing OVERBOOKING resource utilization service response time task deployment algorithm
在线阅读 下载PDF
The Research on Low-Light Autonomous Driving Object Detection Method
6
作者 Jianhua Yang Zhiwei Lv Changling Huo 《Computers, Materials & Continua》 2026年第1期1611-1628,共18页
Aiming at the scale adaptation of automatic driving target detection algorithms in low illumination environments and the shortcomings in target occlusion processing,this paper proposes a YOLO-LKSDS automatic driving d... Aiming at the scale adaptation of automatic driving target detection algorithms in low illumination environments and the shortcomings in target occlusion processing,this paper proposes a YOLO-LKSDS automatic driving detection model.Firstly,the Contrast-Limited Adaptive Histogram Equalisation(CLAHE)image enhancement algorithm is improved to increase the image contrast and enhance the detailed features of the target;then,on the basis of the YOLOv5 model,the Kmeans++clustering algorithm is introduced to obtain a suitable anchor frame,and SPPELAN spatial pyramid pooling is improved to enhance the accuracy and robustness of the model for multi-scale target detection.Finally,an improved SEAM(Separated and Enhancement Attention Module)attention mechanism is combined with the DIOU-NMS algorithm to optimize the model’s performance when dealing with occlusion and dense scenes.Compared with the original model,the improved YOLO-LKSDS model achieves a 13.3%improvement in accuracy,a 1.7%improvement in mAP,and 240,000 fewer parameters on the BDD100K dataset.In order to validate the generalization of the improved algorithm,we selected the KITTI dataset for experimentation,which shows that YOLOv5’s accuracy improves by 21.1%,recall by 36.6%,and mAP50 by 29.5%,respectively,on the KITTI dataset.The deployment of this paper’s algorithm is verified by an edge computing platform,where the average speed of detection reaches 24.4 FPS while power consumption remains below 9 W,demonstrating high real-time capability and energy efficiency. 展开更多
关键词 Low-light images image enhancement target detection algorithm deployment
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部